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Image segmentation is an important field in image processing and computer vision, 

particularly in the development of methods to assist experts in the biomedical and medical 

fields. It plays a vital role in saving time and costs. One of the most successful and significant 

methods in image segmentation using deep learning is the U-Net model. In this paper, we 

propose U-Net11, a novel variant of U-Net that uses 11 convolutional layers and introduces 

some modifications to improve the segmentation performance. The classical U-Net model 

was developed and tested on three different datasets, outperforming the traditional U-Net 

approach. The U-Net11 model was evaluated for breast cancer segmentation, lung 

segmentation from CT images, and the nuclei segmentation dataset from the Data Science 

Bowl 2018 competition. These datasets are valuable due to their varying image quantities 

and the varying difficulty levels in segmentation tasks. The modified U-Net model has 

achieved Dice Similarity Coefficient scores of 69.09% on the breast cancer dataset, 95.02% 

on the lung segmentation dataset and 81.10% on the nuclei segmentation dataset, exceeding 

the performance of the classical U-Net model by 5%, 2% and 4% respectively. This 

difference in success rates is particularly significant for critical segmentation datasets. 
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1. INTRODUCTION

In recent years, image segmentation has become a widely 

researched topic. It serves as an essential element in numerous 

visual applications. Image Segmentation is the process of 

classifying each pixel in an image as belonging to a certain 

class; therefore, it is considered a pixel classification method. 

The main goal of image segmentation is to divide an image 

into several meaningful and analyzable segments with similar 

or exactly the same features. Two types of segmentation 

methods exist: Semantic segmentation and Instance 

segmentation methods. Instance Segmentation aims to 

estimate class labels and pixel-level sample masks to 

accommodate the varying number of samples that appear in 

each image [1]. In other words, it classifies the sought-after 

objects individually. 

On the other hand, semantic segmentation aims to assign a 

categorical label to each pixel in an image, but this label is not 

different from the others [2]. In other words, if there are five 

different color cars in an image, instance segmentation 

determines five different color labels, while semantic 

segmentation determines one label. Semantic segmentation is 

used in areas related to health and medicine, while instance 

segmentation is mainly used in areas related to daily life. 

Today, semantic segmentation is frequently used in the 

biomedical field. In the biomedical field, cell segmentation is 

used for nucleus segmentation, cancer segmentation, tumor 

segmentation, or organ segmentation. Image segmentation has 

been used to detect cancerous tissue or the cells in this tissue 

in recent years. 

There exist various methods for image segmentation in the 

deep learning area. Mask R-CNN was proposed by He et al. in 

2020 [3], InstanceCut with the Model was introduced by 

Kirillov et al. in 2017 [4], FCN was developed by Long et al. 

in 2015 [5], R-CNN was presented by Girshick et al. in 2014 

[6], U-Net was designed by Ronneberger et al. in 2015 [7], 

Deeplab was implemented by Chen et al. in 2018 [8], INet was 

created by Weng and Zhu in 2021 [9], Superpixels and 

Clustering Methods were applied by Mendi and Budak in 

histopathological images in 2021 [10] and GCN was used by 

Peng et al. in 2017 [11] to provide semantic segmentations by 

using different deep learning algorithms in image 

segmentation. 

The U-Net Model is one of the most commonly used image 

segmentation methods with deep learning. Some of the studies 

that used this model are: separating concrete cracks from 

concrete [12], tumor detection from 3D brain images [13], cell 

segmentation for 2D and 3D images [14], glaucoma detection 

[15], vessel detection for Cerebrovascular disease [16], human 

placenta image detection [17], uterine region estimation from 

MR images [18], and lung lobe segmentation from 3D chest 

tomography [19].  

In addition, the U-Net model has inspired many models. 

Zhou et al. proposed U-Net++ in 2018 [20], Diakogiannis et 

al. introduced ResUNet-a in 2020 [21], Zhang et al. developed 

ResUnet in 2018 [22], Alom et al. presented R2U-Net in 2018 

[23], Oktay et al. designed Attention U-Net in 2018 [24], 

Ibtehaz et al. implemented MultiResUNet in 2020 [25], 

Zhuang created LadderNet in 2018 [26], Iglovikov et al. 

applied Ternausnet in 2018 [27], Stoller et al. used Wave-U-

Net in 2018 [28], Meseguer-Brocal and Peeters exploited CU-

Net in 2019 [29], Ma et al. leveraged Docunet in 2018 [30], 

Isensee et al. built nnU-Net in 2021 [31], Olimov et al. 

constructed FU-Net in 2021 [32], Wang et al. employed Non-
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Local U-Nets in 2020 [33], Qin et al. utilized Match Feature 

U-Net: Dynamic Receptive Field Networks for Biomedical

Image Segmentation [34] in 2020. They have developed

models by being inspired by the U-Net architecture which are

close to U-Net but have more successful results.

The aim of this study is to measure the success rate between 

the models by testing the difference between the layers of the 

U-Net model on the nucleus segmentation, breast cancer cell

segmentation and organ segmentation in the lung

segmentation dataset. In the research, by adding two more

layers to the classic U-Net Model, the U-Net11 Model was

created with 11 layers, the U-Net13 Model was created with

13 layers which has two more layers than the U-Net11 Model,

and the U-Net7 model was created by removing two layers

from the classic U-Net Model. Then the differences between

the created models was compared. The models were tested in

three different data set types and success rates were observed.

2. MATERIAL AND METHOD

2.1 Datasets 

In the study: three different data sets were used, including 

the nucleus segmentation data set of the 2018 Data Science 

Bowl competition, which is frequently used in breast cancer, 

lung segmentation, and cell segmentation methods. The 

images aim to find the malignant tumor against the benign 

tumor. The formats of the three datasets were fixed at the 

specified values. Increasing the single-channel data to 3 

channels was of course expected to negatively affect the 

learning process, but this did not apply to the benchmarked 

models. Because we changed the number of channels only in 

the lung segmentation data. But it was important for us to 

standardize the data so that the models would experience the 

same negative learning processes.  

The images in the dataset are as in Figure 1. The breast 

cancer data set was taken from Harvard University’s Beck Lab. 

The dataset contains high-resolution histopathological images 

of renal carcinoma selected from TCGA (The Cancer Genome 

Atlas) data. It constitutes the primary source for projects in 

computational pathology by examining the morphological and 

clinical features of the cancer disease of TCGA together. 

While the texture images are in RGB format, the mask images 

consist of only black and white images. 

Figure 1. (a) Chest CT Image and image of the segment 

where the lung is located (b) tissue and cancerous cells with 

breast cancer (c) tissue and segmented nucleus 

The dataset containing nuclei segmentation is taken from 

the Data Science Bowl 2018 competition. The data set consists 

of 841 2D images and 37,333 manually segmented nuclei 

images from more than 30 experiments [35]. Since the data set 

is collected from different parts of the world, it is not uniform 

data. Some images are in color-RGB format, while some 

images are in black and white. In addition, since they are taken 

from different microscopes, their angle of view also varies. 

Lung segmentation dataset was retrieved from a Kaggle 

(https://www.kaggle.com/datasets/kmader/finding-lungs-in-

ct-data). The data set includes segmented lung images 

obtained manually from 267 CT chest tomographs. The dataset 

includes 2D and 3D images, but 2D images were used in the 

research to provide an accurate comparison. There are 64 

images in the Breast Cancer dataset and 267 in the Lung 

dataset, of which 70% were used for training and 30% for 

testing. The datasets have three channels, while the masks are 

black and white. All images are in .tiff format. In the nucleus 

Segmentation dataset, no separation was performed because 

the training and test data of the images were previously 

separated. Out of 735 images, 670 were used for training and 

65 were used for testing. Although some of the data were black 

and white and some were in color, all the data were read in 

color. All images are in png format. It is important to 

standardize the data so that if the models were to undergo a 

negative process in the training process, they would 

experience the same negative learning processes. 

2.2 U-Net architecture 

U-Net is one of the most popular and successful methods

used in biomedical segmentation. U-Net is a special type of 

Fully Convolutional Networks. Fully Convolutional Neural 

Networks consist of only locally connected layers without 

using dense layers [36]. In this way, the number of calculated 

parameters decreases, and the Model learns more information 

in a shorter time. 

As shown in Figure 2, The U-Net architecture consists of 

two parts: The Encoder and Decoder parts. On the Encoder 

side of the architecture (this part is similar to the classic VGG 

network), 3x3 convolutions of the image are taken, and the 

image is compressed by 2x2 Max pooling on each layer. The 

image passes through a double 3x3 convolution on each layer. 

The purpose of these convolutions is to extract and map the 

features of the images. If the input image is colored, it is 

divided into three channels RGB, creating a feature map that 

determines which region is more important by taking a stride 

on the image with 3x3 filters. The filter coefficients are 

multiplied with the values in each color channel, and their sum 

is taken. After this operation is performed on all three channels, 

the three results from the feature map [37]. The convolution 

process is used together with Padding. Padding is used to find 

boundary pixels but results in pixel loss. Rectified Linear 

Units Layer (ReLu) process is applied after the convolution 

layers. This layer is also called the activation layer. The effect 

it has on the input data is to set negative values to zero. After 

convolution operations, the image takes on a linear structure, 

and this process trains the network faster, putting the network 

back into a nonlinear structure [38]. In the next step, a 2x2 size 

filter is applied, and the maximum value from the four pixels 

obtained as a result of the filter is selected. This process is 

called max pooling. Thus, essential points within the image are 

determined. The Model tries to learn what the image is here. 

On the decoder side, 2x2 convolutions of the image are taken, 

and the image is expanded with the up-sampling process. In 

the Up-sampling method, the image is expanded by 
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multiplying a sample image 𝑙(𝑥, 𝑦) image continuously and at 

a higher rate with the value of 𝐿 ∗ 𝑓𝑠. Where 𝐿 is a variable up-

sampling factor and 𝑓𝑠  is the sampled image [38]. The 

convolution method was used for this task in the research. The 

operation is exemplified by the logic on the Encoder side of 

the architecture. After the image is doubled in each layer with 

Up Sampling, it is concatenated with the layer on the 

corresponding encoder side. Thence, even if the Model cannot 

learn the information in the decoder layer, it continues its 

training with the old information from the encoder layer. The 

merge process is done over the depth. The final layer maps all 

components of the final feature map into two classes which 

need to be estimated by a softmax activation function. In the 

U-Net models used, Batch Normalization [39] and Dropout 

[40] were used together to prevent overfitting at each layer. 

Dropout is based on the principle of ignoring some randomly 

selected neurons during training. In this way, the Model will 

not perform overfitting and will perform its training more 

accurately. Figure 2 illustrates the U-Net Architecture, with 

the red line highlighting the additional component introduced 

in the proposed method.

 

 
 

Figure 2. U-Net Architecture-the area indicated by the red line is the part added to the proposed method 

 

2.3 Mathematical formulas for U-Net 

 

To simplify operations, let us define a one-dimensional 

vector X in N-dimensional space and show it over the Hankel 

Matrix 𝐻𝑚(𝑥). 

 

𝑋 = [𝑥(1), 𝑥(2), 𝑥(3), . . . , 𝑥(𝑛)]𝑇 (1) 

 

𝐻𝑚(𝑋) =

[
 
 
 
 
𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚)
𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚 + 1)

𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚 + 2)
⋮ ⋮ ⋮ ⋱ ⋮

𝑋(𝑛) 𝑋(1) 𝑋(2) . . . 𝑋(𝑚 − 1)]
 
 
 
 

∈ 𝑅(𝑛𝑥𝑚) 

(2) 

 

When the input vector is entered through k channels, the 

Hankel Matrix: 

 

𝑋𝑘 = [𝑋1 . . . 𝑋𝑘]

=

[
 
 
 
 
𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚)
𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚 + 1)

𝑋1(1) 𝑋2(2) 𝑋3(3) . . . 𝑋(𝑚 + 2)
⋮ ⋮ ⋮ ⋱ ⋮

𝑋(𝑛) 𝑋(1) 𝑋(2) . . . 𝑋(𝑚 − 1)]
 
 
 
 

∈ 𝑅(𝑛𝑥𝑚) 

(3) 

 

In Eq. (3), the vectors [𝑥𝑖(1), 𝑥𝑖(2),⋯ , 𝑥𝑖(𝑛)]  represent 

increase in the number of dimensions. The image is decoded 

in this part. Then when filter �̅� = [𝐴(𝑚) … 𝐴(1)]𝑇 strides on 

the input vector:  

 

𝑌 = 𝑋 ⊗ �̅� = 𝐻𝑚(𝑋)�̅� ∈ 𝑅𝑛𝑥1 (4) 

 

Eq. (4) is obtained. The Hankel Matrix has a low-level 

structure that allows the preservation of the input vector’s 

principal elements and extracts properties from the input 

vector [41]. 

 

𝑦𝑖 = 𝐶𝑇(𝑌) = 𝐶𝑇𝐻𝑚(𝑥)𝐴 (5) 

 

𝐶𝑒
𝑇𝑌 = [

𝐷
𝐸
] (6) 

 

𝑦𝑖  value is the system output, and D value represents 

concatenation operations in layers. E value is the attribute 

extraction process. In Eq. (3), the convolution result is first 

subtracted from the attribute and then reduced in size by the 

max-pooling process. The same process is applied to the 

opposite layer that is equivalent to that layer, and the 

concatenation is performed. If we generalize these equations 

after editing: 

 

 𝐻𝑚(𝑋) = 𝐶̅𝐶𝑇𝐻𝑚(𝑋)𝐴(�̅�) 𝑇 (7) 
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𝑋 = (𝐶̅̅ ̅𝐷) ⊗ 𝑉 (�̅�) (8) 

𝐷 = 𝐶𝑇(𝑌) (9) 

Eq. (8) and Eq. (9) are obtained. The values of 𝐴  and 

𝑉(�̅�) represent convolution and inverse convolution;

respectively, 𝐶  represents the max-pooling process, 𝐶̅ 
represents the upsampling process. 

2.4 Loss function 

In our study, we used the Dice Similarity Coefficient (DSC), 

also known as the F1 Score, as a loss function. The DSC is a 

method of calculating loss that measures the similarity of two 

sets. It is frequently used in medical images and gives better 

results than other metrics in image segmentation. In our case, 

the 𝐴 value is the cancerous cell predicted by the model due to 

segmentation in the cell, and the 𝐵 value is the ground truth 

value. 

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 −
2 ∗ ∑(𝐴 ∗ 𝐵)

∑(𝐴) + ∑(𝐵)
(10) 

Eq. (10) is obtained. 

As another loss function, intersection over union (IoU) is 

used. The IoU is also known as the Jaccard Index. The IoU is 

a standard measure used to find the similarity between the 

predicted region and the precise reference regions. 

𝐼𝑜𝑈 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
=

𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
(11) 

Eq. (11) is obtained. 

The reason why we use DSC and IoU structures in our study 

is that DSC and IoU are more advantageous than other loss 

functions. While this situation differs in 3D images, it has been 

observed that DSC and IoU achieve more successful results in 

2D and asymmetrical images [42]. 

3. DISCUSSIONS AND RESULT

Results are obtained in Python language and Google 

Colaboratory environment. U-Net and the proposed Model 

were trained using TensorFlow 2.4.1 and Keras 2.4.3 libraries. 

All three data sets were converted to 256×256×3 format to 

make no difference in model comparison. For the Model to 

detect cancer cells in images of cancerous tissue better, the 

success rate has been increased by applying the zooming 

process to the images. Since the cell images in the Data-

Science Bowl 2018 data set consist of more than one mask 

image, these mask images were first superimposed with the 

NumPy library, resulting in a mask image for each cell image. 

For the data set training, 25 epochs values and 200 steps per 

epoch were determined. With these values, it takes 44 ms per 

step and 38 s per epoch. Architectures of U-Net 7 and U-Net 

13 are given in Figure 3.  

Figure 3. (a) Architecture of U-Net7 (b) Architecture of U-Net13 

(a)       (b) 

Figure 4. (a) Prediction of models on the breast cancer dataset (b) Training and test success results on the breast cancer dataset of 

the U-Net13 model 
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The results of breast cancer data, U-Net7, U-Net, U-Net11 

and U-Net13 models after training are shown in Figure 4. 

It seems that the U-Net11 model has a more successful 

result than the classic U-Net, U-Net7 and U-Net13 models. In 

Figure 4, it is seen that the U-Net7 model could not provide 

sufficient success, but it obtained better results than the U-

Net13 model after the 15th epoch value. The U-Net13 model 

produces a better result in initial epoch values than the classic 

U-Net, while the success rate decreases as the epoch value 

increases.  

When the train and test graph of the model is examined in 

Figure 4, it is seen that it has very good success in the train 

data, while it cannot be trained after the 4th epoch value in the 

test data and does overfitting.  

 

 
 

Figure 5. (a) Tissue with breast cancer (b) Segment image of cells (c) Prediction of model U-Net7 (d) Prediction of model U-Net 

(e) Prediction of model U-Net11 (f) Prediction of model U-Net13 

 

The overfitting problem occurring in large networks also 

occurred in the U-Net13 model. Further increasing the number 

of layers of networks in the U-Net structure causes overfitting 

rather than increasing the model’s performance. As seen in 

Figure 5, the U-Net11 model is the model that produces the 

most successful results among the compared U-Net models. 

In order to see its performance in different data sets, the 

models were tested on lung segmentation data. The reason for 

choosing the lung data set is to compare the success of the 

models in selecting the small bumps in a large image. 

Performance results are given in Figure 6. 

As seen in Figure 6, the U-Net11 Model learned the data set 

starting from the 2nd epoch value and got ahead of other 

models. In Figure 7, the Model’s predictions can be seen on 

the CT image. 

 

  

Figure 6. Prediction of the models on the lung segmentation 

data set 

 

Figure 7. (a) CT image (b) Lung segmentation of image (c) 

Prediction of U-Net7 model (d) Prediction of U-Net model (e) 

Prediction of U-Net11 model (e) Prediction of U-Net13 model 
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Figure 8. Predictions of models on the Nucleus 

Segmentation dataset 

Figure 9. (a) Cell tissue (b) Segmented nuclei (c) Prediction of 

U-Net7 Model (d) Prediction of U-Net model (e) Prediction of

U-Net11 model (e) Prediction of U-Net13 model

While models other than the U-Net13 successfully segment 

the image of the lung, the U-Net7 model appears to be unable 

to separate the inner region of the lung. The U-Net11 model, 

on the other hand, seems to be more successful in 

distinguishing the inner part of the segment on the right side 

of the image. The models were tested on the 3rd data set, the 

nucleus segmentation. Since the mask images consist of more 

than one image in this data set, the stepper epoch value was 

determined as 100 to reduce the processing load and use the 

memory more economically. The results are shown in Figure 

8. Owing to the fact that models start learning late, higher

epoch values should be selected to achieve success. Since the

study aimed to compare four models rather than high success,

a fixed value of 20 epochs was selected.

The best performance was obtained with the U-Net11 model 

as with other data sets. Nuclei Segmentation predictions of the 

models are given in Figure 9. According to Figure 9, the best 

result is achieved with the U-Net11 Model. As in the Lung 

Segmentation dataset, the difference in success is small, but 

even this difference is very important in Biomedical Image 

segmentation. How significant this difference is can be seen in 

Figure 9. Although the difference between the U-Net13 

models, which is the closest model to the U-Net11 model, is 

approximately 2%, the U-Net11 model can make clearer 

predictions than both the U-Net13 and the U-Net model, which 

has a 4% success difference between them. Numerical success 

results on the data sets of the models are given in Table 1. 

Table 1. Training and test results on data sets of U-Net models 

Breast Cancer Lungs Segmentation Nuclei Segmentation 

Dice Coff. Val. Dice coff Dice Coff. Val. Dice coff Dice Coff Val. Dice coff 

U-Net7 0.5161 0.4686 0.9286 0.9539 0.7471 0.7081 

Classic U-Net 0.5520 0.5121 0.9394 0.9579 0.7655 0.7286 

U-Net11 0.6909 0.5305 0.9508 0.9598 0.7943 0.7770 

U-Net13 0.7225 0.4472 0.9474 0.9425 0.7499 0.7568 

According to Table 1, the U-Net11 Model achieved the best 

result in three data sets. Although the result of the U-Net13 

Model in the training data is the highest in the tree data sets, 

the reason it has the lowest value in the test data shows that the 

model overfitting after a while. As the number of layers 

increases, the Dice coefficient increases, but overfitting occurs, 

so it is unnecessary to further increase the number of layers. 

Again, the 7-layer U-Net7 Model, like the U-Net13 as the 

main reason for the decrease in the success rate of the model, 

it was concluded that reducing the number of layers also 

reduces the performance. When the proposed U-Net11 Model 

and the classical U-Net Model are compared; the proposed 

model showed a better performance of 5% in the breast cancer 

dataset, 2% in the lung segmentation dataset, and 4% in the 

nuclei segmentation dataset. 

Table 2. Result of comparison models on data sets 

Data Sets Methods DSC IoU 

Lung Segmentation 

Classic U-Net 0.9473 0.9034 

U-Net11(Proposed) 0.9502 0.9154 

ResBCDU-Net [43] 0.9715 

RU-Net [22] 0.9493 

Nuclei Segmentation 

Classic U-Net 0.7830 0.7084 

U-Net11(Proposed) 0.8110 0.7190 

ResNet50+Mask SSD [44] 0.4763 

U-Net+Deep Watershed Transform [44] 0.5016 

D-ResNet+Mask RCNN+PA [44] 0.5440 

Breast Cancer Segmentation 
Classic U-Net 0.5520 0.3424 

U-Net11(Proposed) 0.6909 0.3610 
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U-Net11 is a novel method for image segmentation that we 

propose as an alternative to classical methods. As Table 2 

shows, our method achieves higher DSC value and IoU score 

than classical methods on different data sets. Moreover, our 

method performs very well in IoU score according to the Data 

Science Bowl 2018 competition results, which demonstrates 

its effectiveness among other methods in the literature. 
 

 

4. CONCLUSIONS 
 

In this study, the performances of four different models (U-

Net7, Classic U-Net, U-Net11, and U-Net13) were compared 

on various datasets. Through evaluations using metrics such as 

Dice Similarity Coefficient and Jaccard Index, it was observed 

that the U-Net11 model achieved the best results. 

The proposed U-Net11 model achieved high DSC scores on 

three datasets: 69.09% for cancer segmentation in the breast 

cancer dataset, 95.02% for organ segmentation in the lung 

segmentation dataset, and 81.10% for cell tissue class in the 

nuclei segmentation dataset. 

The datasets are carefully selected and contain different 

types of segmentation, while the data size varies from small to 

large. As the number of layers increases, the probability of 

memorization in the model increases, while the number of 

layers is decreased, the success rate decreases significantly.  

The U-Net11 model had higher Dice Coefficient and 

Jaccard Index values than other models, both in the training 

and test datasets. This indicates that the proposed model is 

effective in biomedical image segmentation. Furthermore, 

when compared to other methods in the literature, the U-Net11 

model demonstrated superior performance. As a result of these 

studies, it is recommended to increase the number of layers 

from 9 in the classical U-Net model to 11 and this method can 

be used as an alternative to the classical U-Net model. 
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