
A New Global Pooling Method for Deep Neural Networks: Global Average of Top-K Max-

Pooling

Yahya Dogan

Department of Computer Engineering, Siirt University, Siirt 56100, Turkey

Corresponding Author Email: yahyadogan@siirt.edu.tr

(This article is part of the Special Issue Advances of Machine Learning and Deep Learning)

https://doi.org/10.18280/ts.400216 ABSTRACT

Received: 24 December 2022

Accepted: 7 March 2023

Global Pooling (GP) is one of the important layers in deep neural networks. GP significantly

reduces the number of model parameters by summarizing the feature maps and enables a

reduction in the computational cost of training. The most commonly used GP methods are

global max pooling (GMP) and global average pooling (GAP). The GMP method produces

successful results in experimental studies but has a tendency to overfit training data and may

not generalize well to test data. On the other hand, the GAP method takes into account all

activations in the pooling region, which reduces the effect of high activation areas and causes

a decrease in model performance. In this study, a GP method called global average of top-k

max pooling (GAMP) is proposed, which returns the average of the highest k activations in

the feature map and allows for mixing the two methods mentioned. The proposed method is

compared quantitatively with other GP methods using different models, i.e., Custom and

VGG16-based and different datasets, i.e., CIFAR10 and CIFAR100. The experimental

results show that the proposed GAMP method provides better image classification accuracy

than the other GP methods. When the Custom model is used, the proposed GAMP method

provides a classification accuracy of 1.29% higher on the CIFAR10 dataset and 1.72%

higher on the CIFAR100 dataset compared to the method with the closest performance.

Keywords:

global pooling, convolutional neural

network, deep learning, image

classification, transfer learning

1. INTRODUCTION

Deep neural networks (DNNs) are a type of artificial neural

network consisting of multiple layers and interconnected

artificial neurons. DNNs are inspired by the structure and

function of the human brain; it learns from examples to

recognize patterns and relationships in data. The importance

of DNNs stems from their ability to learn complex

representations of data and make accurate predictions. Some

of the key benefits of DNNs are: (1) Improved accuracy;

DNNs have achieved state-of-the-art results in various tasks,

outperforming traditional machine learning methods in many

problems, (2) Hierarchical learning; DNNs can learn

hierarchical representations of data that capture more and

more complex features as the data forwards from the input

layer to the deeper layers of the network, (3) Automated

feature extraction; DNNs can automatically learn useful

features from raw data without the need for manual feature

selection, (4) Handling of large-scale and complex data; DNNs

can handle large-scale and complex data, making them

suitable for tasks, e.g. image and speech recognition [1, 2],

natural language processing [3], and machine translation [4],

etc., and (5) Transfer learning: DNNs can be used as a pre-

trained model for other tasks, reducing the amount of data and

computational resources required to train a model from scratch.

The depth and capacity of DNNs increase depending on the

size and complexity of the problem to be solved.

Convolutional neural networks (CNNs) are a special type of

DNN that have recently provided state-of-the-art results in

many problems in computer vision [4, 5]. A standard CNN

consists of convolution, activation function, local pooling,

flatten, and fully connected (FC) layers at the top. The

convolution layers are used to detect features in the image.

These layers contain various kernels that combine each pixel

in the image with the pixels around it to detect features in the

image. Initially, these kernels, which are randomly generated,

are slid over the input image or the feature maps from the

previous layer to create new feature maps for the next layer.

This process determines the regions in the image where the

features are located and allows to use of these features in later

layers. The activation function determines the effect of weight

values that regulate the operation of artificial neurons. It is

commonly referred to as a squashing function and determines

whether a neuron is activated or not. Activation functions are

generally non-linear, which gives the model the ability to be

non-linear. The local pooling layer reduces the size of the input

images or feature maps, which reduces the calculations

required during training and increases the training speed. It

also makes the model more robust to small changes, e.g.,

minor shifts in the image, which enables the model to have

better generalization ability on images. However, the local

pooling operation causes information loss, as it attempts to

represent the pixels within a defined kernel with a single value.

Therefore, small kernel sizes, e.g., 2×2 or 3×3, are often used

to keep the information loss low. The flatten layer converts the

input tensor into a one- dimensional vector by flattening it.

This layer is usually used as a preprocessing step before the

data is passed to an FC layer. The main purpose of the flatten

Traitement du Signal
Vol. 40, No. 2, April, 2023, pp. 577-587

Journal homepage: http://iieta.org/journals/ts

577

https://orcid.org/0000-0003-1529-6118
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.400216&domain=pdf

layer is to transform a multi-dimensional input tensor into a

one-dimensional vector. This is important because FC layers

expect a one-dimensional input; therefore, the input must be

reshaped in order to be passed to the FC layer. For example,

an input tensor with shape (batch size, height, width, channels)

is transformed into a one-dimensional tensor with shape (batch

size, height * width * channels) using a flatten layer. An FC

layer, also known as a dense layer, is a type of layer that

connects input data to output data. This consists of a set of

weights and biases applied to the input data and produces the

output tensor. The main purpose of this layer is to learn high-

level features from the input data. It does this by applying

weights and biases that transform the input data into a

meaningful and informative new representation. Since this

layer connects all the neurons in the input layer and the output

layer, the number of model parameters increases significantly

depending on the number of neurons in the input layer.

The feature maps in the last layer of the model are flattened

with the flatten layer, and each neuron is connected to the

output layer with its FC layer. The number of model

parameters increases significantly depending on the resolution

of the feature maps in the last layer of the model. Recently, Lin

et al. [6] proposed to directly output the confidence of the

feature maps using the GP methods rather than connecting the

feature maps from the last convolutional layer to the output

layer with FC layers. This provides a more meaningful and

interpretable method that challenges the fit between feature

maps and categories/classes instead of the black-box FCs in

CNNs. In addition, FC layers tend to be prone to overfitting;

therefore, regularization techniques, e.g., dropout [7], are often

used between FC layers. On the other hand, GP naturally has

a regularizer that prevents overfitting. Recently, the state-of-

the-art models proposed for computer vision problems have

been observed to use GMP or GAP layers in the last layer.

Global pooling methods convert the feature map obtained

from the last layer of the model into a single scalar value

regardless of resolution. This reduces the complexity and

computational requirements of the model by minimizing the

spatial dimensions of the feature maps. GMP outputs the

highest activation in the pooling region, while GAP outputs

the average of all activation values in the pooling region.

Experimental studies conducted by researchers have reported

that the max-pooling layer provides excellent empirical results

[7, 8], but is overfitting to training data and does not guarantee

generalization on test data. Average pooling, on the other hand,

considers all elements in the pooling region, which indicates

that low activation areas reduce the effect of high activation

areas [9-11]. In this study, a method called Global Average of

top-k Max-pooling (GAMP) is proposed, inspired by the top-

k max-pooling method proposed in the field of word

embedding [12]. Word embedding is a technique used in

natural language processing to represent words as numerical

vectors in high dimensions. These vectors capture the context

and meaning of the words in the text and are used in machine-

learning models. In the top-k max pooling technique proposed

in the field of natural language processing, the highest-valued

words in the pooling region are selected and the other elements

are set to zero. It is reported that this provides to preserve the

most important information in the pooling region and improve

the performance of the model [12]. In the proposed GAMP

method, the average of the k neurons with the highest

activation is produced as the output. In other words, instead

of producing k outputs for each feature map, a single value is

produced. The motivation behind the proposed GAMP method

is to increase the performance of DNNs by finding a

compromise between GP methods, i.e., GAP and GMP, and

reducing the limitations present in these methods.

The main contributions of this study can be summarized as

follows:

• A new GP method is proposed by considering the

disadvantages of current methods. The proposed method

increases the generalization ability of the model by preserving

high activation. This provides an improvement in

classification performance on the test dataset.

• The proposed method was compared to other methods in

the same category using both a Custom model and a popular

CNN model, i.e., VGG16-based, and the success of the

proposed method was demonstrated experimentally.

• A similar approach proposed for word embedding studies

was adapted to the classification problem and compared. In

this study, it was shown that the proposed GAMP method

provides better results.

• Experimental studies were conducted and

recommendations have been made for different models, i.e.,

Custom and VGG16-based, different datasets, e.g., CIFAR10

and CIFAR100, and different k values ranging from 0 to 10

for the reference of researchers.

The rest of the article is organized as follows. A brief

summary of related previous studies is given in Section 2. The

proposed method and materials used are discussed in detail in

Section 3. Method comparison results are given in Section 4.

The article ends with future directions.

2. RELATED WORKS

The pooling layer enables down sampling on the feature

maps obtained from the previous layer, reducing the input size

of the feature maps significantly and producing meaningful

compact outputs. There are two main advantages of using a

pooling layer in deep models: (1) It significantly reduces

computation cost by reducing the spatial resolution of the

feature maps, and (2) It extracts only useful information from

the feature maps, i.e., it discards unnecessary details and

performs global feature selection for the pooling area,

controlling overfitting and increasing test performance.

Selecting an ideal pooling layer can increase the success of

deep CNN models in tasks, e.g., classification, perception, and

segmentation. In CNN models, two types of pooling layers are

used: local and global. Local pooling is placed between

convolution layers and reduces the resolution of feature maps.

In this method, a predetermined kernel (generally of low

dimensions such as 2×2, 3×3, etc.) is slid over the feature maps

and a feature selection is made for the relevant pooling region.

There are many approaches suggested in this context since

the local pooling technique has been used since the first CNNs

were proposed. These studies can be classified into four

categories: value, probability, rank, and transformed. In the

value-based pooling method, an activation is selected based on

predetermined criteria, e.g., the highest or most important,

from among the activations in the relevant pooling region.

There are many approaches suggested based on activation

selection: Max-Pooling [13], Average pooling [5], Mixed

pooling [14], Detail preserving pooling [15], LEAP pooling

[16], Spatial pyramid pooling [17], Kernel pooling [18], and

Dynamic correlation pooling [19]. The max-pooling [13]

selects the largest activation from the pooling region and

eliminates non-maximum values, resulting in reduced

578

computation in higher layers. The average pooling [5] method

calculates the average of all activations within a pooling region.

Mixed pooling [14] uses a tunable parameter to select either

max or average pooling during the training of CNNs,

effectively mitigating over-fitting in deep CNNs. The detail

preserving Pooling [15], inspired by the human visual

system’s focus on local spatial details, enhances spatial

changes and provides an adaptive pooling approach that

preserves significant structural details through the utilization

of an inverse bilateral filter. In the related method, a learnable

parameter is used that regulates the reduction of the feature

map. The LEAP pooling [16] uses a shared linear filter on each

map to process each input feature channel individually and

combines the features within the pooling region. This helps to

minimize both the number of parameters and the training error.

The spatial pyramid pooling [17] generates a fixed-length

output that remains consistent regardless of the input size. This

eliminates the need for cropping the input image to reach the

desired size and reduces the loss of information resulting from

cropping, thereby improving the model’s performance. The

kernel pooling [19] enables the capturing of high-level and

non-linear attribute interactions through compact attribute

matching. The proposed method is fully differentiable, making

it possible to learn the composition of the kernel in conjunction

with CNNs through backpropagation using the data. Dynamic

correlation pooling [18] provides a method based on the

Mahalanobis distance between adjacent pixels in an image. In

this method, one of max, average, or mixed pooling is

dynamically selected based on the correlation between the

Mahalanobis distance and a specified threshold distance.

In probability-based pooling methods, a trade-off is often

made between max pooling and average pooling, which are

commonly used in CNNs. This approach combines the two

methods and provides a hybrid approach, which allows for a

more balanced representation of the pooling area while still

preserving the most important information. To benefit from

the advantages of both methods and avoid the disadvantages,

various methods have been proposed, e.g., Lp pooling [20],

Stochastic pooling [9], Max pooling dropout [21], Sparsity-

based stochastic pooling [22], and Hybrid pooling method [23],

based on the mixing mechanism used. In Lp pooling [20], the

type of pooling is determined by the probability value P. When

P=1, it represents a straightforward Gaussian mean, and when

P=∞, it represents max-pooling. The objective of this related

method is to give more significance to strong features and

suppress weak ones. Stochastic pooling [9] is a method that

replaces deterministic pooling with a stochastic procedure.

The activations in the pooling region are normalized to

determine probabilities, and then a random activation is

selected according to a multinomial distribution, allowing for

non-maximum activations in feature maps. Unlike max and

average pooling, the stochastic pooling method is not

negatively impacted by regularization techniques like dropout

and can be combined with other forms of regularization. The

max pooling dropout [21] investigated the effect of the dropout

technique on pooling layers in CNN architectures. It has been

stated experimentally that the related method performs better

than the maximum and scaled maximum probability. The

sparsity-based stochastic pooling [22] utilizes the sparsity of

activations and a control function to obtain a feature

representation that balances the pros and cons of max and

average pooling. Additionally, the method incorporates

weighted random sampling to retain the benefits of stochastic

pooling. Hybrid pooling [23] combines max and average

pooling methods. It calculates both max and average pooling

values for the same region and applies a determined

probability of these values. Experiment results indicate that

using a 0.75: 0.25 ratio for max and average pooling values is

more successful.

In the rank-based pooling method, the activations in the

pooling region are grouped according to a predetermined

ranking method. Later, the activation within each group is

multiplied by a weight value to produce the output. This

method allows for the dataset to be ranked based on the values

of the activations. The relevant weight values can generally be

trained and updated using the back-propagation algorithm [24-

26]. The rank-based pooling method is less commonly used

than other pooling methods, but it can be useful in certain

applications and is preferred in tasks where the activations

need to be ranked according to their values. These methods are

grouped into three categories based on their weight assignment

techniques: RAP (Rank-Based Average Pooling), RWP

(Rank-Based Weighted Pooling), and RSP (Rank-Based

Stochastic Pooling). In the RAP approach, the top t (e.g., 4)

activations in the pooling region are considered, while the rest

are discarded. The average of these selected activations is then

calculated for the relevant pooling region. RAP strikes a

balance between max pooling and average pooling, and offers

improved discrimination compared to these methods. The

RWP approach recognizes the fact that not all regions in an

image have equal importance. It calculates a weighted average

by multiplying each activation in the pooling region with an

appropriate coefficient. In RWP, weights are assigned

rationally based on the magnitude of the activations. The

activation with the highest magnitude receives the highest

weight, and conversely, the lowest activation gets the smallest

weight. The RSP method replaces conventional pooling

operations with a stochastic process, where the probabilities of

the activations are selected from a multinomial distribution. In

RSP, the calculation of probabilities is based on the order of

activations, not their values, unlike value-based stochastic

pooling. The significant advantage of this approach is the high

degree of randomness in activation selection. However, its

drawback is that it has a large number of learnable parameters,

leading to increased memory usage and decreased processing

speed.

In the transformed domain-based pooling method, a

transformation is applied using domains such as time, space,

frequency, and wavelet domain, to reduce the variability in

feature maps. In these methods, the frequency domain is

generally taken as a reference and high frequencies in the

pooling region are captured [27-29]. When local pooling

techniques are generally evaluated, the pooling region has low

dimensions, such as 2×2 or 3×3, so the information loss is

relatively low. It even allows the model to avoid overfitting

and increases the model’s generalization ability. Pooling

layers reduce the number of parameters and limit the model’s

ability to memorize training data, which provides prevent

overfitting. However, it is seen that state-of-the-art local

pooling methods developed in this context only slightly

increase model performance, e.g., <1.

GP methods are used at the end of CNNs and produce a

single value for each feature map [30]. These methods are used

to minimize the spatial dimensions of the output of the CNN

and simplify the final classification. In general, the flatten

layer is used in the last layer of CNN models to convert values

in the feature map into neurons, and these neurons are then

connected to the output layer through FC layers. In the GP

579

method, the number of model parameters is greatly reduced as

each feature map is converted to a single value, and therefore

the computational cost is reduced. In the literature, the GMP

and GAP [6] methods are widely used. In the GMP method,

the highest activation value in the feature map in the final layer

is produced as the output. However, as previously mentioned,

this technique suffers from a lack of generalization ability. In

the GAP method, the output is produced by taking the average

of all activations in the feature map. This method can also

suppress high activations and negatively affect the

performance of the model. In addition, this problem deepens

as the resolution of the feature map increases in GP techniques.

In local pooling techniques, the resolution of the pooling

region is small, e.g., 2×2 or 3×3, while in global pooling

techniques the resolution of the pooling region is large, e.g.,

7×7, 14×14, or 28×28. Taking the highest or average value in

this large area can significantly affect the performance of the

model.

3. MATERIAL AND METHODS

In this section, existing GP methods, the proposed GAMP

method, public datasets used in experimental studies, CNN

models created for comparison of methods, and training details

are discussed. In the scope of the study, GP methods are

compared based on a classification problem.

3.1 Global pooling methods

In classification problems, the feature maps obtained after

the last convolution layer of the CNN models are vectorized,

fed with FC layers, and connected to the output layer with the

softmax layer [7, 31]. The CNN architectures for classification

can be divided into two parts. The first part consists of

convolution layers and performs as a feature extractor. The

second part takes the feature maps obtained in the final layer

as input and classifies them using traditional methods. In this

part, the tensor with any resolution in the final layer is flattened

into a one-dimensional tensor using the flatten layer. For

example, as shown in Figure 1, if the tensor has dimensions

(batch size, 7, 7, n), it is flattened into (batch size, 7 ∗ 7 ∗ n).

After the flatten layer, a structure similar to MLP consisting of

FC layers is used. However, FC layers tend to overfit and can

cause the network to lose its ability to generalize. Therefore,

regularization techniques such as dropout [32] are used to

overcome overfitting between these layers. In the GP methods,

instead of connecting all the values in the feature map obtained

from the final Conv layer to the FC layer, the relevant feature

map is summarized and the resulting vector is directly

connected to the softmax layer. For example, if the tensor has

dimensions (batch size, 7, 7, n) as shown in Figure 1, the tensor

becomes (batch size, 1 ∗ 1 ∗ n) after the GP layer. The

advantages of using the GP methods over FC layers: (1) It

reduces the number of model parameters significantly by

summarizing the feature maps into a single value, (2) It forces

mutual interaction between the feature maps and

class/categories to make the convolution structure more

specific, (3) It is more suitable for input spatial

transformations because it summarizes spatial information,

and (4) It naturally avoids overfitting because it does not

contain additional parameters to be optimized. In the CNN

models, two GP methods are commonly used: GAP and GMP.

Depending on the dataset and model being used, the

performance of these two methods can vary. In the GAP

method, the average of all activations in the feature map of the

last layer is calculated. The mathematical expression for GAP

is given as [33]:

𝑓𝑎𝑣𝑔(𝑋) =
1

𝑁 ∗ 𝑀
∑𝑖=1
𝑁  ∑𝑖=1

𝑀  𝑋𝑖𝑗 (1)

In Eq. (1), N represents the width of the feature map, M

represents the height, and Xij represents the corresponding

activation value. In the GMP method, the highest activation in

the feature “map of the last layer is selected. Activations that

are not maximum are ignored in this method. The

mathematical expression for GMP is given as [34]:

𝑓max(𝑋) = max𝑖𝑗  (𝑋𝑖𝑗) (2)

In the top-k max-pooling method, which is referred to as

WEMP in this study and has been proposed in the field of

natural language processing, each feature map has k outputs.

These outputs are the highest activation values in the

corresponding feature map. To the best of our knowledge, the

WEMP method has not been applied to image classification

problems in the past. In this study, the WEMP method has

been adapted to a classification problem and its performance

has been compared with other GP methods. Figure 1 shows the

outputs of GAP, GMP, and WEMP obtained using 7×7 feature

maps. It can be seen that the number of neurons is greatly

reduced with GP methods.

Figure 1. Calculating the Global Max Pooling (GMP),

Global Average Pooling (GAP), Word Embedding top-k

Max-pooling (WEMP), and proposed Global Average of top-

k Max-pooling (GAMP) methods for 7×7 resolution feature

maps

In the WEMP and proposed GAMP methods, k=3 is taken.

3.2 Proposed method

In this section, the proposed GAMP method is discussed,

580

taking into consideration the advantages and disadvantages of

the commonly used GAP and GMP methods in CNN models.

As previously mentioned, the GAP method produces an output

by taking the average of all feature maps, but low activations

can suppress high activations. The GMP method only takes the

highest activation, which can weaken the model’s

generalization ability. In the WEMP method, which was

inspired by the scope of the study, the highest k activations are

concatenated for each feature map; in other words, the feature

map is not reduced to a single value and position information

can be lost. In the proposed GAMP method, the average of the

highest k activations for each feature map is taken to benefit

from the advantages of the GAP and GMP methods and to

produce a single value for each feature map. The average of

the k highest activations in a feature map F can be represented

mathematically as:

𝐹0 = 𝐹 (3)

𝐸1: = {𝑚 ∈ 𝑀0:𝑚 ≥ 𝛼∀𝑎 ∈ 𝐹0} (4)

In Eq. (4), α represents each activation in feature map F0,

and E1 represents the highest activation in feature map F0.

Then, using Eq. (5), the highest activation value is excluded

from the feature map.

𝐹1: = 𝐹0 ∖ 𝐸1 (5)

This process is repeated k times using Eqns. (6) and (7). At

each step, the highest activation value is removed from the

remaining values in feature map F0.

𝐸i+1: = {𝑚 ∈ 𝐹𝑖: 𝑚 ≥ 𝛼∀𝑎 ∈ 𝐹𝑖} (6)

𝐹i+1: = 𝐹i ∖ 𝐸i+1 (7)

Finally, the average of the highest k activation is obtained

using Eq. (8).

𝑟 =
1

𝑘
∑𝑖=0
𝑖=𝑘  𝐸𝑖+1 (8)

Eq. (8) represents the result obtained using the proposed

method for the relevant activation map F0. These operations

are applied independently for each feature map. Finally, a

single activation value is obtained per feature map. Figure 1

shows an example of the proposed method with k=3 for 7×7

dimensional feature maps.

3.3 Datasets

The CIFAR-10 [30] dataset was created by the Canadian

Institute for Advanced Research (CIFAR) and it is one of the

most widely used image classification datasets. The dataset is

designed to be challenging, with a small image size, a limited

number of training samples, and a diverse set of classes. The

CIFAR10 dataset consists of a total of 60000 images with

32×32 resolution RGB images, which are labeled into 10

classes. These classes are airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck. The dataset is divided into

50000 training and 10000 test set. There are an equal number

of samples for each class. In other words, there are 6000

images per class. There is no overlap between classes. The

CIFAR10 dataset is a widely recognized benchmark in

computer vision and machine learning, particularly in the area

of deep learning. It is frequently utilized in the research

literature as a standard evaluation set for proposing new

algorithms and methods. Figure 2 (on the left) shows randomly

selected examples from the CIFAR10 dataset and the

corresponding classes. The CIFAR100 dataset consists of 100

classes with 600 images each and a total of 60000 images. The

images in each class are divided into 500 training and 100 test.

The image resolution is 32×32 like CIFAR10. The 100 classes

in the dataset are also divided into 20 top classes. Therefore, a

“fine” label that shows the class to which the image belongs

and a “coarse” label that shows the top class to which it

belongs are defined for each image. Figure 2 (on the right)

shows randomly selected examples from the CIFAR100

dataset and the corresponding classes.

Figure 2. CIFAR10 (left) and CIFAR100 (right) random

samples and their respective classes

3.4 Models

In this section, CNN models created for comparing GP

methods are discussed. In this context, two different model

architectures are established, Custom and VGG16-based [35].

The reason for conducting experimental studies on the two

models is to observe the performance of the proposed method

both in a model specifically established and in a model that

provides state-of-the-art results on large datasets such as

ImageNet [36].

First, a custom model was established to examine the

performance of GP methods in a shallow model with randomly

initialized weights. Table 1 gives other details about the model.

The Custom model consists of convolution-batch

normalization-ReLU layers with similar structures. 7×7 kernel

sizes were used in the early layers since the number of kernels

used was low, followed by 5×5 and then 3×3 kernel sizes in

the later layers. Local max-pooling layers were used to reduce

the resolution of the feature maps. 2×2 kernel sizes were used

in these layers, and stride 2 was taken without overlapping.

The 15×15 resolution feature maps at the output of the last

layer were given as input to the GP layer. Finally, an FC layer

was used to connect the neurons obtained per feature map to

the classification layer. A softmax layer was used before the

classification layer. Figure 3 shows the Custom model.

The architecture is symbolized based on the CIFAR10

dataset. The output layer consists of 100 neurons for the

CIFAR100 dataset. The model was trained from scratch; no

fine-tuning was applied.

Second, a VGG16-based model was used. The VGG16

model achieved the highest score in the ILSVRC-2014

competition with a test accuracy of 92.7% in the top-5

category on the ImageNet dataset in 2014. The VGG16 model

581

has an architecture consisting of convolution blocks with 3x3

filters and 2×2 local max-pooling layers, using a consistent use

of convolution and max-pooling layers throughout the

architecture. The classification block includes 3 FC layers

ending with a softmax layer. The main disadvantage of

VGG16 is its high model capacity, with approximately 138

million parameters, making it slow to train, requiring a large

amount of disk space and bandwidth, and making it inefficient.

In this study, two modifications were performed to the VGG16

architecture. Firstly, the 3 FC layers in the classification layers

were replaced with the GP layer. Secondly, an FC layer was

used to create connections between the neurons obtained for

each feature map and the classification layer.

In this context, if the number of filters was used in the fifth

block equal to the number of classes, an additional FC layer

would not be necessary. However, this approach was taken to

preserve the basic architecture of the convolution layers in

VGG16 and to use the pre-trained weights. Figure 4 shows the

model created based on VGG16.

The first 5 blocks of the VGG16 model are used without

modification. Pre-trained weights trained on the ImageNet

dataset are used in these layers for all experimental settings.

The 3 FC layers in the final layers of the VGG16 model are

replaced with a GP layer. In the final layer, an FC layer is used

to connect the neuron outputs obtained from the GP layer with

the class layer. All weights are set to be trainable during the

training phase.

Figure 3. Custom model

Figure 4. The architecture created is based on VGG16

Table 1. Custom model details. In the table, F represents the number of channel/feature map, W represents the width of the

feature map, and H represents the height of the feature map

Input size (F, W, H) Layer Number of kernels Kernel size Stride Padding

3×64×64 Conv2d + BatchNorm2d + ReLU 16 7x7 1 2

16×62×62 Conv2d + BatchNorm2d + ReLU 32 7x7 1 2

32×60×60 MaxPool2d - 2x2 2 -

32×30×30 Conv2d + BatchNorm2d + ReLU 64 5x5 1 2

64×30×30 Conv2d + BatchNorm2d + ReLU 128 5x5 1 2

128×30×30 MaxPool2d - 2x2 2 -

128×15×15 Conv2d + BatchNorm2d + ReLU 256 3x3 1 1

256×15×15 Conv2d + BatchNorm2d + ReLU 256 3x3 1 1

256×15×15 Global Pooling - 15x15 - -

256 Fully connected - - - -

582

3.5 Training details

In this section, the training details of the models are given.

Both the CIFAR10 and CIFAR100 datasets were trained for

50 epochs using the Custom model, as it has a low training

time and is relatively shallow. The same experimental settings

were used when comparing the methods; the same weight

values and hyper-parameters were used for the model. The

Adam [37] algorithm was used as the optimizer, with a batch

size of 16 and a learning rate of 1−e3. Cross-Entropy Loss was

used as the loss function. No preprocessing, e.g., data

augmentation, or hyper-parameter optimization, e.g., learning

rate decay, was performed that would cause randomness in the

model. The model with the highest validation accuracy value

during training was saved and the test score was examined.

The VGG16-based model was trained for 20 epochs, as it is

heavy, or in other words, has a long training time. The images

in the custom model have been resized to a resolution of 64×64

due to the small size of the model, while in the VGG16 model,

the images have been resized to a resolution of 224×224. The

same training details were used for this model as for the

Custom model. During the training phase of the VGG16-based

model, the pre-trained values of the model trained on the

ImageNet dataset were used. This model aims to compare the

methods based on the feature maps with different resolutions

given as input to the GP layer. For this purpose, in the VGG16-

based model, 7x7 feature maps are formed at the output of the

5th block. To test at different resolutions, the entire 5th block

was removed and the output of the 4th block was directly given

to the GP layer. In this setting, the input to the GP layer was

of 14x14 resolution.

4. EXPERIMENT AND RESULTS

In this section, the proposed GAMP method is

experimentally compared with the commonly used GAP,

GMP, and WEMP methods under different models, i.e.,

Custom and VGG16-based, and datasets, i.e., CIFAR10 and

CIFAR100. First, the performance of the methods was

examined using the Custom model (Figure 4) and the

CIFAR10 dataset. In this architecture, the input to the GP layer

is BxCxWxH, i.e., 16x512x15x15, where B represents the

batch size, C represents the channel size, W represents the

width of the feature map, and H represents the height of the

feature map. The results obtained with this experimental

setting are shown in the second column of Table 2. When

GMP was used as the GP method in the Custom architecture,

a test accuracy of 80.64% was obtained, and when GAP was

used, a test accuracy of 82.49% was obtained. A comparison

of the two methods showed that the GAP method achieved a

test accuracy that was 1.85% higher on the CIFAR10 dataset.

An analysis of the proposed GAMP method’s performance for

various top-k values yielded test accuracies ranging from

81.98% to 83.78%. In the experimental studies carried out

using the Custom architecture and the CIFAR10 dataset, the

highest test accuracy of 83.78% was obtained when top-k=5

was taken with the proposed GAMP method. The proposed

GAMP (top-k=5) method had 3.14% higher test accuracy

when compared with GMP and 1.29% higher test accuracy

when compared with GAP. The proposed method was inspired

by the WEMP method, which is a well-known method in the

field of word embedding. As previously mentioned, this

method keeps all the highest activations and associates them

with an FC layer for the next layer; in other words, the average

of these activations is not taken. When the WEMP method was

adapted to the CNN architecture and its performance was

examined, a test accuracy of 81.19% was obtained. In this

method, for a fair comparison, the test accuracy of proposed

GAMP method at the top-k=5, where it achieved the highest

performance, was examined. The WEMP method

outperformed the GMP method by 0.55%, but it was behind

the GAP method by 1.3%. When all the models were

compared for this setting, the proposed GAMP method

increased the test accuracy by 1.29% compared to the closest

method, i.e., GAP. It is noteworthy in Table 2 that the accuracy

values may vary based on the top-k value. Hence, to achieve

the highest performance results, it is necessary to perform

experiments with different top-k values. For example, an

accuracy of 81.98% was obtained when top-k was set to 2. The

accuracy improved to 83.78% when top-k was changed to 5

but decreased to 82.88% when top-k was set to 8.

Second, experimental studies were carried out using the

Custom model and the CIFAR100 dataset to examine the

performance of the methods on a different dataset. The results

obtained with this experimental setting are shown in the third

column of Table 2. It can be seen that the methods exhibit

similar behavior to the previous setting. The GAP method

yielded a test accuracy that was 1.04% higher than the GMP

method when using the CIFAR100 dataset. When the

performance of the proposed GAMP method was examined

for different top-k values, test accuracies ranging from 46.12%

to 49.01% were obtained. The proposed GAMP method

achieved the highest test accuracy of 49.01% with top-k=9 in

this experimental setting. The proposed GAMP (top-k=9)

method provided a test accuracy that was 2.76% higher than

the GMP method, 1.72% higher than the GAP method, and

2.54% higher than the WEMP method. In the WEMP method,

top-k=9 was taken for a fair comparison with the proposed

method. One point to be noted is that the success of the

proposed GAMP method varies depending on different top-k

values. For example, in the experiments on the CIFAR100

dataset, it was found that the proposed method was less

successful than the other three methods when using top-k=4.

In addition, it has been observed that the proposed method has

achieved the highest performance on different datasets at

different top-k values. Figure 5 depicts the training and

validation accuracy graphs of the models that achieved the

highest accuracy rates for the CIFAR10 and CIFAR100

datasets, respectively, for 50 epochs. It is clear that the

accuracy rates are lower in the CIFAR100 dataset as the

number of classes is higher.

Figure 6 shows the training, validation, and test accuracies

of the proposed GAMP method on the CIFAR100 dataset for

various top-k values. A notable increase in the training

accuracy rate is observed when top-k=9, and the highest test

accuracy is achieved in this setting.

In the following section of the study, the GP methods are

compared using the popular CNN model, i.e., VGG16. Table

3 shows the results obtained using the CIFAR10 dataset. In

this setting, an evaluation is also provided based on the

resolutions of the feature maps given as input to the GP layer.

In this context, first, the methods are compared using all the

blocks of the VGG16 model (Figure 4), in which the

resolutions of the feature maps are 7×7. The results for this

setting are given in the second column of Table 3. The highest

test accuracy rate of 76.26% was obtained by the proposed

GAMP method with top-k=8. The success rates of the GMP,

583

GAP and WEMP methods are 74.04%, 75.12%, and 74.26%,

respectively. The proposed GAMP method provided a test

accuracy increase of 1.14% compared to the best-performing

GAP method. The highest score for the proposed method on

the CIFAR10 dataset was obtained with top-k=5 using the

Custom model and with top-k=8 using the VGG16-based

model, indicating that the best scores can be obtained at

different top-k values depending on the model. Therefore, to

obtain the best scores using the proposed method on any

dataset or model, it is necessary to examine the model

performance for several top-k values. In the experimental

studies, a model that provided the best scores for top-k<10 was

obtained.

Table 2. Train, validation, and test accuracy for the Global Max Pooling (GMP), Global Average Pooling (GAP), Word

Embedding top-k Max Pooling (WEMP), and proposed Global Average of top-k Max Pooling (GAMP) methods on the CIFAR10

and CIFAR100 datasets using the Custom model. In this model, the resolution of the feature maps given as input to the GP layer

is 15×15

Models CIFAR10 CIFAR100

Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc

GMP 98.95 82.14 80.64 70.72 44.42 46.25

GAP 99.66 82.88 82.49 69.10 47.42 47.29

WEMP 99.47 81.40 81.19 72.22 44.60 46.47

GAMP (top-k=2) 99.41 83.24 81.98 78.37 45.28 47.0

GAMP (top-k=3) 99.53 83.02 82.03 70.40 45.72 46.78

GAMP (top-k=4) 99.57 83.70 82.34 73.75 46.72 46.12

GAMP (top-k=5) 99.65 84.02 83.78 70.13 47.04 48.10

GAMP (top-k=6) 99.24 84.40 83.34 78.58 47.38 47.94

GAMP (top-k=7) 99.67 83.68 82.88 73.08 46.32 48.56

GAMP (top-k=8) 99.58 83.64 82.44 78.26 48.28 48.31

GAMP (top-k=9) 99.35 83.84 82.68 96.17 48.26 49.01

GAMP (top-k=10) 99.49 83.96 83.51 97.04 47.10 47.97

Figure 5. Training (blue) and validation (red) accuracy graphs of the models that performed best on the CIFAR10 (left) and

CIFAR100 (right) datasets using the Custom model

Table 3. Train, validation, and test accuracy for Global Max Pooling (GMP), Global Average Pooling (GAP), Word Embedding

top-k Max Pooling (WEMP), and the proposed Global Average of top-k Max Pooling (GAMP) methods using the VGG16-based

model and the CIFAR10 dataset for feature maps of different resolutions. The resolution of the feature maps in the VGG16-based

model is 7×7 (2nd column), and the resolution of the feature maps in the model that resulted from removing the 5th block in the

VGG16 model is 14×14 (3rd column)

Models

Dataset: CIFAR10

Model: VGG16-based

Feature map size: 7×7

Dataset: CIFAR10

Model: VGG16-based without 5th block

Feature map size: 14×14

Train Acc Val Acc Test Acc Train Acc Val Acc Test Acc

GMP 86.13 74.96 74.04 92.50 71.72 69.90

GAP 88.86 77.14 75.12 94.03 76.14 74.31

WEMP 87.52 75.32 74.26 93.14 73.46 72.15

GAMP (top-k=2) 87.18 74.26 73.04 92.43 76.36 73.40

GAMP (top-k=3) 90.11 76.76 75.79 92.59 74.70 74.22

GAMP (top-k=4) 84.75 74.92 74.08 92.86 76.57 72.16

GAMP (top-k=5) 90.41 75.52 75.27 91.79 73.22 71.82

GAMP (top-k=6) 88.59 75.58 74.37 90.18 74.24 72.73

GAMP (top-k=7) 89.58 75.56 75.30 92.18 74.62 72.56

GAMP (top-k=8) 90.04 75.80 76.26 93.45 75.28 71.94

GAMP (top-k=9) 91.76 74.68 73.52 91.39 76.16 75.25

GAMP (top-k=10) 92.42 75.26 73.65 93.72 74.30 74.04

584

Figure 6. Train, validation, and test accuracy performances

for different top-k values using the Custom architecture and

the CIFAR100 dataset

Figure 7. Performance of train, validation, and test accuracy

for different top-k values using a VGG16-based architecture

and the CIFAR100 dataset

Secondly, the performance of the models was evaluated

while keeping the dataset the same (CI- FAR10) and

increasing the resolution of the feature maps. In this context,

the 5th block of the VGG16 model was removed, resulting in

a change in the resolution of the feature maps given to the GP

layers from 7×7 to 14×14. Table 3 (3rd column) shows the

results obtained for this setting. The highest test accuracy rate

of 75.25% was obtained by taking top-k=9 with the proposed

GAMP method. The success of the GMP, GAP and WEMP

methods is 69.90%, 74.31%, and 72.15%, respectively. In this

setting, it is noteworthy that when the resolution of the feature

maps is increased, representing the feature map with a single

maximum value while ignoring the other values in the feature

map significantly affects the performance of the model. In this

context, the GAP method, which considers all values in the

feature map, provides a 4.41% increase compared to the GMP

method. However, the GAP method takes the average of all

values in the feature map. This can cause low activation values

to suppress high activation values, which can negatively affect

the test performance of the model. The proposed GAMP

method preserves the generalization ability of the model better

by taking the average of the k-highest activations and increases

the test accuracy value. Upon examination of Table 3, it has

been observed that as the resolution of the feature vector input

to the global pooling layer increases, the gap between the

success of the global pooling methods increases. For example,

when the performance of the GAP and GMP methods is

examined for 7×7 resolution feature maps, the difference in

performance is 1.08%, while for 14×14 resolution feature

maps, the difference in performance between these methods is

4.41%. Experimental studies have similarly shown that the

proposed GAMP method exhibits increased superiority over

other models as the resolution increases. This indicates that

feature maps are better represented with the proposed GAMP

method.

Figure 7 shows the training, validation, and test accuracies

of the model for different top-k values using a VGG16-based

model and the CIFAR10 dataset. As can be seen, the

performance of the proposed model varies according to the

top-k value, as in the Custom model. For example, the

performance of the proposed model for top-k=2 is behind the

GMP, GAP, and WEMP methods.

5. CONCLUSIONS

In this study, a new GP method was proposed taking into

account the advantages and disadvantages of the GMP and

GAP methods, which are frequently used in deep neural

networks. The proposed GAMP method enhances the model’s

ability to generalize by maintaining high activation, resulting

in improved classification performance on the test dataset. The

proposed method was compared to other techniques in the

same field using both a Custom model and a widely used CNN

model (VGG16-based). The superiority of the proposed

method was verified through experimental results. In this

context, firstly, a comparison was made using the Custom

model and the CIFAR10 dataset, and it was observed that the

proposed GAMP (top-k=5) method has a test accuracy that is

3.14% higher than GMP and 1.29% higher than GAP.

Secondly, in experimental studies using the same model

architecture and CIFAR100 dataset, the proposed method

(top-k=9) outperformed the closest-performing method, i.e.,

GAP, by 1.72%. Thirdly, the performance of the methods was

evaluated when inputs of the different resolutions were given

to the GP layer. In this direction, a VGG-based model

architecture and the CIFAR10 dataset were utilized, and input

to the GP layer was provided with feature vectors of resolution

7×7 and 14×14. Upon examination of the success of the

methods, it was observed that the proposed method provides

higher performance for both resolutions, and as the resolution

increases, the difference in success between the methods

increases. Then, the proposed method was compared with a

similar approach referred to as WEMP for word embedding

studies. In the WEMP approach, all of the highest k activations

are kept and concatenated, while in our proposed method, the

average of the highest k activations is taken. In order to make

a comparison, the WEMP method was first adapted to the

classification problem. Compared to WEMP, the proposed

method provided a 2.59% increase for CIFAR10 and a 2.54%

increase for CIFAR100. The success of the proposed method

varies according to the selected k parameter. Intensive

experiments showed that the best k value varies according to

the model and dataset used. Therefore, the training of the

model needs to be repeated for several k values. In general, it

was observed that a model that outperforms the performance

of other methods can be obtained when training is carried out

for the k values in the range of [1-10]. In the continuation of

the study, further experimental studies are planned to be

carried out to make recommendations on the k parameter

depending on the resolution of the feature map. The proposed

method can be used to represent the values in a specific area

with a single value in practice. In this study, the proposed

method was used to reduce the dimension of the feature vector

585

in CNNs and successful results were obtained. In the

continuation of the study, the performance evaluation of

resizing the images before giving them as input to CNNs is

also planned.

REFERENCES

[1] Sellami, A., Tabbone, S. (2022). Deep neural networks-

based relevant latent representation learning for

hyperspectral image classification. Pattern Recognition,

121: 108224.

https://doi.org/10.1016/j.patcog.2021.108224

[2] Roger, V., Farinas, J., Pinquier, J. (2022). Deep neural

networks for automatic speech processing: A survey

from large corpora to limited data. EURASIP Journal on

Audio, Speech, and Music Processing, 2022(1): 19.

https://doi.org/10.1186/s13636-022-00251-w

[3] Montejo-Ráez, A., Jiménez-Zafra, S.M. (2022). Current

approaches and applications in natural language

processing. Applied Sciences, 12(10): 4859.

http://doi.org/10.3390/books978-3-0365-4440-3

[4] Ozdemir, C., Gedik, M.A., Kaya, Y. (2021). Age

estimation from left-hand radiographs with deep learning

methods. Traitement du Signal, 38(6): 1565-1574.

https://doi.org/10.18280/ts.380601

[5] Yetis, A.D., Yesilnacar, M.I., Atas, M. (2021). A

machine learning approach to dental fluorosis

classification. Arabian Journal of Geosciences, 14: 1-12.

https://doi.org/10.1007/s12517-020-06342-2

[6] Lin, M., Chen, Q., Yan, S. (2013). Network in network.

arXiv preprint arXiv:1312.4400.

https://doi.org/10.48550/arXiv.1312.4400

[7] Krizhevsky, A., Sutskever, I., Hinton, G.E. (2017).

Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6): 84-90.

https://doi.org/10.1145/3065386

[8] Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M.,

Schmidhuber, J. (2011). Flexible, high performance

convolutional neural networks for image classification.

In Twenty-second international joint conference on

artificial intelligence. https://doi.org/10.5591/978-1-

57735-516-8/IJCAI11-210

[9] Zeiler, M.D., Fergus, R. (2013). Stochastic pooling for

regularization of deep convolutional neural networks.

arXiv preprint arXiv:1301.3557.

https://doi.org/10.48550/arXiv.1301.3557

[10] Sainath, T.N., Kingsbury, B., Mohamed, A.R., Dahl,

G.E., Saon, G., Soltau, H., Beran, T., Aravkin, A.Y.,

Ramabhadran, B. (2013). Improvements to deep

convolutional neural networks for LVCSR. In 2013 IEEE

workshop on automatic speech recognition and

understanding, pp. 315-320.

http://doi.org/10.1109/ASRU.2013.6707749

[11] Akhtar, N., Ragavendran, U. (2020). Interpretation of

intelligence in CNN-pooling processes: a

methodological survey. Neural computing and

applications, 32(3): 879-898.

https://doi.org/10.1007/s00521-019-04296-5

[12] Wang, B., Zhou, X., Zhang, X. (2019). YNUWB at

SemEval-2019 Task 6: K-max pooling CNN with

average meta-embedding for identifying offensive

language. In Proceedings of the 13th International

Workshop on Semantic Evaluation, pp. 818-822.

https://doi.org/10.18653/v1/S19-2143

[13] Graham, B. (2014). Fractional max-pooling. arXiv

preprint arXiv:1412.6071.

https://doi.org/10.48550/arXiv.1412.6071

[14] Yu, D., Wang, H., Chen, P., Wei, Z. (2014). Mixed

pooling for convolutional neural networks. In Rough Sets

and Knowledge Technology: 9th International

Conference, RSKT 2014, Shanghai, China, pp. 364-375.

http://doi.org/10.1007/978-3-319-11740-9_34

[15] Saeedan, F., Weber, N., Goesele, M., Roth, S. (2018).

Detail-preserving pooling in deep networks. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 9108-9116.

https://doi.org/10.1109/CVPR.2018.00949

[16] Sun, M., Song, Z., Jiang, X., Pan, J., Pang, Y. (2017).

Learning pooling for convolutional neural network.

Neurocomputing, 224: 96-104.

https://doi.org/10.1016/j.neucom.2016.10.049

[17] He, K., Zhang, X., Ren, S., Sun, J. (2015). Spatial

pyramid pooling in deep convolutional networks for

visual recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(9): 1904-1916.

https://doi.org/10.1109/TPAMI.2015.2389824

[18] Cui, Y., Zhou, F., Wang, J., Liu, X., Lin, Y., Belongie, S.

(2017). Kernel pooling for convolutional neural

networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2921-2930.

https://doi.org/10.1109/CVPR.2017.325

[19] Wang, F., Huang, S., Shi, L., Fan, W. (2017). The

application of series multi-pooling convolutional neural

networks for medical image segmentation. International

Journal of Distributed Sensor Networks, 13(12):

1550147717748899.

https://doi.org/10.1177/1550147717748899

[20] Sermanet, P., Chintala, S., LeCun, Y. (2012).

Convolutional neural networks applied to house numbers

digit classification. In Proceedings of the 21st

international conference on pattern recognition

(ICPR2012), pp. 3288-3291.

https://doi.org/10.48550/arXiv.1204.3968

[21] Wu, H., Gu, X. (2015). Max-pooling dropout for

regularization of convolutional neural networks. In

Neural Information Processing: 22nd International

Conference, ICONIP 2015, Istanbul, Turkey, November

9-12, 2015, Proceedings, Part I 22, pp. 46-54.

http://doi.org/10.1007/978-3-319-26532-2_6

[22] Song, Z., Liu, Y., Song, R., Chen, Z., Yang, J., Zhang,

C., Jiang, Q. (2018). A sparsity-based stochastic pooling

mechanism for deep convolutional neural networks.

Neural Networks, 105: 340-345.

https://doi.org/10.1016/j.neunet.2018.05.015

[23] Tong, Z., Aihara, K., Tanaka, G. (2016). A hybrid

pooling method for convolutional neural networks. In

Neural Information Processing: 23rd International

Conference, ICONIP 2016, Kyoto, Japan, pp. 454-461.

http://doi.org/10.1007/978-3-319-46672-9_51

[24] Shahriari, A., Porikli, F. (2017). Multipartite pooling for

deep convolutional neural networks. arXiv preprint

arXiv:1710.07435.

https://doi.org/10.48550/arXiv.1710.07435

[25] Kumar, A. (2018). Ordinal pooling networks: for

preserving information over shrinking feature maps.

arXiv preprint arXiv: 1804.02702.

https://doi.org/10.48550/arXiv.1804.02702

586

http://doi.org/10.1109/ASRU.2013.6707749
https://doi.org/10.1007/s00521-019-04296-5
https://doi.org/10.18653/v1/S19-2143
http://doi.org/10.1007/978-3-319-11740-9_34
https://doi.org/10.1109/CVPR.2018.00949
https://doi.org/10.1016/j.neucom.2016.10.049
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2017.325
https://doi.org/10.1177/1550147717748899
http://doi.org/10.1007/978-3-319-26532-2_6
http://doi.org/10.1007/978-3-319-46672-9_51

[26] Kolesnikov, A., Lampert, C.H. (2016). Seed, expand and

constrain: Three principles for weakly-supervised image

segmentation. In Computer Vision–ECCV 2016: 14th

European Conference, Amsterdam, The Netherlands, pp.

695-711. http://doi.org/10.1007/978-3-319-46493-0_42

[27] Williams, T., Li, R. (2018). Wavelet pooling for

convolutional neural networks. In International

conference on learning representations.

https://openreview.net/forum?id=rkhlb8lCZ

[28] Rippel, O., Snoek, J., Adams, R.P. (2015). Spectral

representations for convolutional neural networks.

Advances in neural information processing systems, 28.

https://doi.org/10.48550/arXiv.1506.03767

[29] Wang, Z., Lan, Q., Huang, D., Wen, M. (2016).

Combining FFT and spectral-pooling for efficient

convolution neural network model. In 2016 2nd

International Conference on Artificial Intelligence and

Industrial Engineering (AIIE 2016), pp. 203-206.

https://doi.org/10.2991/aiie-16.2016.47

[30] Krizhevsky, A., Nair, V., rey Hinton, G. (2014). e

CIFAR-10 dataset.

[31] Atas, I., Ozdemir, C., Atas, M., Dogan, Y. (2022).

Forensic dental age estimation using modified deep

learning neural network. arXiv preprint

arXiv:2208.09799.

https://doi.org/10.48550/arXiv.2208.09799

[32] Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever,

I., Salakhutdinov, R.R. (2012). Improving neural

networks by preventing co-adaptation of feature

detectors. arXiv preprint arXiv:1207.0580.

https://doi.org/10.48550/arXiv.1207.0580

[33] Lee, C.Y., Gallagher, P.W., Tu, Z. (2016). Generalizing

pooling functions in convolutional neural networks:

Mixed, gated, and tree. In Artificial intelligence and

statistics, pp. 464-472.

https://doi.org/10.48550/arXiv.1509.08985

[34] LeCun, Y. (1989). Generalization and network design

strategies. Connectionism in perspective, 19(143-155):

18.

[35] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

[36] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Li, F.F.

(2009). Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision

and pattern recognition, pp. 248-255.

http://doi.org/10.1109/CVPR.2009.5206848

[37] Kingma, D.P., Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

587

http://doi.org/10.1007/978-3-319-46493-0_42
https://doi.org/10.2991/aiie-16.2016.47
http://doi.org/10.1109/CVPR.2009.5206848

