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Zero hunger, the goal 2 of Sustainable Development Goals (SDGs), can only be achieved 

when food is available, affordable and accessible to the people. Food insecurity, a 

phenomenon where either or all of these ingredients for zero hunger are absent, remains a 

critical global issue that warrants coordinated strategies at regional scale; most especially 

for crop farming which serves as the major source of food for most humans. Therefore, 

efficient Land Use and Land Cover (LULC) classification is a pivotal tool in the 

development of apposite strategies for combating food insecurity. Open satellite missions 

like Sentinel 2 offer a cost effective way for acquiring regional imagery dataset for LULC 

classification; however, the relevance of such dataset is dependent on the quality of ground 

truth data from which the imagery dataset is created. Qualitative ground truth data are 

usually obtained through ground surveys which come at extra costs, warranting the need for 

elaborate community ground truth geo-database constructed from joint ground surveys. 

Such database is absent in the tropical belt that is mostly made up of developing countries 

where higher impacts of food insecurity are experienced. This remained the case, until 

recently when JECAM (Joint Experiment for Crop Assessment and Monitoring) database 

was developed for six countries in the tropical belt. JECAM database is an elaborate geo-

database that consists of 27,074 agricultural LULC polygons (20,257 crops and 6,817 non 

crops). In this study, we built three deep learning models for agricultural LULC 

classification using the entire 13 bands of the satellite imagery dataset. Class-based 

performance evaluation metrics were used to evaluate the performances of the deep learning 

models on test set. LSTM (Long Short-Term Memory) model exhibited the highest 

capability for LULC class discrimination, followed by 2D-CNN (2 Dimension Convolution 

Neural Network) Autoencoder model, then the 2D-CNN model. In the future, we intend to 

exploit spectral indices and transfer learning paradigm to address class imbalance problem, 

which is inherent in the imagery dataset, for improved LULC class discrimination. 
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1. INTRODUCTION

Food insecurity is a global crisis that impacts over 800 

million people to be either hungry or malnourished [1], 

warranting efficient and pragmatic agricultural strategies at 

regional scale. Accurate generation of Land Use and Land 

Cover (LULC) maps is fundamental to these strategies as they 

provide holistic views to evaluate land changes resulting from 

both natural and cultural phenomena. LULC classification for 

automating LULC map generation at regional scale can be 

achieved using imagery from satellite systems due to their 

wider imaging coverage and continuous data acquisition for 

prospective analysis. Deep learning techniques, a subset of 

machine learning methods developed to effectively overcome 

the problem of curse of dimensionality [2], have been 

employed to generate accurate LULC maps from satellite 

imagery in a number of studies via classification tasks [3-8]; 

however, it should be noted that the relevance of these satellite 

imagery are dependent on their conformity to ground truth for 

an area of interest. Thus, there is need to conduct surveys for 

obtaining ground truth, which come at prohibitive costs, 

especially when the area of interest is large. This has inhibited 

the adoption of satellite imagery for complex agriculture 

systems in developing countries [9] where impacts of food 

insecurity are greatly felt. 

A cost effective approach for obtaining ground truth is 

through provision of open database that contains coordinates 

of area of interest with defined feature(s), gathered via joint 

physical surveys, which can be used to mask satellite imagery 

for LULC classification. Adopting this approach, a number of 

ground truth datasets have been released. However, these 

datasets are not suitable for developing countries due to 

exclusive scope of interest, broad taxonomy that reduces a 

number of agriculture land covers to single class and 

localization difficulties for crop practices [9]. For instance, a 

review of ground truth database available for global south has 

been presented by authors [10], where Land Cover-Climate 

Change Initiative (LC-CCI), Global Observation for Forest 

Cover and Land Dynamics (GOFC-GOLD), Food and 

Agriculture Organisation-Forest Resources Assessment 

(FAO-FRA) and Geo-Wiki datasets are discussed to have 

potential for broader applicability for multiple uses. 

Nevertheless, the wider applicability scope is threatened by 

absence of information on how these datasets can be used 
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beyond their original scope. Besides, the GOFC-GOLD 

dataset generally contains a single nomenclature (“crop land” 

or “cultivated”) for crop types, except for GlobCover 2005 

subset which has a “rainfed cropland”, rendering the dataset 

less useful for applications involving crop mapping [9]. 

Moreover, the authors [11, 12] collected crowdsourced 

ground truth dataset via Wiki tool, where the number of 

cropland samples are fairly large. Nonetheless, these cropland 

samples are referenced with only one class in the nomenclature. 

In addition, dataset generated through crowdsourcing are not 

suitable for circumstances where precise information must be 

collected in terms of plot boundaries, spatial resolution, and 

crop type nomenclatures, as crowdsourcing initiatives are 

principally based on visual interpretation of images which 

inhibit the identification and precise localization of cropping 

practices. JECAM ground truth database presented by authors 

[9] has the potential to address the draw backs of existing 

ground truth dataset for some developing countries. 

Exploiting advancements in computing resources and data 

modeling algorithms, this study seeks to apply deep learning 

methods on Sentinel 2 satellite imagery acquired from JECAM 

open in situ database for agricultural LULC classification. We 

employed the entire 13 bands of the sentinel 2 L1C data for 

the classification tasks. The classified LULC maps generated 

from resulting deep learning models were evaluated using 

classification metrics. 

The rest of this paper is structured as follows. Section 2 

presents methodology where the JECAM database, dataset 

acquisition, modeling method and experiment are discussed. 

The result of the experiment is presented and discussed in 

Section 3. Section 4 concludes the paper with 

recommendations for further research.  

 

 

2. METHODOLOGY 

 

2.1 JECAM database 

 

This database is an aggregation of 24 harmonized datasets 

collected under the Joint Experiment for Crop Assessment and 

Monitoring (JECAM) initiative, spread across 9 sites in 6 

tropical countries; and it consists of 27,074 polygons (20, 257 

crops and 6,817 non crops), gathered between 2013 and 2020. 

(See Table 1 for polygons distribution per country). It supports 

layered imagery classification tasks for LULC discrimination 

and crop mapping, providing up to 11 LULC classes 

(Cropland, Herbaceous savannah, Built-up surface, Savannah 

with shrubs, Pasture, Mineral soil, Forest, Wetland, Water 

body, Savannah with trees, and Bare soil) and broader crop 

types of up to 47, which were majorly acquired through 

physical surveys [9]. 

 

Table 1. Polygons distribution per country 

 
Country Number of Polygons 

Madagascar 8351 

Burkina Faso 7114 

Brazil 6682 

Senegal 3600 

South Africa 1741 

Kenya 1647 

Cambodia 529 

 

The merit of JECAM dataset does not only lies in its 

inherent quality possessed by its in situ data collection, but 

also in its large sample size and broader crop classes which 

present it as a suitable ground truth data source for acquisition 

of satellite imagery for agricultural systems in developing 

countries (of the tropical belts), where large ground truth 

datasets are rare due to mapping difficulty [13], caused by 

humble sizes of crop fields [14]. 

 
2.2 Imagery dataset acquisition 

 
The satellite imagery dataset for this study was acquired 

from Antsirabe site in Madagascar. It is the only site of 

Madagascar captured in the JECAM database. Antsirabe, the 

capital of Vakinankaratra region, is the third biggest city in 

Madagascar and has a population of 391,000 as at 2022 [15]. 

It lies on 19°51'57.1"S latitude and 47°1'59.99"E longitude. 

The Antsirabe site has the maximum number (8351) of 

polygons and highest percentage (87%) of in situ data 

collected in the ground truth database. These motivated its 

choice as study site for this work. 

Sentinel 2 L1C imagery dataset from January to December, 

2018, was acquired and preprocessed using Google Earth 

Engine; an open cloud based Geographical Information 

System (GIS). In order to minimize storage and computational 

requirements for the imagery data, we averaged [6] reflectance 

values of the Sentinel 2 L1C images; and we exported the 

resulting pixel samples in Comma Separated Value (CSV) 

format for onward processing. The imagery dataset acquisition 

for this study is divided into two stages which are listed below: 

 
(a) Shape files preprocessing: In order to render shape files 

stored in the JECAM database suitable for raster data creation, 

we employed Geopandas library to extract required shape files 

for our study; and we conducted relevant preprocessing tasks 

on the shape files using Geopandas and python. These 

preprocessing tasks were carried out on Google Colab, an open 

Platform-as-a-Service. Below are steps followed at this stage: 

i. Login to Google Colab with a Google account. 

ii. Install geopandas and required python dependencies in 

Google Colab environment. 

iii. Mount Google drive for data storage and retrieval 

during the preprocessing operations. 

iv. Read the entire data in JECAM database as a 

dataframe. 

v. Encode land cover classes from textual to numerical 

form. 

vi. Attach the land cover numerical field to the JECAM 

dataframe. 

vii. Extract Madagascar (Antsirabe site) shape files for 

each land cover type in the JECAM dataframe. 

viii. Export the resulting dataframe for each land cover type 

to Google drive in CSV format. 

 
(b) Raster data acquisition: At this stage, raster data for 

training our models are created using the shape files extracted 

from the JECAM database for Antsirabe site in Madagascar. 

Both raster data creation and necessary preprocessing 

operations to improve ease of computation and LULC 

classification were carried out on Google Earth Engine 

following steps listed below: 

i. Login with a Google account and connect to Earth 

Engine, and upload extracted shape files of 

Madagascar (Antsirabe site) for each land cover type 

unto Earth Engine as “Assets”. 

ii. Define the LULC classes’ field of the shape files as 

676



 

target property. 

iii. Download Sentinel 2 L1C imagery for the study 

period unto the Earth Engine instance at a cloud cover 

of 20% or lesser. 

iv. Define the Area of Interest (AoI) with Antsirabe site’s 

coordinates and use it to clip the Sentinel 2 L1C 

satellite imagery. 

v. Select the quality assurance band of Sentinel 2 ('QA60') 

to mask clouds from the satellite imagery 

vi. Normalize resulting image collection and convert it to 

a mosaic for easy computation. 

vii. Use the shape files to create a feature collection.  

viii. For every image observation, obtain average 

reflectance value from the satellite imagery using the 

feature collection defined; covering desirable bands 

(all the 13 bands in this case) with corresponding 

longitude and latitude at a spatial resolution of 10 

meter. 

ix. Export resulting raster data as a table in CSV format 

for onward modeling 

 

Figure 1 depicts the diagrammatic view of the imagery data 

acquisition stages. 

 

 
 

Figure 1. Imagery data acquisition 

 

A total of 451, 455 pixels, at a dimension of 13×1, were 

obtained for this study. The choice of L12C product is due to 

its support for near real time earth monitoring. Table 2 

illustrates pixels sample distribution per LULC class for the 

satellite dataset, while Figure 2 displays the imagery samples 

for each LULC class in red, green and blue (RGB) format. 

 

Table 2. Sample distribution per LULC class for satellite 

imagery dataset 

 
LULC Labels Number of Pixels 

Cropland 268896 

Water body 59234 

Herbaceous savannah 35827 

Savannah with shrubs 22897 

Built-up surface 17617 

Mineral soil 11382 

Wetland 10980 

Pasture 10810 

Savannah with trees 8933 

Forest 4020 

Bare soil 859 

 
 

Figure 2. Image samples for LULC classes in RGB format 

 

2.3 Data modeling method 

 

Owing to wider availability of data and improvements in 

computing resources, Machine Learning, a set of inductive 

learning techniques that focus on how computers can learn 

from experience without being explicitly programmed, has 

recently gained popularity in the data modeling space. 

However, a major pitfall of machine learning is its inability to 

effectively model voluminous data with high dimensionality 

(features), a phenomenon often referred to as curse of 

dimensionality [16]. This makes machine learning methods 

less suitable for analysis of satellite images which are 

characterized with a number of features.  

Deep learning, a subset of advanced machine learning 

methods developed to address the problem of curse of 

dimensionality, is employed for the modeling of satellite 

imagery in this work. Deep learning methods are improved 

Artificial Neural Networks that are stacked with two or more 

hidden layers for effective feature extraction during inductive 

learning process [17]. In this study, we adopt three popular 

deep learning methods, which are Convolution Neural 

Network (CNN), Long Short-Term Memory (LSTM) and 

Autoencoder. 

Convolution Neural Network is a supervised deep learning 

method that obtained local features from high dimension 

(resolution) input and progressively combines these local 

features into more complex ones at lower resolutions. The 

degradations in the spatial information are compensated by an 

increased number of feature maps provided at the higher layers 

[18]. Legacy CNN architecture consists of three layers: a 

convolution layer, a pooling layer and a fully connected layer. 

The convolution layer is a trainable layer made up of a 

collection of trainable kernels (filters) that extends fully into 

the depth of input volume, but are spatially small along the 

height and width [19]. These kernels extract applicable 

features [20], and employ activation function to create reduced 

dimension of the input from individual value of the feature 

map generated. 

The pooling layer, a non trainable layer, down-samples the 

feature maps from the former layer and generate new feature 

maps of condensed resolution [21] to further reduce cost of 

computation and over fitting. The fully connected layer 

(sometimes referred to as dense layer) match convoluted non-

linear discriminant functions within the feature expanse unto 

which the input components are mapped [22]. In this manner, 

the feature maps can be aggregated to produce the 
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classification output. 

Long Short-Term Memory (LSTM) is a form of recurrent 

neural network (RNN) that was developed to address the 

problem of optimization hurdles associated with existing 

(simple or short-termed memory) recurrent networks [23]. 

RNN is a neural network originally proposed for time series 

modeling in the 1980's [24, 25]. Its structure resembles that of 

a multilayer perceptron except that there are connections 

between hidden units, associated with time delay. In this 

manner, RNN’s can retain details about the past, making them 

to be able to detect temporal correlations between occurrences 

that are distant apart with in the data [26]. A major pitfall of 

RNN is exploding gradient and vanishing gradient problems 

that render it difficult to be trained properly [27]. 

LSTM was able to address the gradient problems by using 

a special kind of linear unit that has a self connection of value 

1, where learned output and input gates guard flow of 

information in and out of the unit [28, 29]. Though LSTM was 

initially developed to model temporal data, it has evolved to 

be able to handle a number of difficult tasks across several 

problem domains [30]. 

Autoencoders are a special type of neural networks that 

provide a lossy data-specific compression mechanism, where 

compressions and decompressions are carried out 

automatically based on pattern learned from examples rather 

than manual human engineering [31]. Autoencoders, like other 

deep learning models, have input, output and hidden layers; 

however, the input and output layer are identical but fewer 

nodes exist at the hidden layer. With this kind of arrangement, 

autoencoders can capture concise applicable features during 

training, making them suitable for classification tasks [32, 33]. 

 

2.4 Experiment 

 

Data modeling was carried out on Google Colab, which is 

an open Platform-as-a-Service with GPU provision. We use 

Tensorflow library for the development of our deep learning 

models. The satellite dataset was split into train, validation and 

test set in ratio 80:10:10 respectively and Table 3 displays 

pixel samples’ distribution per LULC class for each set. 

 

Table 3. Distribution per LULC class for training, validation 

and test set 

 

LULC Labels 
Training 

Set 

Validation 

Set 

Test 

Set 

Cropland 215137 26882 26877 

Water body 47249 6105 5880 

Herbaceous 

savannah 
28658 3595 3574 

Savannah with 

shrubs 
18450 2197 2250 

Built-up surface 14157 1754 1706 

Mineral soil 9144 1127 1163 

Wetland 8784 1056 1140 

Pasture 8620 1027 1111 

Savannah with trees 7078 899 956 

Forest 3199 403 418 

Bare soil 688 100 71 

 

We trained three deep learning models: 2D-CNN model, 

2D-CNN Autoencoder and LSTM model. All models have 

seven numbers of trainable layers. The 2D-CNN model was 

made up of four convolution layers, four max pooling layers, 

a flatten layer, three dense layers and a dropout layer, making 

a total of thirteen layers. The first convolution layer serves as 

input layer with 32 units, followed by three convolution layers 

of 64, 128 and 256 units respectively. Each convolution layer 

was followed by a max pooling layer with pool size of 1 by 1, 

and all convolution layers were configured with kernel size of 

1 by 1. The fourth max pooling layer is followed by flatten 

layer, then the dense layers with 512, 256 and 11 number of 

units respectively. The dropout layer was placed before the 

output layer (dense layer of 11 units) with 0.5 rate. All 

trainable layers in the 2D-CNN model were configured with 

RELU activation function, except the output layer which is 

configured with softmax activation function. 

The 2D-CNN Autoencoder model was arranged in a manner 

similar to that of 2D-CNN model except that the first two 

convolution layers (encoder) has 224 and 16 units respectively, 

while the last two convolution layers (decoder) has 16 and 224 

respectively; and each of the decoding convolution layers are 

followed by an upsampling layer. The 2D-CNN Autoencoder 

model also has a total number of thirteen layers. The LSTM 

model only differs from the 2D-CNN model by replacing 

layers before flatten and dense layers with four LSTM layers 

configured with TANH activation function instead of RELU, 

giving a total number of nine layers. 

For each model, Adam and sparse categorical cross entropy 

were selected as optimization and loss function accordingly. 

The Adam optimizer was configured with default values; and 

all models were set to fit for 50 epochs. In order to minimize 

over fitting, model check point was configured to save best 

weights using validation accuracy as monitor for individual 

model. All the deep learning models were trained with a batch 

size of 32. Figure 3 shows the training details at which best 

weights are saved for each model, and displays the training and 

validation accuracy curves for the deep learning models. 

 

 
 

Figure 3. Learning curves and details of deep models 

 

An accuracy curve for a deep learning model illustrates 

changes in value of accuracy of the model as it is trained for 

successive epochs. In Figure 3, for every model, the training 

accuracy curves are represented in red, while the validation 

accuracy curves are represented in blue. The initial training 

accuracies for 2D-CNN and 2D-CNN Autoencoder models 

were approximately 75%, while initial validation accuracies 

were approximately 78%. As both models were trained for 

consecutive epochs, a steady raise in the training and 

validation accuracies were witnessed until it reached 35th 

epochs after which the training and validation accuracies 

hover around 85% and 86% respectively. This signifies that 

training the models for more epochs will not improve models’ 

performance. 

As for the LSTM model, the training and validation 

accuracies at the first epochs were approximately 73% and 
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75%; and both accuracies kept on increasing till the 50th epoch. 

This suggests that there is tendency for the LSTM model’s 

performance to improve beyond 90% validation accuracy if it 

is trained for more epochs. All the three deep learning models 

did not experience over fitting as validation accuracies were 

higher than the training accuracies.  

 

 

3. RESULT AND DISCUSSION 

 

We included F1-score, along with accuracy, for the 

evaluation of resulting models’ performance on the test set, as 

the latter only reflects model performance of predominant 

class in a situation of class imbalance. F1-score is a hybrid 

metric of recall (producer’s accuracy) and precision (user’s 

accuracy) which are classed based evaluation metrics that 

measure how well a model classifies LULC labels in real life, 

and how real a classified map is on the ground respectively. 

F1-score facilitate ease of evaluating class based performances 

of models as it presents a representation of model performance 

for instances occurrences are affirmed and denounced as 

single metric. The LSTM model exhibited the best 

performance for LULC classes’ discrimination on the test set, 

followed by 2D-CNN Autoencoder model. The least class 

discrimination capability was exhibited by 2D-CNN model. 

Table 4 shows the evaluation result for the models on the test 

set, while Figure 4 and Figure 5 display the Ground truth 

LULC map and Classified LULC map for the best performing 

(LSTM) model on the test set, where points on the maps 

represent average reflectance values of the Sentinel 2 L1C 

images. Figure 6 shows F1-scores for the three deep learning 

models on discriminating each LULC class. 

 
Table 4. Evaluation result on test set 

 

Deep Learning Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

2D-CNN 86 83 60.6 66.5 

2D-CNN Autoencoder 86 82.5 61.7 67.1 

LSTM 90 85 70.4 75 

 

 
 

Figure 4. Test set ground truth LULC map showing the 

distribution of mean reflectance values for Sentinel 2 L1C 

images of Antsirabe site in Madagascar 

 

 
 

Figure 5. LSTM classified LULC map showing the 

distribution of mean reflectance values for Sentinel 2 L1C 

images of Antsirabe site in Madagascar 

 

 
 

Figure 6. F1-scores for deep learning models per LULC 

class 

 

In comparison with the reference values, the 2D-CNN and 

2D-CNN Autoencoder classifiers correctly predict 83% and 

82.25% of land cover types in the test set to belong to classes 

in which they actually belong respectively; while 60.6% and 

61.7% of land cover types in the test set are correctly 

represented on the classified map generated from the former 

and latter models correspondingly. The relatively low 

producer’s accuracies exhibited by the two models are 

responsible for a satisfactory classification performances of 

2D-CNN and 2D-CNN Autoencoder classifiers at 66.5% and 

67.1% F1-score (an harmonic mean of user’s and producer’s 

accuracy) respectively. 

On the other hand, the LSTM model adequately classifies 

85% of land cover types in the test set to classes they actually 

belong in the reference values; however, 70.4% of land cover 

types in the test set are correctly represented on the classified 

map produced from the LSTM model. The relatively high 

producer’s accuracy exhibited by the LSTM classifier resulted 

to improved F1-score of 75% by the model, though still rated 

satisfactory. 

Figure 6 illustrate F1-scores for Deep Learning Models per 

LULC Class, where the models have the highest F1-scores on 

discriminating water body class, while the least F1-scores for 

models were witnessed on Forest class at a maximum F1-score 

of 19% by LSTM model. A comparison view of Figure 4 and 
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5 reveals conspicuous misclassifications of the LSTM 

classifier for forest and pasture classes, with obscure 

misclassifications for other classes. This implies that the best 

performing model, in this study, is less suitable for 

applications where forest and pasture class discriminations are 

pivotal. All models exhibited good discrimination ability for 

wetland and mineral soil classes at F1-scores not less than 86%. 

The exceptional and fair performance of all models on 

discriminating water body and wetland classes respectively, 

suggests the suitability of the models for monitoring water 

boundaries. As for cropland class discrimination, all models 

exhibited outstanding F1-scores (91% for both 2D-CNN and 

2D-CNN Autoencoder, and 93% for LSTM), making them 

suitable in handling upper layer classification task for crop 

mapping applications. 

 

 

4. CONCLUSIONS 

 

In this study, we exploited the JECAM ground truth 

database to create a Sentinel 2 L1C raster dataset for Antsirabe 

site with imbalance LULC classes. The entire 13 bands of the 

satellite dataset were used to build three deep learning models 

which are 2D-CNN, 2D-CNN Autoencoder and LSTM models. 

Despite the 2D-CNN model exhibited slightly higher 

validation accuracy than the 2D-CNN Autoencoder model, the 

latter has better ability to discriminate between LULC classes. 

This implies that autoencoding structure for convolution 

neural methods renders better performances than legacy CNN 

architecture. The best LULC class discrimination is exhibited 

by LSTM model at a test accuracy and F1-score of 90% and 

75% respectively. This confirms the JECAM database as a 

fairly suitable ground truth data source for agricultural LULC 

mapping, which can not only be used for effective land 

management and mitigating threats to biodiversity, but also 

can used as a bases to isolate crop image samples as inputs to 

crop type classifiers to produce crop maps which are essential 

for innovative crop management strategies such as yield 

estimation and weed control.  

The authors could not access a workstation with adequate 

GPU (Graphic Processing Unit) and memory to handle 

computer vision task related to satellite imagery in the context 

of LULC classification. This pushed the authors to employ 

Google Colab platform for data modeling in this study. 

Nevertheless, the mostly available (free) plan offers by Google 

only allow users to access Colab platform for limited period of 

time with the exception of the paid plan(s) that is not 

accessible to users outside the United State of America. The 

implication of this is that model must be trained for restricted 

period of time, preventing deep learning models developed in 

this study to be set to train for a maximum number of 50 

epochs. Moreover, this limitation inhibited the authors to 

adopt state of the art modeling techniques (such as transfer 

learning, spectral indices, deeper neural network and so on) 

that can outstandingly improve the discrimination capabilities 

of deep learning models to produce excellent LULC maps, as 

these modeling methods potentially require more training time 

per epoch. In the future, we intend to employ spectral indices 

and transfer learning to address the problem of class imbalance 

inherent in the satellite imagery dataset. This, we believe, can 

improve LULC class discrimination capabilities for resulting 

models. 
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