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In order to ensure the efficient operation of wind turbine generator system (WTGS) and the 

safety and stability of wind farms, it is necessary to promptly detect and repair the blade 

damage. The traditional methods of detecting WTGS blade damage mainly rely on manual 

inspection, which is time-consuming, laborious, and has low accuracy. Therefore, it is of 

important practical significance to study the damage identification method of WTGS blades 

based on image processing technology. Due to the drawbacks of existing methods, this 

research aimed to study the damage identification method of WTGS blades based on image 

processing technology. A method of expanding blade damage samples based on the 

improved Deep Convolutional Generative Adversarial Networks (DCGAN) was first 

proposed, which generated a high quality damage image sample set to improve the 

classification performance of the deep learning model. For the problem of damage images 

often affected by noise and environmental factors in practical scenarios, it was solved by 

morphology-based blade damage edge enhancement. In addition, the blade damage state 

evaluation and classification process based on multifractal spectrum (MFS) was provided. 

Finally, the experimental results verified that the proposed algorithm was effective. 
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1. INTRODUCTION

With the increasingly serious global climate change and 

tense resources in recent years, the development and 

utilization of renewable energy have become the focus of 

global attention [1-6]. As a green and clean energy source, 

wind energy is important in the global renewable energy 

market. WTGS is the core equipment of wind power 

generation system, whose operating condition directly affects 

the whole benefits of wind farms [7-11]. Due to the impact of 

various factors, such as wind strength, temperature difference, 

humidity and so on, WTGS blades are susceptible to cracks, 

wear, and other damage during long-term operation, which 

negatively affect the performance of WTGS [12-15]. In order 

to ensure the efficient operation of WTGS and the safety and 

stability of wind farms, it is necessary to promptly detect and 

repair blade damage [16-19]. The traditional methods of 

detecting blade damage mainly rely on manual inspection, 

which is time-consuming, laborious, and has low accuracy. 

Therefore, it is of important practical significance to study the 

blade damage identification method based on image 

processing technology. 

Yang et al. [20] proposed an image identification model 

based on deep learning network, which was used to 

automatically extract image features and accurately and 

efficiently detect fan blade damage. Blade images were 

segmented using the Otsu threshold segmentation method, 

which eliminated the impact of image background on the 

detection task. In order to improve the identification 

performance of the proposed deep learning model, the transfer 

and ensemble learning classifiers were used in the 

convolutional neural network (CNN) model. The unmanned 

aerial vehicle images of wind turbine blade (WTB) verified the 

performance of the proposed model. Hu et al. [21] proposed a 

method based on the variational image segmentation model, 

which was used to detect the surface damage of WTGS blades. 

At the beginning, it was believed that the objects in the image 

were left behind by the background detection, which was 

transformed into an optimization problem using the level set 

method and one-dimensional Heaviside function. Then the 

corresponding gradient descent minimization algorithm was 

derived. In the experimental section, a large number of blade 

images with surface damage were tested using the proposed 

method, which successfully detected the damage. Lv et al. [22] 

proposed a new efficient and accurate damage detector 

(EADD) for wind turbine cascade images, which used the 

Single Shot Multibox Detector (SSD) as the detection 

framework and provided an improved Residual Network 

(ResNet) as the backbone. The improved ResNet backbone 

first used the dense connection block, which was composed of 

Factorization Depthwise Separable Bottleneck (FDSB) and 

feature aggregation module (FAM), making the damage 

detection model more lightweight and detect more rapidly. 

Then the Bidirectional Feature Pyramid Network (BiFPN) was 

introduced into the proposed method to fully utilize multiscale 

features and own more feature expression. Peng et al. [23] 

proposed an image processing method to enhance images 

captured in non-uniform lighting conditions. First, cartoon and 

texture maps of WTB images were constructed using the 

cartoon texture decomposition. Second, an illumination model 

was established on the cartoon map in Gaussian scale space to 

remove non-uniform lighting. Third, the WTB images were 

enhanced using the multi-directional Gabor transform to 

increase the contrast between surface damage and image 
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background. Finally, the gradient threshold segmentation 

method was used to detect the surface damage of WTB. 

The damage identification method of WTGS blades based 

on image processing technology detects blade damage quickly 

and accurately. The damage location and degree can be 

quickly identified from the captured blade images using 

several techniques, such as computer vision, image 

segmentation, and feature extraction, which improves 

detection efficiency. The existing identification methods 

based on image processing technology mainly include several 

methods, such as edge detection-based method, texture 

feature-based method, deep learning-based method, and 

traditional machine learning-based method, which have 

several drawbacks, such as sensitivity to light and noise, 

susceptibility to false detection and misdetection, 

susceptibility to false identification of damaged and non-

damaged areas with similar textures, demand for a large 

amount of labeled data for training, time-consuming training 

process, and large computational resource consumption. 

Therefore, this research studied the damage identification 

method of WTGS blades based on image processing 

technology. A sample expansion method based on the 

improved DCGAN was first proposed in Chapter 2, which 

generated a high quality damage image sample set to improve 

the classification performance of the deep learning model. For 

the problem of damage images often affected by noise and 

environmental factors in practical scenarios, it was solved by 

morphology-based blade damage edge enhancement in 

Chapter 3. In addition, the blade damage state evaluation and 

classification process based on MFS was provided in Chapter 

4. Finally, the experimental results verified that the proposed 

algorithm was effective. 

 

 

2. DAMAGE SAMPLE EXPANSION OF WTGS 

BLADES 

 

 

It is difficult to obtain WTGS blade damage images, which 

leads to a small number of samples. At the same time, 

traditional data expansion methods do not have sufficient 

ability to enhance the feature space of samples. In order to 

generate a high quality sample set of blade damage images to 

improve the classification performance of the deep learning 

model, an improved DCGAN-based sample expansion method 

was proposed in this study. The damage images were first 

reduced dimensionally and cleaned using the sliding window 

method in order to improve the training effects of subsequent 

Generative Adversarial Networks (GAN). Then the activation 

function was optimized and improved to improve the diversity 

of WTGS blade damage features, thus generating a high 

quality image sample set. In addition, spectral normalization 

was introduced for weight standardization, which enhanced 

the network structure stability and reduced the vanishing or 

exploding gradient during model training. Finally, the 

improved Alexnet was used for feature extraction and 

classification identification of the expanded sample set, thus 

improving the damage identification accuracy of WTGS 

blades. The constructed network model generated a variety of 

WTGS blade damage images, which was conducive to 

improving the generalization ability of the model and reducing 

the overfitting risk, thus expanding the damage images, and 

being suitable for expanding the damage samples.  

DCGAN added CNN on the basis of Generative Adversarial 

Networks (GAN). Figure 1 shows the basic structure of 

DCGAN. Let U(X,Z) be the cross entropy loss in the binary 

classification task, Yaupu(b) be the real data distribution, Yr(c) 

be the noise distribution, log(X(b) be the maximized training 

network X (the probability of correctly judging the data 

authenticity is maximized), and log(1-X(Z(c)) be the 

minimized training network Z (the loss function of 

discriminator X is maximized). The objective function 

expression was provided as follows: 
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Figure 1. Basic structure of DCGAN 

 

Yr gradually converged to Yaupu during the training process, 

making the model tend to the Nash equilibrium state. DCGAN 

was used to generate new samples. The model training 

consisted of two parts: a generator and a discriminator, whose 

structure is shown in Figure 2. The loss function expression of 

the discriminator was given by the following formula: 

 

( )
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Figure 2. Structure of the generator and the discriminator 

 

Parameters of the Z network were first fixed, and then 

parameters of the X network were optimized, which aimed to 

enable the discriminative network to obtain ideal 

discriminative ability. The expected discriminant results of 

real and generated samples approached 1 and 0, respectively. 

Similarly, the loss function expression of the generator was 

given by the following formula: 

 

( ) ~min , ( ) log(1 ( )))
cC Y

Z
U X Z F C X c = −   (3) 
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Sparsity of WTGS blade damage images led to the small 

proportion of damage targets in the entire image, making it 

difficult to manually extract features. Traditional feature 

extraction methods needed to consider all image information, 

while CNN was suitable for handling this problem because it 

had the characteristics of local perception and parameter 

sharing, which enabled CNN to learn local features of the 

image, and effectively extract the blade damage features. As 

the inverse process of CNN, deconvolution network mapped 

the low-dimensional feature space back to the high-

dimensional image space, which generated sample images. 

Therefore, CNN was used to extract the blade damage features, 

and deconvolution network was used to generate damage 

sample images in this study. That is, samples were expanded 

based on the constructed DCGAN without manually designing 

the feature extractor, which was suitable for dealing with 

sparse targets like WTGS blade damage. 

When traditional DCGAN was used to process WTGS blade 

damage images, the image sparsity easily led to several 

problems, such as vanishing gradient, and generation of 

unclear sample features. To address these problems, the 

traditional DCGAN was improved and a damage sample 

expansion method based on the improved DCGAN was 

proposed. Sliding window algorithm (SWA) was used, which 

effectively avoided the loss of target feature information when 

high-resolution blade damage images were input into the 

model, thus preserving key damage features. Activation 

function ReLU was replaced with SeLU to enrich the details of 

the generated blade damage images, which improved the 

quality of generated samples. Spectral normalization was 

introduced, which aimed to increase the stability of the 

training model, and reduce vanishing gradient and parametric 

oscillation, thus improving the training effects and 

identification accuracy of the model. Figure 3 shows the 

training model of DCGAN. 

Due to the high resolution of WTGS blade damage images, 

use of high-resolution input images was limited by the network 

in the case of limited memory size. Although scaling alleviated 

the hardware limitations, image information was lost. Due to 

limited quantitative features occupied by blade damage targets, 

the number of pixels decreased along with the overall image 

scaling, making it difficult for the targets to be extracted and 

identified by the detection network. SWA, an image 

preprocessing method, was proposed to solve this problem. 

When processing a high-resolution input image, the subimage 

of the original image was used as the input image of the model, 

instead of scaling the original image. By sliding a fixed-size 

window on the original image, the image subregion in the 

window was used as the input to flexibly process blade 

damage images in various sizes, which improved the model’s 

adaptability and avoided the target information loss caused by 

image scaling, thus helping the target detection network 

extract and identify blade damage targets. 

In SWA, a customized M*N fixed-size window was first 

used for sample data sliding slicing of bridge WTGS blade 

damage images. Let M and N be the width and height of the 

sliding window, Ob and Of be the upper left horizontal and 

vertical coordinates, Pb and Pf be the lower right horizontal and 

vertical coordinates, YSrm and YSrn be the width and height of 

the original WTGS blade damage image. The following 

formula provided the specific steps of the algorithm: 

 

* , *b fO t U O d N= =  (4) 

 

( ) ( )1 * , 1 *x yP t M P d N= + = +  (5) 

 

/ , /m nt YSr M d YSr N= =  (6) 

 

Activation function ReLU alleviated the vanishing gradient, 

improved the identification rate of the model, and reduced the 

network training time. However, it filtered the input less than 

0, which may lead to the loss of some useful information. 

Activation function SeLU was used to solve this problem, 

because it automatically normalized the activation value to 0 

average value and unit weight variance and provided rich 

features, instead of abandoning the part less than 0, which 

alleviated the vanishing gradient, helped the training of deep 

neural network, and was suitable for the sample expansion 

method of WTGS blade damage images. The formula was 

provided as follows: 

 

( )
, 0

1 , 0b

b b
SeLU

e b





= 

− 

 (7) 

 

Mainly due to parametric oscillation in convolutional 

network, the traditional DCGAN had low stability during 

training, which was usually solved by restricting elements of 

the parameter matrix. However, this method may lead to 

instability of the parameter matrix. The core idea of spectral 

normalization was to divide each layer of network parameters 

by the spectral norm of the parameter matrix, which made the 

Lipschitz condition equal to 1. Therefore, the weight 

normalization technique of spectral normalization solved the 

above problem, and improved the stability of DCGAN during 

training. Spectral normalization of the parameter matrix 

limited the stretching degree of the input vector by the 

parameter matrix, thus reducing the risks of vanishing or 

exploding gradient. Let υ(J) be the second normal form of 

weight J, then the specific formula was provided as follows: 

 

( ) :
( )

SN

J
J J

J
=  (8) 

 

 
 

Figure 3. Training model of DCGAN 

 

 

3. EDGE ENHANCEMENT OF WTGS BLADE 

DAMAGE 

 

Edge information in blade damage images reflected the 

contour and structural features of the damaged parts, which 

was of great significance for identifying and analyzing blade 

damage. However, the damage images in actual scenarios 

were often affected by noise and environmental factors, 

resulting in insufficient edge information. The edge 

enhancement method based on morphology was suitable for 

WTGS blade damage scenarios, because it was insensitive to 

noise, had a small amount of calculation, and overcame the 
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noise impact by changing the size of structural elements and 

morphological scales. Compared with the traditional edge 

detection methods based on gradient or second derivative, the 

morphology-based edge enhancement method was not 

sensitive to noise, and was more suitable for processing blade 

damage images in actual scenes. At the same time, the 

morphology method had a small amount of calculation, which 

quickly processed images and improved the efficiency of 

damage identification and analysis. By changing the size of 

structural elements and morphological scales, the method 

flexibly coped with varying degrees of noises and 

environmental factors, and improved the reliability and 

accuracy of blade damage edge information. 

Let k(b,f) be the input image grayscale function, h(b,f) be 

the given structural element, Xk and Xh be the definition 

domains of functions k(b,f) and h(b,f), then the grayscale 

expansion calculation formula of k(b,f) by h(b,f) was: 

 

( )( )

( ),

, max ( , ) | ( ),

( ) ;( , )k h

k w b p f

k h w p h b f w b

p f X b f X

− − 
 

 = + − 
 −   

 (9) 

 

The grayscale corrosion calculation formula of k(b,u) by 

h(b,u) was: 

 

( )( )

( ),

, min ( , ) | ( ),

( ) ;( , )k h

k w b p f

k h w p h b f w b

p f X b f X

− + 
 
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 +   

 (10) 

 

Let Q(b,f) be the image edge function, then the expression 

of the edge detection operator of blade damage images, which 

was constructed based on morphological expansion, was 

provided as follows: 

 

( ) ( ) ( ), , ,aQ b f k h b f k b f=  −  (11) 

 

The expression of image edge detection operator, which 

was constructed based on morphological corrosion, was 

provided as follows: 

 

( ) ( ) ( ), , ,yQ b f k b f k h b f= −   (12) 

 

The expression of the expansion corrosion type edge 

detection operator was provided as follows: 

 

( ) ( ) ( ),Z b f k h k h=  −   (13) 

 

The edge detection algorithm of mathematical morphology 

only needed to multiply the corrosion (or expansion) operation 

results with itself, and the calculation process was simple and 

easy to implement, which realized rapid edge detection of 

damage images in practical applications, and improved the 

efficiency of damage identification and analysis. The 

algorithm made the image edge clearer through the 

multiplication, which was of great significance to the damage 

identification and analysis, because clear edge information 

helped extract damage features more accurately, thus 

improving the accuracy of damage detection. 

 

 

4. MFS-BASED DAMAGE STATE IDENTIFICATION 

OF WTGS BLADES  
 

WTGS blade damage images have complex textures and 

local changes, and traditional texture feature description 

methods are difficult to fully reveal their inherent laws. MFS 

describes the singularity distribution of images, which is 

suitable for describing such complex texture features. Various 

blade damage types and degrees require a method, which 

describes multi-scale and multi-level features, and MFS just 

meets this requirement. The MFS describes different local 

conditions in fractal structure using a set of infinite scaling 

exponents, which reflects the local texture features of images 

at multiple scales. Complex images are divided into many 

different small regions, with each region corresponding to a 

different singularity degree, which reveals the hierarchical and 

detailed features of images. 

Combined with the real WTGS blade damage scenarios, the 

MFS image was obtained in the following steps: 

1. Image preprocessing: the blade damage image was first 

preprocessed, such as denoising, gray processing, binarization 

and so on, for subsequent processing and analysis. 

2. Calculation of the singularity exponent γ: the singularity 

exponent γ (holder exponent) of each pixel was calculated on 

the preprocessed image. Singularity exponent γ reflected the 

fractal dimension of certain small region in the image, and its 

numerical value reflected the growth probability of the small 

region. 

3. Formation of a point set: pixels with the same singularity 

exponent γ were used as a point set, which represented the 

regions with similar texture features. 

4. k(γ) calculation: the k(γ) value corresponding to each 

point set was calculated. k(γ) reflected the distribution of 

pixels with the same singularity exponent γ. 

5. Constructing the MFS image: Steps 3 and 4 were repeated 

until all pixels with different singularity exponent γ were 

processed. These γ-k(γ) combinations were drawn into a MFS 

image, which revealed the different-scale texture feature 

distribution of blade damage images in different local 

conditions. 

The MFS image of the WTGS blade damage image was 

obtained through the above steps. This image representation 

method helped reveal the texture features of damage regions 

at different scales and local conditions, thus providing 

valuable information for subsequent damage identification and 

analysis. Direct calculation method was used for MFS k(γ) and 

singularity exponent γ. Let gi(ε) be the probability of a pixel 

falling on the i-th box, h be the weight factor, and ∑j[gi(ε)]h be 

the sum of the h-th powers of the probabilities of all boxes, 

then the probability measure distribution was obtained by the 

following formula: 
 

( ) ( ) ( ),
h h

i i i

j

g g g   =         (14) 

 

The value range of h was (-∞,+∞). When h was greater than 

0, the subset with greater probability had a greater impact on 

fractal dimension. On the contrary, when h was less than 0, the 

subset with smaller probability had a greater impact on fractal 

dimension. Then the corresponding singularity exponent γ(h) 

was given by the following formula: 
 

( ) ( ) ( )
0

lim , ln lni i

j

q h g

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→
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 
  (15) 
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MFS k[γ(h)] was obtained by the following formula: 

 

( ) ( ) ( )
0

lim , ln , lni i

j

k h h h


     
→

 
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 
  (16) 

 

After selecting different h values and using them to 

calculate gi(ε) in the corresponding fractal space, the curves at 

different scales ε were drawn. The least square method was 

used to calculate the slope of the curve corresponding to the 

scale-free range in the graph, and the absolute values of γ(h) 

and k[γ(h)] equal to the slope under the given h-value 

condition. 

 

 
 

Figure 4. Damage state evaluation and classification process 

of WTGS blades 

 

Figure 4 shows the damage state evaluation and 

identification process of WTGS blades. It can be seen from the 

figure that the MFS of blade images with different damage 

states has been analyzed through the following steps, and the 

eigenvalue of each damage stage image was obtained to 

complete the damage state evaluation and classification. 

1. MFS observation: the MFS of blade images with different 

damage states obtained through calculation was observed, and 

the relatively discrete point distribution region was found. In 

the case used in this study, this region was within both the 

range of [3, 3.3] of singularity exponent γ(h), and the range of 

[0.35, 0.55] of MFS k[γ(h)]. 

2. Determining the eigenvalue selection range: a selection 

range was determined for the average eigenvalue points of 

each damage stage. Abscissa ±0.1 and ordinate ±0.25 were 

taken in this study, which were able to cover representative 

eigenvalue points. 

3. Eigenvalue extraction: representative eigenvalue points 

within the selection range were found. If there was only one 

point within the range, then its singularity exponent γ and MFS 

k(γ) represented the image eigenvalue. If there were multiple 

points within the range, the averages of the abscissas and 

ordinates of these points were taken as the eigenvalue 

representing the image. 

4. State evaluation and classification: the eigenvalue 

extracted through analysis was used to evaluate and classify 

the blade damage state. Images with similar eigenvalues may 

have similar damage states. These eigenvalues were used to 

train classifiers and then automatically identify and classify 

the blade damage states. 

The eigenvalues of blade damage stages were extracted 

from the MFS through these steps, and were used to evaluate 

and classify the damage states, which helped improve the 

accuracy of WTGS blade damage identification, thus 

achieving more effective maintenance and management. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1. Generative network details of DCGAN 

 
Network layer Convolution kernel Step size Activation function Whether spectral normalization existed 

Input layer 5×5 1 SeLU No 

Conv1 3×3 5 SeLU Yes 

Conv2 5×5 3 SeLU Yes 

Conv3 3×3 2 SeLU Yes 

Conv4 3×3 4 SeLU Yes 

Input layer 3×3 2 tanh No 

 

Table 2. Discriminative network details of DCGAN 
 

Network layer Convolution kernel Step size Activation function Whether spectral normalization existed 

Input layer 3×3 1 LeakyRelu No 

Conv1 3×3 8 LeakyRelu Yes 

Conv2 3×3 5 LeakyRelu Yes 

Conv3 3×3 3 LeakyRelu Yes 

Conv4 5×5 6 LeakyRelu Yes 

Input layer 3×3 5 LeakyRelu No 

 

Based on the details of generative and discriminative 

networks of DCGAN in Tables 1 and 2, the construction 

features of the DCGAN of blade damage identification were 

summarized. In the generative network, SeLU (linear 

rectification unit with scalability index) activation function 

was used to adaptively adjust the scale and translation of the 

output features, which improved the quality of the generated 

image. Convolution kernels (e.g., 3×3 and 5×5) and step sizes 

(e.g., 1, 5, 3, and 2) of different sizes were used to capture and 

generate multi-scale features. Spectral normalization was used 

in multiple convolutional layers (Conv1, Conv2, Conv3, and 

Conv4) to improve the stability of network training. In the 

discriminative network, LeakyReLU (linear rectification unit 

with leakage) activation function was used to alleviate the 

vanishing gradient problem and improve network performance. 

Convolution kernels (e.g., 3×3 and 5×5) and step sizes (e.g., 1, 
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8, 5, 3, and 6) of different sizes were used for capturing of 

different-scale features and downsampling, thus reducing the 

amount of calculation. Spectral normalization was used in 

multiple convolutional layers (Conv1, Conv2, Conv3, and 

Conv4) to improve model stability, and solve the parameter 

oscillation problem, thus making the network training more 

stable. 

 

 
 

Figure 5. Damage identification rates of different activation 

functions 

 

According to the damage identification rate data of different 

activation functions given in Figure 5, it can be seen that the 

identification rate using activation function SeLU is better 

than that using ReLU in the three damage types of cracks, 

breakage and corrosion. Specifically, the identification rate of 

crack damage using SeLU is 91.25%, while that using ReLU 

is 85.47%, indicating that SeLU has significantly improved 

crack identification compared with ReLU. The identification 

rate of breakage damage using SeLU is 70.36%, while that 

using ReLU is 55.38%, indicating SeLU has significantly 

improved in breakage identification compared with ReLU. 

The identification rate of corrosion damage using SeLU is 

98.58%, while that using ReLU is 99.36%. Although the 

identification rate of corrosion damage using ReLU is slightly 

higher than that using SeLU, the difference is very small. After 

comprehensively analyzing the identification rates of these 

three damage types, it was concluded that use of activation 

function SeLU achieved a higher identification rate in the 

WTGS blade damage identification task compared with ReLU, 

which verified the effectiveness of using SeLU. The SeLU 

activation function adaptively adjusted the scale and 

translation of the output features, which helped improve the 

network performance and increased the damage identification 

rate. 

Figure 6 shows the damage state identification and 

classification results of WTGS blades. It can be observed that 

the classification results have shown good overall performance 

as the number of test samples increases. When the number of 

test samples is 0, all predicted values are 0, indicating that the 

model has not learned any effective feature information and 

cannot effectively classify the damage states. When the 

number of test samples is 4, the model has good performance 

in the classification of damage states 4 and 8, but there is an 

error prediction of state 0 in one sample of damage state 4. 

When the number of test samples is 8, the model performs well 

in the classification of damage states 4, 8, and 12, but there is 

an error prediction of state 16 in one sample of damage state 

12. When the number of test samples was 12, 16, 20, and 24, 

respectively, the model has shown a certain degree of 

confusion in the classification of damage states 16 and 20, but 

the overall performance is still good. 

 
(1) 

 
(2) 

 

Figure 6. Damage state identification and classification 

results of WTGS blades 

 

After comprehensively analyzing the classification results 

of blade damage states with different training sample sizes, it 

was concluded that the overall classification results showed 

good performance as the number of test samples increased. 

Overall, the method of expanding WTGS blade damage 

samples helped improve the classification accuracy of the 

model. 

 

 
(1) 

 
(2) 

 

Figure 7. Accuracy and loss curves of different edge 

detection algorithms 
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Figure 7 shows the accuracy and loss curves of different 

edge detection algorithms. The identification accuracies of the 

Sobel and Laplacian algorithms, and the model in this study 

with different thresholds can be observed. When the threshold 

is low (0-15), the identification accuracy of the Sobel 

algorithm gradually increases, but the growth is relatively slow. 

When the threshold is high (15-30), its identification accuracy 

shows a rapid upward trend, and ultimately reaches an 

accuracy of 0.85. The identification accuracy of the Laplacian 

algorithm increases rapidly in the low threshold (0-10), 

continues to increase in the high threshold (10-30) with a slow 

growth rate, and ultimately achieves an accuracy of 0.97. The 

identification accuracy of the model in this study shows a rapid 

upward trend throughout the entire threshold range, and 

reaches a very high accuracy of 0.995 after the threshold of 15, 

almost approaching perfect identification. The loss value of 

the Sobel algorithm is high in the low threshold (0-5), 

gradually decreases with a relatively slow decline rate as the 

threshold increases, and remains within the range from 0.19 to 

0.98 throughout the entire threshold range. The loss value of 

the Laplacian algorithm is high in the low threshold (0-5), then 

rapidly decreases throughout the entire threshold range, and 

remains at a low level (0.1-0.3) in the high threshold (10-30). 

The loss value of the model in this study generally shows a 

rapid downward trend within the entire threshold range, and 

drops to a lower level (0.041-0.15) in the high threshold (15-

30). After comprehensively analyzing the identification 

accuracies of various edge detection algorithms, it was 

concluded that the identification accuracy of the model in this 

study was generally higher than that of the Sobel and 

Laplacian algorithms with different thresholds, and was close 

to perfect especially at a higher threshold. In addition, the loss 

values of the model in this study at different thresholds were 

generally lower than that of the Sobel and Laplacian 

algorithms, indicating that the model proposed in this study 

had high performance and superiority in the WTGS blade 

damage identification task. In contrast, the Sobel and 

Laplacian algorithms had lower identification accuracies and 

higher loss values, which may not meet practical application 

requirements in some cases. 

Both Sobel and Laplacian algorithms were edge detection-

based methods, which were sensitive to light and noise and 

were prone to false detection and misdetection. Table 3 shows 

the classification and identification results of different edge 

detection algorithms. According to the table, the accuracy of 

the algorithm in this study is 97.48% in the train set and 

95.68% in the test set, which are superior to that of Sobel and 

Laplacian algorithms, and the loss value in the train and test 

sets is 0.058 and 0.174, respectively, which are low, indicating 

that the algorithm proposed in this study has high performance 

and superiority in WTGS blade damage identification task. In 

contrast, the Sobel and Laplacian algorithms have relatively 

low performance and cannot meet practical application 

requirements in some cases. 

 

Table 3. Classification and identification results of different 

edge detection algorithms 
 

Network type 

Accuracy (%) Loss value 

Train 

set 

Test 

set 

Train 

set 

Test 

set 

Sobel 85.24 88.16 0.151 0.184 

Laplacian 93.62 81.27 0.136 0.136 

Algorithm in this study 97.48 95.68 0.058 0.174 
 

 

Table 4. Objective evaluation index results of different identification models 

 

Method 
Evaluation index (unit: dB) 

PSNR SSIM Edge retention RMSE Average gradient EME 

Canny 41.02 0.51 7.14 72.41 11.63 25.18 

GLCM 46.39 0.69 7.69 43.62 18.57 27.61 

LBP 48.52 0.73 6.15 38.19 8.26 19.58 

CNN 41.25 0.68 6.38 35.52 11.58 13.52 

GAN 48.37 0.64 6.27 31.24 16.95 24.17 

Model in this study 46.15 0.75 7.78 27.19 17.31 35.68 

 

Table 4 presents the objective evaluation index results of 

different identification models. Based on the data in the table, 

the performance of the Canny, Gray Level Co-occurrence 

Matrix (GLCM), Local Binary Pattern (LBP), CNN, and GAN 

algorithms, and the model in this study in various objective 

evaluation indexes can be observed. The model in this study 

(46.15 dB) and the LBP algorithm (48.52 dB) perform well in 

the Peak Signal to Noise Ratio (PSNR) index, indicating that 

these two methods have good performance in image quality 

restoration. The model in this study has the highest score 

(0.75) in the Structural Similarity (SSIM) index, indicating 

that the model performs best in maintaining image structural 

similarity. The model in this study (7.78) performs best in 

terms of edge retention and Root Mean Square Error (RMSE) 

indexes, indicating that the model has good performance in 

error control. The GLCM algorithm (18.57) performs best in 

terms of average gradient, and the model in this study ranks 

second (17.31). The model in this study has the highest score 

(35.68) in the Enhancement Measure Evaluation (EME) index, 

indicating that the model performs best in edge enhancement. 

By comprehensively analyzing the objective evaluation 

index results of each identification model, it was concluded 

that the model in this study performed well in multiple 

objective evaluation indexes (e.g., SSIM and EME), and also 

had good performance in other indexes, indicating that the 

model proposed in this study had high performance and 

superiority in the WTGS blade damage identification task. At 

the same time, the LBP and GLCM algorithms also performed 

well in certain indexes, but their performance in other indexes 

was slightly inferior to the model in this study. In contrast, the 

performance of the Canny, CNN, and GAN algorithms was 

relatively low. 

 

 

6. CONCLUSION 

 

This research studied the damage identification method of 

WTGS blades based on image processing technology. A 

method for expanding blade damage samples based on the 

improved DCGAN was first proposed, which generated a high 

quality damage image sample set to improve the classification 

performance of the deep learning model. For the problem of 
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WTGS blade damage images often affected by noise and 

environmental factors in practical scenarios, it was solved by 

the morphology-based blade damage edge enhancement. In 

addition, the MFS-based blade damage state evaluation and 

classification process was provided. Combined with 

experiments, the details of the generative and discriminative 

networks of DCGAN were provided, and the construction 

features of DCGAN of blade damage identification were 

summarized. According to the damage identification rate data 

of given different activation functions, it was verified that the 

identification rate using activation function SeLU was better 

than that using ReLU in the three damage types of cracks, 

breakage and corrosion. The identification and classification 

results of blade damage states were provided, verifying that 

the method of expanding WTGS blade damage samples 

improved the classification accuracy of the model. Then the 

accuracy and loss curves of different edge detection 

algorithms were given, indicating that the identification 

accuracy of the model in this study was generally higher than 

that of the Sobel and Laplacian algorithms at different 

thresholds, and was close to perfect especially at a higher 

threshold. In addition, the objective evaluation index results of 

different identification models were provided, indicating that 

the model in this study performed well in multiple objective 

evaluation indexes (e.g., SSIM and EME), and also had good 

performance in other indexes, verifying that the model had 

high performance and superiority in the WTGS blade damage 

identification task. 
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