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Global Pooling (GP) is one of the important layers in deep neural networks. GP significantly 

reduces the number of model parameters by summarizing the feature maps and enables a 

reduction in the computational cost of training. The most commonly used GP methods are 

global max pooling (GMP) and global average pooling (GAP). The GMP method produces 

successful results in experimental studies but has a tendency to overfit training data and may 

not generalize well to test data. On the other hand, the GAP method takes into account all 

activations in the pooling region, which reduces the effect of high activation areas and causes 

a decrease in model performance. In this study, a GP method called global average of top-k 

max pooling (GAMP) is proposed, which returns the average of the highest k activations in 

the feature map and allows for mixing the two methods mentioned. The proposed method is 

compared quantitatively with other GP methods using different models, i.e., Custom and 

VGG16-based and different datasets, i.e., CIFAR10 and CIFAR100. The experimental 

results show that the proposed GAMP method provides better image classification accuracy 

than the other GP methods. When the Custom model is used, the proposed GAMP method 

provides a classification accuracy of 1.29% higher on the CIFAR10 dataset and 1.72% 

higher on the CIFAR100 dataset compared to the method with the closest performance. 
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1. INTRODUCTION

Deep neural networks (DNNs) are a type of artificial neural 

network consisting of multiple layers and interconnected 

artificial neurons. DNNs are inspired by the structure and 

function of the human brain; it learns from examples to 

recognize patterns and relationships in data. The importance 

of DNNs stems from their ability to learn complex 

representations of data and make accurate predictions. Some 

of the key benefits of DNNs are: (1) Improved accuracy; 

DNNs have achieved state-of-the-art results in various tasks, 

outperforming traditional machine learning methods in many 

problems, (2) Hierarchical learning; DNNs can learn 

hierarchical representations of data that capture more and 

more complex features as the data forwards from the input 

layer to the deeper layers of the network, (3) Automated 

feature extraction; DNNs can automatically learn useful 

features from raw data without the need for manual feature 

selection, (4) Handling of large-scale and complex data; DNNs 

can handle large-scale and complex data, making them 

suitable for tasks, e.g. image and speech recognition [1, 2], 

natural language processing [3], and machine translation [4], 

etc., and (5) Transfer learning: DNNs can be used as a pre-

trained model for other tasks, reducing the amount of data and 

computational resources required to train a model from scratch. 

The depth and capacity of DNNs increase depending on the 

size and complexity of the problem to be solved. 

Convolutional neural networks (CNNs) are a special type of 

DNN that have recently provided state-of-the-art results in 

many problems in computer vision [4, 5]. A standard CNN 

consists of convolution, activation function, local pooling, 

flatten, and fully connected (FC) layers at the top. The 

convolution layers are used to detect features in the image. 

These layers contain various kernels that combine each pixel 

in the image with the pixels around it to detect features in the 

image. Initially, these kernels, which are randomly generated, 

are slid over the input image or the feature maps from the 

previous layer to create new feature maps for the next layer. 

This process determines the regions in the image where the 

features are located and allows to use of these features in later 

layers. The activation function determines the effect of weight 

values that regulate the operation of artificial neurons. It is 

commonly referred to as a squashing function and determines 

whether a neuron is activated or not. Activation functions are 

generally non-linear, which gives the model the ability to be 

non-linear. The local pooling layer reduces the size of the input 

images or feature maps, which reduces the calculations 

required during training and increases the training speed. It 

also makes the model more robust to small changes, e.g., 

minor shifts in the image, which enables the model to have 

better generalization ability on images.  However, the local 

pooling operation causes information loss, as it attempts to 

represent the pixels within a defined kernel with a single value. 

Therefore, small kernel sizes, e.g., 2×2 or 3×3, are often used 

to keep the information loss low. The flatten layer converts the 

input tensor into a one- dimensional vector by flattening it. 

This layer is usually used as a preprocessing step before the 

data is passed to an FC layer. The main purpose of the flatten 

Traitement du Signal 
Vol. 40, No. 2, April, 2023, pp. 577-587 

Journal homepage: http://iieta.org/journals/ts 

577

https://orcid.org/0000-0003-1529-6118
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400216&domain=pdf


layer is to transform a multi-dimensional input tensor into a 

one-dimensional vector. This is important because FC layers 

expect a one-dimensional input; therefore, the input must be 

reshaped in order to be passed to the FC layer. For example, 

an input tensor with shape (batch size, height, width, channels) 

is transformed into a one-dimensional tensor with shape (batch 

size, height * width * channels) using a flatten layer. An FC 

layer, also known as a dense layer, is a type of layer that 

connects input data to output data. This consists of a set of 

weights and biases applied to the input data and produces the 

output tensor. The main purpose of this layer is to learn high-

level features from the input data. It does this by applying 

weights and biases that transform the input data into a 

meaningful and informative new representation. Since this 

layer connects all the neurons in the input layer and the output 

layer, the number of model parameters increases significantly 

depending on the number of neurons in the input layer. 

The feature maps in the last layer of the model are flattened 

with the flatten layer, and each neuron is connected to the 

output layer with its FC layer. The number of model 

parameters increases significantly depending on the resolution 

of the feature maps in the last layer of the model. Recently, Lin 

et al. [6] proposed to directly output the confidence of the 

feature maps using the GP methods rather than connecting the 

feature maps from the last convolutional layer to the output 

layer with FC layers. This provides a more meaningful and 

interpretable method that challenges the fit between feature 

maps and categories/classes instead of the black-box FCs in 

CNNs. In addition, FC layers tend to be prone to overfitting; 

therefore, regularization techniques, e.g., dropout [7], are often 

used between FC layers. On the other hand, GP naturally has 

a regularizer that prevents overfitting. Recently, the state-of-

the-art models proposed for computer vision problems have 

been observed to use GMP or GAP layers in the last layer. 

Global pooling methods convert the feature map obtained 

from the last layer of the model into a single scalar value 

regardless of resolution. This reduces the complexity and 

computational requirements of the model by minimizing the 

spatial dimensions of the feature maps. GMP outputs the 

highest activation in the pooling region, while GAP outputs 

the average of all activation values in the pooling region. 

Experimental studies conducted by researchers have reported 

that the max-pooling layer provides excellent empirical results 

[7, 8], but is overfitting to training data and does not guarantee 

generalization on test data. Average pooling, on the other hand, 

considers all elements in the pooling region, which indicates 

that low activation areas reduce the effect of high activation 

areas [9-11]. In this study, a method called Global Average of 

top-k Max-pooling (GAMP) is proposed, inspired by the top- 

k max-pooling method proposed in the field of word 

embedding [12]. Word embedding is a technique used in 

natural language processing to represent words as numerical 

vectors in high dimensions. These vectors capture the context 

and meaning of the words in the text and are used in machine-

learning models. In the top-k max pooling technique proposed 

in the field of natural language processing, the highest-valued 

words in the pooling region are selected and the other elements 

are set to zero. It is reported that this provides to preserve the 

most important information in the pooling region and improve 

the performance of the model [12]. In the proposed GAMP 

method, the average of the k neurons with the highest 

activation is produced as the output.  In other words, instead 

of producing k outputs for each feature map, a single value is 

produced. The motivation behind the proposed GAMP method 

is to increase the performance of DNNs by finding a 

compromise between GP methods, i.e., GAP and GMP, and 

reducing the limitations present in these methods. 

The main contributions of this study can be summarized as 

follows: 

• A new GP method is proposed by considering the

disadvantages of current methods. The proposed method 

increases the generalization ability of the model by preserving 

high activation. This provides an improvement in 

classification performance on the test dataset. 

• The proposed method was compared to other methods in

the same category using both a Custom model and a popular 

CNN model, i.e., VGG16-based, and the success of the 

proposed method was demonstrated experimentally. 

• A similar approach proposed for word embedding studies

was adapted to the classification problem and compared. In 

this study, it was shown that the proposed GAMP method 

provides better results. 

• Experimental studies were conducted and 

recommendations have been made for different models, i.e., 

Custom and VGG16-based, different datasets, e.g., CIFAR10 

and CIFAR100, and different k values ranging from 0 to 10 

for the reference of researchers. 

The rest of the article is organized as follows. A brief 

summary of related previous studies is given in Section 2. The 

proposed method and materials used are discussed in detail in 

Section 3. Method comparison results are given in Section 4. 

The article ends with future directions. 

2. RELATED WORKS

The pooling layer enables down sampling on the feature 

maps obtained from the previous layer, reducing the input size 

of the feature maps significantly and producing meaningful 

compact outputs. There are two main advantages of using a 

pooling layer in deep models: (1) It significantly reduces 

computation cost by reducing the spatial resolution of the 

feature maps, and (2) It extracts only useful information from 

the feature maps, i.e., it discards unnecessary details and 

performs global feature selection for the pooling area, 

controlling overfitting and increasing test performance. 

Selecting an ideal pooling layer can increase the success of 

deep CNN models in tasks, e.g., classification, perception, and 

segmentation. In CNN models, two types of pooling layers are 

used:  local and global. Local pooling is placed between 

convolution layers and reduces the resolution of feature maps. 

In this method, a predetermined kernel (generally of low 

dimensions such as 2×2, 3×3, etc.) is slid over the feature maps 

and a feature selection is made for the relevant pooling region. 

There are many approaches suggested in this context since 

the local pooling technique has been used since the first CNNs 

were proposed. These studies can be classified into four 

categories: value, probability, rank, and transformed. In the 

value-based pooling method, an activation is selected based on 

predetermined criteria, e.g., the highest or most important, 

from among the activations in the relevant pooling region. 

There are many approaches suggested based on activation 

selection: Max-Pooling [13], Average pooling [5], Mixed 

pooling [14], Detail preserving pooling [15], LEAP pooling 

[16], Spatial pyramid pooling [17], Kernel pooling [18], and 

Dynamic correlation pooling [19]. The max-pooling [13] 

selects the largest activation from the pooling region and 

eliminates non-maximum values, resulting in reduced 
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computation in higher layers. The average pooling [5] method 

calculates the average of all activations within a pooling region. 

Mixed pooling [14] uses a tunable parameter to select either 

max or average pooling during the training of CNNs, 

effectively mitigating over-fitting in deep CNNs. The detail 

preserving Pooling [15], inspired by the human visual 

system’s focus on local spatial details, enhances spatial 

changes and provides an adaptive pooling approach that 

preserves significant structural details through the utilization 

of an inverse bilateral filter. In the related method, a learnable 

parameter is used that regulates the reduction of the feature 

map. The LEAP pooling [16] uses a shared linear filter on each 

map to process each input feature channel individually and 

combines the features within the pooling region. This helps to 

minimize both the number of parameters and the training error. 

The spatial pyramid pooling [17] generates a fixed-length 

output that remains consistent regardless of the input size. This 

eliminates the need for cropping the input image to reach the 

desired size and reduces the loss of information resulting from 

cropping, thereby improving the model’s performance. The 

kernel pooling [19] enables the capturing of high-level and 

non-linear attribute interactions through compact attribute 

matching. The proposed method is fully differentiable, making 

it possible to learn the composition of the kernel in conjunction 

with CNNs through backpropagation using the data. Dynamic 

correlation pooling [18] provides a method based on the 

Mahalanobis distance between adjacent pixels in an image. In 

this method, one of max, average, or mixed pooling is 

dynamically selected based on the correlation between the 

Mahalanobis distance and a specified threshold distance. 

In probability-based pooling methods, a trade-off is often 

made between max pooling and average pooling, which are 

commonly used in CNNs. This approach combines the two 

methods and provides a hybrid approach, which allows for a 

more balanced representation of the pooling area while still 

preserving the most important information. To benefit from 

the advantages of both methods and avoid the disadvantages, 

various methods have been proposed, e.g., Lp pooling [20], 

Stochastic pooling [9], Max pooling dropout [21], Sparsity-

based stochastic pooling [22], and Hybrid pooling method [23], 

based on the mixing mechanism used. In Lp pooling [20], the 

type of pooling is determined by the probability value P. When 

P=1, it represents a straightforward Gaussian mean, and when 

P=∞, it represents max-pooling. The objective of this related 

method is to give more significance to strong features and 

suppress weak ones. Stochastic pooling [9] is a method that 

replaces deterministic pooling with a stochastic procedure. 

The activations in the pooling region are normalized to 

determine probabilities, and then a random activation is 

selected according to a multinomial distribution, allowing for 

non-maximum activations in feature maps.  Unlike max and 

average pooling, the stochastic pooling method is not 

negatively impacted by regularization techniques like dropout 

and can be combined with other forms of regularization. The 

max pooling dropout [21] investigated the effect of the dropout 

technique on pooling layers in CNN architectures. It has been 

stated experimentally that the related method performs better 

than the maximum and scaled maximum probability. The 

sparsity-based stochastic pooling [22] utilizes the sparsity of 

activations and a control function to obtain a feature 

representation that balances the pros and cons of max and 

average pooling. Additionally, the method incorporates 

weighted random sampling to retain the benefits of stochastic 

pooling. Hybrid pooling [23] combines max and average 

pooling methods. It calculates both max and average pooling 

values for the same region and applies a determined 

probability of these values. Experiment results indicate that 

using a 0.75: 0.25 ratio for max and average pooling values is 

more successful. 

In the rank-based pooling method, the activations in the 

pooling region are grouped according to a predetermined 

ranking method. Later, the activation within each group is 

multiplied by a weight value to produce the output. This 

method allows for the dataset to be ranked based on the values 

of the activations. The relevant weight values can generally be 

trained and updated using the back-propagation algorithm [24-

26]. The rank-based pooling method is less commonly used 

than other pooling methods, but it can be useful in certain 

applications and is preferred in tasks where the activations 

need to be ranked according to their values. These methods are 

grouped into three categories based on their weight assignment 

techniques: RAP (Rank-Based Average Pooling), RWP 

(Rank-Based Weighted Pooling), and RSP (Rank-Based 

Stochastic Pooling). In the RAP approach, the top t (e.g., 4) 

activations in the pooling region are considered, while the rest 

are discarded. The average of these selected activations is then 

calculated for the relevant pooling region. RAP strikes a 

balance between max pooling and average pooling, and offers 

improved discrimination compared to these methods. The 

RWP approach recognizes the fact that not all regions in an 

image have equal importance. It calculates a weighted average 

by multiplying each activation in the pooling region with an 

appropriate coefficient. In RWP, weights are assigned 

rationally based on the magnitude of the activations. The 

activation with the highest magnitude receives the highest 

weight, and conversely, the lowest activation gets the smallest 

weight. The RSP method replaces conventional pooling 

operations with a stochastic process, where the probabilities of 

the activations are selected from a multinomial distribution. In 

RSP, the calculation of probabilities is based on the order of 

activations, not their values, unlike value-based stochastic 

pooling. The significant advantage of this approach is the high 

degree of randomness in activation selection. However, its 

drawback is that it has a large number of learnable parameters, 

leading to increased memory usage and decreased processing 

speed. 

In the transformed domain-based pooling method, a 

transformation is applied using domains such as time, space, 

frequency, and wavelet domain, to reduce the variability in 

feature maps. In these methods, the frequency domain is 

generally taken as a reference and high frequencies in the 

pooling region are captured [27-29]. When local pooling 

techniques are generally evaluated, the pooling region has low 

dimensions, such as 2×2 or 3×3, so the information loss is 

relatively low. It even allows the model to avoid overfitting 

and increases the model’s generalization ability. Pooling 

layers reduce the number of parameters and limit the model’s 

ability to memorize training data, which provides prevent 

overfitting. However, it is seen that state-of-the-art local 

pooling methods developed in this context only slightly 

increase model performance, e.g., <1. 

GP methods are used at the end of CNNs and produce a 

single value for each feature map [30]. These methods are used 

to minimize the spatial dimensions of the output of the CNN 

and simplify the final classification. In general, the flatten 

layer is used in the last layer of CNN models to convert values 

in the feature map into neurons, and these neurons are then 

connected to the output layer through FC layers. In the GP 
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method, the number of model parameters is greatly reduced as 

each feature map is converted to a single value, and therefore 

the computational cost is reduced. In the literature, the GMP 

and GAP [6] methods are widely used. In the GMP method, 

the highest activation value in the feature map in the final layer 

is produced as the output. However, as previously mentioned, 

this technique suffers from a lack of generalization ability. In 

the GAP method, the output is produced by taking the average 

of all activations in the feature map. This method can also 

suppress high activations and negatively affect the 

performance of the model. In addition, this problem deepens 

as the resolution of the feature map increases in GP techniques. 

In local pooling techniques, the resolution of the pooling 

region is small, e.g., 2×2 or 3×3, while in global pooling 

techniques the resolution of the pooling region is large, e.g., 

7×7, 14×14, or 28×28. Taking the highest or average value in 

this large area can significantly affect the performance of the 

model. 

 

 

3. MATERIAL AND METHODS 

 

In this section, existing GP methods, the proposed GAMP 

method, public datasets used in experimental studies, CNN 

models created for comparison of methods, and training details 

are discussed. In the scope of the study, GP methods are 

compared based on a classification problem. 

 

3.1 Global pooling methods 

 

In classification problems, the feature maps obtained after 

the last convolution layer of the CNN models are vectorized, 

fed with FC layers, and connected to the output layer with the 

softmax layer [7, 31]. The CNN architectures for classification 

can be divided into two parts. The first part consists of 

convolution layers and performs as a feature extractor. The 

second part takes the feature maps obtained in the final layer 

as input and classifies them using traditional methods. In this 

part, the tensor with any resolution in the final layer is flattened 

into a one-dimensional tensor using the flatten layer. For 

example, as shown in Figure 1, if the tensor has dimensions 

(batch size, 7, 7, n), it is flattened into (batch size, 7 ∗ 7 ∗ n). 

After the flatten layer, a structure similar to MLP consisting of 

FC layers is used. However, FC layers tend to overfit and can 

cause the network to lose its ability to generalize. Therefore, 

regularization techniques such as dropout [32] are used to 

overcome overfitting between these layers. In the GP methods, 

instead of connecting all the values in the feature map obtained 

from the final Conv layer to the FC layer, the relevant feature 

map is summarized and the resulting vector is directly 

connected to the softmax layer. For example, if the tensor has 

dimensions (batch size, 7, 7, n) as shown in Figure 1, the tensor 

becomes (batch size, 1 ∗ 1 ∗ n) after the GP layer. The 

advantages of using the GP methods over FC layers: (1) It 

reduces the number of model parameters significantly by 

summarizing the feature maps into a single value, (2) It forces 

mutual interaction between the feature maps and 

class/categories to make the convolution structure more 

specific, (3) It is more suitable for input spatial 

transformations because it summarizes spatial information, 

and (4) It naturally avoids overfitting because it does not 

contain additional parameters to be optimized. In the CNN 

models, two GP methods are commonly used: GAP and GMP. 

Depending on the dataset and model being used, the 

performance of these two methods can vary. In the GAP 

method, the average of all activations in the feature map of the 

last layer is calculated. The mathematical expression for GAP 

is given as [33]: 

 

𝑓𝑎𝑣𝑔(𝑋) =
1

𝑁 ∗ 𝑀
∑𝑖=1
𝑁  ∑𝑖=1

𝑀  𝑋𝑖𝑗  (1) 

 

In Eq. (1), N represents the width of the feature map, M 

represents the height, and Xij represents the corresponding 

activation value. In the GMP method, the highest activation in 

the feature “map of the last layer is selected. Activations that 

are not maximum are ignored in this method. The 

mathematical expression for GMP is given as [34]: 

 

𝑓max(𝑋) = max𝑖𝑗  (𝑋𝑖𝑗) (2) 

 

In the top-k max-pooling method, which is referred to as 

WEMP in this study and has been proposed in the field of 

natural language processing, each feature map has k outputs. 

These outputs are the highest activation values in the 

corresponding feature map. To the best of our knowledge, the 

WEMP method has not been applied to image classification 

problems in the past. In this study, the WEMP method has 

been adapted to a classification problem and its performance 

has been compared with other GP methods. Figure 1 shows the 

outputs of GAP, GMP, and WEMP obtained using 7×7 feature 

maps. It can be seen that the number of neurons is greatly 

reduced with GP methods. 

 

 
 

Figure 1. Calculating the Global Max Pooling (GMP), 

Global Average Pooling (GAP), Word Embedding top-k 

Max-pooling (WEMP), and proposed Global Average of top-

k Max-pooling (GAMP) methods for 7×7 resolution feature 

maps 

 

In the WEMP and proposed GAMP methods, k=3 is taken. 

 

3.2 Proposed method 

 

In this section, the proposed GAMP method is discussed, 
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taking into consideration the advantages and disadvantages of 

the commonly used GAP and GMP methods in CNN models. 

As previously mentioned, the GAP method produces an output 

by taking the average of all feature maps, but low activations 

can suppress high activations. The GMP method only takes the 

highest activation, which can weaken the model’s 

generalization ability. In the WEMP method, which was 

inspired by the scope of the study, the highest k activations are 

concatenated for each feature map; in other words, the feature 

map is not reduced to a single value and position information 

can be lost. In the proposed GAMP method, the average of the 

highest k activations for each feature map is taken to benefit 

from the advantages of the GAP and GMP methods and to 

produce a single value for each feature map. The average of 

the k highest activations in a feature map F can be represented 

mathematically as: 

𝐹0 = 𝐹 (3) 

𝐸1: = {𝑚 ∈ 𝑀0:𝑚 ≥ 𝛼∀𝑎 ∈ 𝐹0} (4) 

In Eq. (4), α represents each activation in feature map F0, 

and E1 represents the highest activation in feature map F0. 

Then, using Eq. (5), the highest activation value is excluded 

from the feature map. 

𝐹1: = 𝐹0 ∖ 𝐸1 (5) 

This process is repeated k times using Eqns. (6) and (7). At 

each step, the highest activation value is removed from the 

remaining values in feature map F0. 

𝐸i+1: = {𝑚 ∈ 𝐹𝑖: 𝑚 ≥ 𝛼∀𝑎 ∈ 𝐹𝑖} (6) 

𝐹i+1: = 𝐹i ∖ 𝐸i+1 (7) 

Finally, the average of the highest k activation is obtained 

using Eq. (8). 

𝑟 =
1

𝑘
∑𝑖=0
𝑖=𝑘  𝐸𝑖+1 (8) 

Eq. (8) represents the result obtained using the proposed 

method for the relevant activation map F0. These operations 

are applied independently for each feature map. Finally, a 

single activation value is obtained per feature map. Figure 1 

shows an example of the proposed method with k=3 for 7×7 

dimensional feature maps. 

3.3 Datasets 

The CIFAR-10 [30] dataset was created by the Canadian 

Institute for Advanced Research (CIFAR) and it is one of the 

most widely used image classification datasets. The dataset is 

designed to be challenging, with a small image size, a limited 

number of training samples, and a diverse set of classes. The 

CIFAR10 dataset consists of a total of 60000 images with 

32×32 resolution RGB images, which are labeled into 10 

classes. These classes are airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck. The dataset is divided into 

50000 training and 10000 test set. There are an equal number 

of samples for each class. In other words, there are 6000 

images per class. There is no overlap between classes. The 

CIFAR10 dataset is a widely recognized benchmark in 

computer vision and machine learning, particularly in the area 

of deep learning. It is frequently utilized in the research 

literature as a standard evaluation set for proposing new 

algorithms and methods. Figure 2 (on the left) shows randomly 

selected examples from the CIFAR10 dataset and the 

corresponding classes. The CIFAR100 dataset consists of 100 

classes with 600 images each and a total of 60000 images. The 

images in each class are divided into 500 training and 100 test. 

The image resolution is 32×32 like CIFAR10. The 100 classes 

in the dataset are also divided into 20 top classes. Therefore, a 

“fine” label that shows the class to which the image belongs 

and a “coarse” label that shows the top class to which it 

belongs are defined for each image. Figure 2 (on the right) 

shows randomly selected examples from the CIFAR100 

dataset and the corresponding classes. 

Figure 2. CIFAR10 (left) and CIFAR100 (right) random 

samples and their respective classes 

3.4 Models 

In this section, CNN models created for comparing GP 

methods are discussed. In this context, two different model 

architectures are established, Custom and VGG16-based [35]. 

The reason for conducting experimental studies on the two 

models is to observe the performance of the proposed method 

both in a model specifically established and in a model that 

provides state-of-the-art results on large datasets such as 

ImageNet [36]. 

First, a custom model was established to examine the 

performance of GP methods in a shallow model with randomly 

initialized weights. Table 1 gives other details about the model. 

The Custom model consists of convolution-batch 

normalization-ReLU layers with similar structures. 7×7 kernel 

sizes were used in the early layers since the number of kernels 

used was low, followed by 5×5 and then 3×3 kernel sizes in 

the later layers. Local max-pooling layers were used to reduce 

the resolution of the feature maps. 2×2 kernel sizes were used 

in these layers, and stride 2 was taken without overlapping. 

The 15×15 resolution feature maps at the output of the last 

layer were given as input to the GP layer. Finally, an FC layer 

was used to connect the neurons obtained per feature map to 

the classification layer. A softmax layer was used before the 

classification layer. Figure 3 shows the Custom model. 

The architecture is symbolized based on the CIFAR10 

dataset. The output layer consists of 100 neurons for the 

CIFAR100 dataset. The model was trained from scratch; no 

fine-tuning was applied. 

Second, a VGG16-based model was used. The VGG16 

model achieved the highest score in the ILSVRC-2014 

competition with a test accuracy of 92.7% in the top-5 

category on the ImageNet dataset in 2014. The VGG16 model 
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has an architecture consisting of convolution blocks with 3x3 

filters and 2×2 local max-pooling layers, using a consistent use 

of convolution and max-pooling layers throughout the 

architecture. The classification block includes 3 FC layers 

ending with a softmax layer. The main disadvantage of 

VGG16 is its high model capacity, with approximately 138 

million parameters, making it slow to train, requiring a large 

amount of disk space and bandwidth, and making it inefficient. 

In this study, two modifications were performed to the VGG16 

architecture. Firstly, the 3 FC layers in the classification layers 

were replaced with the GP layer. Secondly, an FC layer was 

used to create connections between the neurons obtained for 

each feature map and the classification layer. 

In this context, if the number of filters was used in the fifth 

block equal to the number of classes, an additional FC layer 

would not be necessary. However, this approach was taken to 

preserve the basic architecture of the convolution layers in 

VGG16 and to use the pre-trained weights. Figure 4 shows the 

model created based on VGG16. 

The first 5 blocks of the VGG16 model are used without 

modification. Pre-trained weights trained on the ImageNet 

dataset are used in these layers for all experimental settings. 

The 3 FC layers in the final layers of the VGG16 model are 

replaced with a GP layer. In the final layer, an FC layer is used 

to connect the neuron outputs obtained from the GP layer with 

the class layer. All weights are set to be trainable during the 

training phase. 

Figure 3. Custom model 

Figure 4. The architecture created is based on VGG16 

Table 1. Custom model details. In the table, F represents the number of channel/feature map, W represents the width of the 

feature map, and H represents the height of the feature map 

Input size (F, W, H) Layer Number of kernels Kernel size Stride Padding 

3×64×64 Conv2d + BatchNorm2d + ReLU 16 7x7 1 2 

16×62×62 Conv2d + BatchNorm2d + ReLU 32 7x7 1 2 

32×60×60 MaxPool2d - 2x2 2 - 

32×30×30 Conv2d + BatchNorm2d + ReLU 64 5x5 1 2 

64×30×30 Conv2d + BatchNorm2d + ReLU 128 5x5 1 2 

128×30×30 MaxPool2d - 2x2 2 - 

128×15×15 Conv2d + BatchNorm2d + ReLU 256 3x3 1 1 

256×15×15 Conv2d + BatchNorm2d + ReLU 256 3x3 1 1 

256×15×15 Global Pooling - 15x15 - - 

256 Fully connected - - - - 
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3.5 Training details 

In this section, the training details of the models are given. 

Both the CIFAR10 and CIFAR100 datasets were trained for 

50 epochs using the Custom model, as it has a low training 

time and is relatively shallow. The same experimental settings 

were used when comparing the methods; the same weight 

values and hyper-parameters were used for the model. The 

Adam [37] algorithm was used as the optimizer, with a batch 

size of 16 and a learning rate of 1−e3. Cross-Entropy Loss was 

used as the loss function. No preprocessing, e.g., data 

augmentation, or hyper-parameter optimization, e.g., learning 

rate decay, was performed that would cause randomness in the 

model. The model with the highest validation accuracy value 

during training was saved and the test score was examined. 

The VGG16-based model was trained for 20 epochs, as it is 

heavy, or in other words, has a long training time. The images 

in the custom model have been resized to a resolution of 64×64 

due to the small size of the model, while in the VGG16 model, 

the images have been resized to a resolution of 224×224. The 

same training details were used for this model as for the 

Custom model. During the training phase of the VGG16-based 

model, the pre-trained values of the model trained on the 

ImageNet dataset were used. This model aims to compare the 

methods based on the feature maps with different resolutions 

given as input to the GP layer. For this purpose, in the VGG16-

based model, 7x7 feature maps are formed at the output of the 

5th block. To test at different resolutions, the entire 5th block 

was removed and the output of the 4th block was directly given 

to the GP layer. In this setting, the input to the GP layer was 

of 14x14 resolution. 

4. EXPERIMENT AND RESULTS

In this section, the proposed GAMP method is 

experimentally compared with the commonly used GAP, 

GMP, and WEMP methods under different models, i.e., 

Custom and VGG16-based, and datasets, i.e., CIFAR10 and 

CIFAR100. First, the performance of the methods was 

examined using the Custom model (Figure 4) and the 

CIFAR10 dataset. In this architecture, the input to the GP layer 

is BxCxWxH, i.e., 16x512x15x15, where B represents the 

batch size, C represents the channel size, W represents the 

width of the feature map, and H represents the height of the 

feature map. The results obtained with this experimental 

setting are shown in the second column of Table 2. When 

GMP was used as the GP method in the Custom architecture, 

a test accuracy of 80.64% was obtained, and when GAP was 

used, a test accuracy of 82.49% was obtained. A comparison 

of the two methods showed that the GAP method achieved a 

test accuracy that was 1.85% higher on the CIFAR10 dataset. 

An analysis of the proposed GAMP method’s performance for 

various top-k values yielded test accuracies ranging from 

81.98% to 83.78%. In the experimental studies carried out 

using the Custom architecture and the CIFAR10 dataset, the 

highest test accuracy of 83.78% was obtained when top-k=5 

was taken with the proposed GAMP method. The proposed 

GAMP (top-k=5) method had 3.14% higher test accuracy 

when compared with GMP and 1.29% higher test accuracy 

when compared with GAP. The proposed method was inspired 

by the WEMP method, which is a well-known method in the 

field of word embedding. As previously mentioned, this 

method keeps all the highest activations and associates them 

with an FC layer for the next layer; in other words, the average 

of these activations is not taken. When the WEMP method was 

adapted to the CNN architecture and its performance was 

examined, a test accuracy of 81.19% was obtained. In this 

method, for a fair comparison, the test accuracy of proposed 

GAMP method at the top-k=5, where it achieved the highest 

performance, was examined. The WEMP method 

outperformed the GMP method by 0.55%, but it was behind 

the GAP method by 1.3%. When all the models were 

compared for this setting, the proposed GAMP method 

increased the test accuracy by 1.29% compared to the closest 

method, i.e., GAP. It is noteworthy in Table 2 that the accuracy 

values may vary based on the top-k value. Hence, to achieve 

the highest performance results, it is necessary to perform 

experiments with different top-k values. For example, an 

accuracy of 81.98% was obtained when top-k was set to 2. The 

accuracy improved to 83.78% when top-k was changed to 5 

but decreased to 82.88% when top-k was set to 8. 

Second, experimental studies were carried out using the 

Custom model and the CIFAR100 dataset to examine the 

performance of the methods on a different dataset. The results 

obtained with this experimental setting are shown in the third 

column of Table 2. It can be seen that the methods exhibit 

similar behavior to the previous setting. The GAP method 

yielded a test accuracy that was 1.04% higher than the GMP 

method when using the CIFAR100 dataset. When the 

performance of the proposed GAMP method was examined 

for different top-k values, test accuracies ranging from 46.12% 

to 49.01% were obtained. The proposed GAMP method 

achieved the highest test accuracy of 49.01% with top-k=9 in 

this experimental setting. The proposed GAMP (top-k=9) 

method provided a test accuracy that was 2.76% higher than 

the GMP method, 1.72% higher than the GAP method, and 

2.54% higher than the WEMP method. In the WEMP method, 

top-k=9 was taken for a fair comparison with the proposed 

method. One point to be noted is that the success of the 

proposed GAMP method varies depending on different top-k 

values. For example, in the experiments on the CIFAR100 

dataset, it was found that the proposed method was less 

successful than the other three methods when using top-k=4. 

In addition, it has been observed that the proposed method has 

achieved the highest performance on different datasets at 

different top-k values. Figure 5 depicts the training and 

validation accuracy graphs of the models that achieved the 

highest accuracy rates for the CIFAR10 and CIFAR100 

datasets, respectively, for 50 epochs. It is clear that the 

accuracy rates are lower in the CIFAR100 dataset as the 

number of classes is higher. 

Figure 6 shows the training, validation, and test accuracies 

of the proposed GAMP method on the CIFAR100 dataset for 

various top-k values. A notable increase in the training 

accuracy rate is observed when top-k=9, and the highest test 

accuracy is achieved in this setting. 

In the following section of the study, the GP methods are 

compared using the popular CNN model, i.e., VGG16. Table 

3 shows the results obtained using the CIFAR10 dataset. In 

this setting, an evaluation is also provided based on the 

resolutions of the feature maps given as input to the GP layer. 

In this context, first, the methods are compared using all the 

blocks of the VGG16 model (Figure 4), in which the 

resolutions of the feature maps are 7×7. The results for this 

setting are given in the second column of Table 3. The highest 

test accuracy rate of 76.26% was obtained by the proposed 

GAMP method with top-k=8. The success rates of the GMP, 
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GAP and WEMP methods are 74.04%, 75.12%, and 74.26%, 

respectively. The proposed GAMP method provided a test 

accuracy increase of 1.14% compared to the best-performing 

GAP method. The highest score for the proposed method on 

the CIFAR10 dataset was obtained with top-k=5 using the 

Custom model and with top-k=8 using the VGG16-based 

model, indicating that the best scores can be obtained at 

different top-k values depending on the model. Therefore, to 

obtain the best scores using the proposed method on any 

dataset or model, it is necessary to examine the model 

performance for several top-k values. In the experimental 

studies, a model that provided the best scores for top-k<10 was 

obtained. 

Table 2. Train, validation, and test accuracy for the Global Max Pooling (GMP), Global Average Pooling (GAP), Word 

Embedding top-k Max Pooling (WEMP), and proposed Global Average of top-k Max Pooling (GAMP) methods on the CIFAR10 

and CIFAR100 datasets using the Custom model. In this model, the resolution of the feature maps given as input to the GP layer 

is 15×15 

Models CIFAR10 CIFAR100 

Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc 

GMP 98.95 82.14 80.64 70.72 44.42 46.25 

GAP 99.66 82.88 82.49 69.10 47.42 47.29 

WEMP 99.47 81.40 81.19 72.22 44.60 46.47 

GAMP (top-k=2) 99.41 83.24 81.98 78.37 45.28 47.0 

GAMP (top-k=3) 99.53 83.02 82.03 70.40 45.72 46.78 

GAMP (top-k=4) 99.57 83.70 82.34 73.75 46.72 46.12 

GAMP (top-k=5) 99.65 84.02 83.78 70.13 47.04 48.10 

GAMP (top-k=6) 99.24 84.40 83.34 78.58 47.38 47.94 

GAMP (top-k=7) 99.67 83.68 82.88 73.08 46.32 48.56 

GAMP (top-k=8) 99.58 83.64 82.44 78.26 48.28 48.31 

GAMP (top-k=9) 99.35 83.84 82.68 96.17 48.26 49.01 

GAMP (top-k=10) 99.49 83.96 83.51 97.04 47.10 47.97 

Figure 5. Training (blue) and validation (red) accuracy graphs of the models that performed best on the CIFAR10 (left) and 

CIFAR100 (right) datasets using the Custom model 

Table 3. Train, validation, and test accuracy for Global Max Pooling (GMP), Global Average Pooling (GAP), Word Embedding 

top-k Max Pooling (WEMP), and the proposed Global Average of top-k Max Pooling (GAMP) methods using the VGG16-based 

model and the CIFAR10 dataset for feature maps of different resolutions. The resolution of the feature maps in the VGG16-based 

model is 7×7 (2nd column), and the resolution of the feature maps in the model that resulted from removing the 5th block in the 

VGG16 model is 14×14 (3rd column) 

Models 

Dataset: CIFAR10 

Model: VGG16-based 

Feature map size: 7×7 

Dataset: CIFAR10 

Model: VGG16-based without 5th block 

Feature map size: 14×14 

Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc 

GMP 86.13 74.96 74.04 92.50 71.72 69.90 

GAP 88.86 77.14 75.12 94.03 76.14 74.31 

WEMP 87.52 75.32 74.26 93.14 73.46 72.15 

GAMP (top-k=2) 87.18 74.26 73.04 92.43 76.36 73.40 

GAMP (top-k=3) 90.11 76.76 75.79 92.59 74.70 74.22 

GAMP (top-k=4) 84.75 74.92 74.08 92.86 76.57 72.16 

GAMP (top-k=5) 90.41 75.52 75.27 91.79 73.22 71.82 

GAMP (top-k=6) 88.59 75.58 74.37 90.18 74.24 72.73 

GAMP (top-k=7) 89.58 75.56 75.30 92.18 74.62 72.56 

GAMP (top-k=8) 90.04 75.80 76.26 93.45 75.28 71.94 

GAMP (top-k=9) 91.76 74.68 73.52 91.39 76.16 75.25 

GAMP (top-k=10) 92.42 75.26 73.65 93.72 74.30 74.04 
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Figure 6. Train, validation, and test accuracy performances 

for different top-k values using the Custom architecture and 

the CIFAR100 dataset 

Figure 7. Performance of train, validation, and test accuracy 

for different top-k values using a VGG16-based architecture 

and the CIFAR100 dataset 

Secondly, the performance of the models was evaluated 

while keeping the dataset the same (CI- FAR10) and 

increasing the resolution of the feature maps. In this context, 

the 5th block of the VGG16 model was removed, resulting in 

a change in the resolution of the feature maps given to the GP 

layers from 7×7 to 14×14. Table 3 (3rd column) shows the 

results obtained for this setting. The highest test accuracy rate 

of 75.25% was obtained by taking top-k=9 with the proposed 

GAMP method. The success of the GMP, GAP and WEMP 

methods is 69.90%, 74.31%, and 72.15%, respectively. In this 

setting, it is noteworthy that when the resolution of the feature 

maps is increased, representing the feature map with a single 

maximum value while ignoring the other values in the feature 

map significantly affects the performance of the model. In this 

context, the GAP method, which considers all values in the 

feature map, provides a 4.41% increase compared to the GMP 

method. However, the GAP method takes the average of all 

values in the feature map. This can cause low activation values 

to suppress high activation values, which can negatively affect 

the test performance of the model. The proposed GAMP 

method preserves the generalization ability of the model better 

by taking the average of the k-highest activations and increases 

the test accuracy value. Upon examination of Table 3, it has 

been observed that as the resolution of the feature vector input 

to the global pooling layer increases, the gap between the 

success of the global pooling methods increases. For example, 

when the performance of the GAP and GMP methods is 

examined for 7×7 resolution feature maps, the difference in 

performance is 1.08%, while for 14×14 resolution feature 

maps, the difference in performance between these methods is 

4.41%. Experimental studies have similarly shown that the 

proposed GAMP method exhibits increased superiority over 

other models as the resolution increases. This indicates that 

feature maps are better represented with the proposed GAMP 

method. 

Figure 7 shows the training, validation, and test accuracies 

of the model for different top-k values using a VGG16-based 

model and the CIFAR10 dataset. As can be seen, the 

performance of the proposed model varies according to the 

top-k value, as in the Custom model. For example, the 

performance of the proposed model for top-k=2 is behind the 

GMP, GAP, and WEMP methods. 

5. CONCLUSIONS

In this study, a new GP method was proposed taking into 

account the advantages and disadvantages of the GMP and 

GAP methods, which are frequently used in deep neural 

networks. The proposed GAMP method enhances the model’s 

ability to generalize by maintaining high activation, resulting 

in improved classification performance on the test dataset. The 

proposed method was compared to other techniques in the 

same field using both a Custom model and a widely used CNN 

model (VGG16-based). The superiority of the proposed 

method was verified through experimental results. In this 

context, firstly, a comparison was made using the Custom 

model and the CIFAR10 dataset, and it was observed that the 

proposed GAMP (top-k=5) method has a test accuracy that is 

3.14% higher than GMP and 1.29% higher than GAP. 

Secondly, in experimental studies using the same model 

architecture and CIFAR100 dataset, the proposed method 

(top-k=9) outperformed the closest-performing method, i.e., 

GAP, by 1.72%. Thirdly, the performance of the methods was 

evaluated when inputs of the different resolutions were given 

to the GP layer. In this direction, a VGG-based model 

architecture and the CIFAR10 dataset were utilized, and input 

to the GP layer was provided with feature vectors of resolution 

7×7 and 14×14. Upon examination of the success of the 

methods, it was observed that the proposed method provides 

higher performance for both resolutions, and as the resolution 

increases, the difference in success between the methods 

increases. Then, the proposed method was compared with a 

similar approach referred to as WEMP for word embedding 

studies. In the WEMP approach, all of the highest k activations 

are kept and concatenated, while in our proposed method, the 

average of the highest k activations is taken. In order to make 

a comparison, the WEMP method was first adapted to the 

classification problem. Compared to WEMP, the proposed 

method provided a 2.59% increase for CIFAR10 and a 2.54% 

increase for CIFAR100. The success of the proposed method 

varies according to the selected k parameter. Intensive 

experiments showed that the best k value varies according to 

the model and dataset used. Therefore, the training of the 

model needs to be repeated for several k values. In general, it 

was observed that a model that outperforms the performance 

of other methods can be obtained when training is carried out 

for the k values in the range of [1-10]. In the continuation of 

the study, further experimental studies are planned to be 

carried out to make recommendations on the k parameter 

depending on the resolution of the feature map. The proposed 

method can be used to represent the values in a specific area 

with a single value in practice. In this study, the proposed 

method was used to reduce the dimension of the feature vector 
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in CNNs and successful results were obtained. In the 

continuation of the study, the performance evaluation of 

resizing the images before giving them as input to CNNs is 

also planned. 
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