
A Novel Method for Refactoring UML Metamodel

Berraouna Abdelkader

Department of Computer Science, University of Mohamed-Cherif Messaadia-Souk Ahras, Souk Ahras 41000, Algeria

Corresponding Author Email: a.braouna@univ-soukahras.dz

https://doi.org/10.18280/isi.280201 ABSTRACT

Received: 18 December 2022

Accepted: 10 February 2023

UML metamodel, like other metamodel change through time as a result of changing needs

and technical improvements during their life cycle. Adding new update or bug fixing can

change UML metamodel, so potential inconsistencies with existing models that correspond

to the previous version of the UML metamodel and may become non-compliant with the

new version. In this approach, the refactoring facilitates a UML metamodel refactoring in

well-defined steps from the basic features. The use of this refactoring allows extending the

functionality of the existing UML metamodel. This research focuses on the methods and

processes involved in adapting the UML metamodel to changing needs and technical

improvements over time. The study highlights the potential for inconsistencies to arise from

updates and bug fixing in the UML metamodel. The research methodology used is the

refactoring of the UML metamodel through a well-defined process in well-defined steps.

The study found that the refactoring process allows for the extension of the basic features

of the UML metamodel and the introduction of new functionalities. The research concludes

that the use of well-defined refactoring processes is essential in maintaining the evolution

of the UML metamodel and ensuring its compliance with changing needs and technical

improvements.

Keywords:

UML metamodel, refactoring, MDA,

software artifacts, adaptation

1. INTRODUCTION

In a realistic environment, metamodel must be adapted to

their environment or to new requirements. As the UML

metamodel is improved, it grows increasingly sophisticated

and deviates from its original design as it is changed and

adapted to new requirements, which decreases the UML

metamodel quality. The consequence is that the majority of the

costs of a UML metamodel are induced by maintenance.

Refactoring addresses this problem of increasing

complexity by enhancing structural properties of the

metamodel. The concept of refactoring was introduced by

Opdyke [1].

Refactoring is the process of making changes to a software

system that do not change the code's external behavior while

enhancing its internal structure.

This paper presents a new method for UML metamodel

refactoring, based on MDA techniques. UML metamodel

refactoring uses rules that refine it according to the designer's

intention.

UML metamodel refactoring can be handled in a variety of

methods. A refactoring technique only executes one of several

feasible adjustments [2, 3].

Designers can refine the UML metamodel if it does not meet

their requirements. Therefore, refinement mechanisms are

needed to refine existing UML metamodel when they do not

reflect the exact intentions.

In other words, UML metamodel refactoring creates

varying adjustments based on the kind of UML metamodel to

be adapted, each adaptation being formalized in a library.

Default libraries specify recurring adaptations, which can be

changed to match specific needs.

A UML metamodel refactoring involves changing the

attributes of an existing UML metamodel concept through

assignments to its characteristics. The body of a rule can

include various modifications to the metamodel.

The research on refactoring UML metamodel is significant

because it aims to improve the quality and efficiency of

software development processes by enhancing the Unified

Modeling Language (UML), which is a widely used language

for modeling software systems. Refactoring the UML

metamodel involves restructuring its underlying structure to

make it more flexible, maintainable, and aligned with current

software development practices. The ultimate goal is to

support developers and designer in creating better software

designs and reducing the time and effort required to make

changes to those designs. The value of this research lies in the

potential improvement of software development processes,

which can lead to better software products, faster time-to-

market, and reduced costs. Additionally, a better-designed

UML metamodel can increase the adoption and use of UML

as a modeling language, leading to improved collaboration and

communication among software development teams.

The rest of this paper is organized as follows: Section 2

presents some of objectives of refactoring method and

motivation of this work. Sections 3, 4, 5, 6, 7 outline the

related work and discussion of existing approaches and

classification of these approaches. A section 8, 9 describes

UML metamodel refactoring rules in this approach. Section 10

presents the implementation of refactoring rules and some

examples of refactoring and will end with a conclusion and

some perspectives [2].

Ingénierie des Systèmes d’Information
Vol. 28, No. 2, April, 2023, pp. 263-274

Journal homepage: http://iieta.org/journals/isi

263

https://orcid.org/0000-0002-9718-7515
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280201&domain=pdf

2. OBJECTIVES OF THE PROPOSED REFACTORING

METHOD

The goals and objectives to be reached for the refactoring

method (with respect to the limits of the existing system) are

the following:

- A level of abstraction for refactoring this level of

abstraction will allow refactoring to be reusable and generic.

- The refactoring model must be open to the addition of new

refactoring methods.

- The refactoring model must be able to take advantage of

the features of object-oriented refactoring.

- A new refactoring can be defined by combining already

defined refactoring (via inheritance or composition

relationships).

- Refactoring usage must be flexible and easy to manage.

In this method the refactoring facilitates a UML metamodel

refactoring in well-defined steps. From the basic features, new

features are introduced to the UML metamodel. The use of this

refactoring allows extending the functionality of the existing

UML metamodel.

This refactoring facilitates a UML metamodel refactoring in

well-defined steps. From the basic elements, new elements are

introduced by the construct. The use of refactoring allows

extending the functionality of the UML metamodel. In this

way, the similar concepts are often explicit. The construction

allows reusing these concepts by specialization.

Generalization and specialization allow refactoring of the

UML metamodel. By changing particular steps, UML

metamodel designers can alternate designs.

This method is based on the principles of both object-

oriented refactoring and model refactoring. By combining

these two approaches a foundation for autonomous adaption

of UML metamodel is established.

The method defines several rules to ensure the refactoring

of the UML metamodel. They have been used to derive

semantic conservation and instance properties of the UML

metamodel refactoring. The concepts described here can also

be applied to other structural descriptions. In addition, a set of

rules has been developed to facilitate the automatic refactoring

of the UML metamodel through progressive adaptation.

Implementation and preservation rules have been developed

for each refactoring.

3. RELATED WORK

This section gives a summary of related work on refactoring

and automated detection of refactoring, the focus is on the

most closely related approaches.

Refactoring is an essential process in software

reengineering [1], which aims to reorganize existing software.

Refactoring is merely the final stage in this process and the

technical challenge of (semi-)automatically altering the

software to incorporate a new solution. The most essential

difficulties, however, are selecting which elements of the old

software should be converted and how to convert them

precisely, taking into consideration the limits encountered by

the reengineers as well as the possible impact of the proposed

modifications.

Refactoring also seems to fit well into a reengineering

process driven by the MDA model. One purpose of model-

driven architectures is to make UML metamodel refactoring

easier.

Refactoring can be used to convert current model designs

into a format that an MDA tool's reverse engineering

capabilities can understand.

The work on refactoring has been directed from the

beginning towards the transformation of object-oriented

programs [4]; Opdyke [1] gives two reasons for this

refactoring:

-Compared to more traditional development approaches,

object-oriented programming facilitates refactoring because it

makes the necessary structural information explicit.

-Refactoring is especially important in object-oriented

programming.

In some cases, the best way to improve the design of a

program is to rewrite it; in other cases, redesigning it may be

easier.

Refactoring is described as a critical tool for controlling the

refactoring of software by Brant and Roberts [5]. They claim

that because typical waterfall development methodologies

position maintenance at the end of the software life cycle, they

fail to account for software evolution. They also point out that

other spiral life cycle-inspired methods, such as Joint

Application Development and, more recently, Extreme

Programming, provide better support for software evolution.

These methods promote the use of fourth generation

languages such as UML and integrated development

environments, making them better suited for refactoring. Since

UML appears to be more in line with the spirit of the first type

of methods than the more agile methods.

Recent methodologies, such as Catalysis [6], which uses

UML as a notation, consider the evolution of software, and

consequently the evolution of design. Furthermore, because

certain tools now allow the creation of design meta-models

from source code, refactoring might be used to edit this code

and improve the design of current programs. However, in fact,

it is difficult to assess the true impact of changes on the many

aspects of the design as well as the execution.

This is especially true for uml: Iits numerous structural and

dynamic views might share many meta-model features; for

example, when a method of a concept is destroyed, it is

impossible to discern at first glance, without the assistance of

a tool, what the method was.

Tokuda and Batory [7] define large architectural changes in

the different settings as a long series of small redesigns. They

assume that automated refactorings are ten times faster than

manual refactorings. Recent refactoring research extends the

analysis for automated refactorings with more successful

methods.

Tip et al. [8] use type constraints to aid in the analysis of

refactoring that introduce generalized statement.

Garces et al. [9] provide a set of heuristics to process

automatically the equivalences and differences between two

metamodel variants to adapt the models to their evolved

metamodel and thus follow a correspondence co-evolution

approach. The computed equivalences and differences are

saved in a so-called adaptation model, which serves as input

to a higher-order transformation HOT [10], creating an

implementable transformation adaptation.

The method presented by Cicchetti et al. [11] is comparable

to that of Garces et al. [9] in that it is once more focused on a

metamodel representation of the difference that serves as an

input for a higher order transformation. Additionally, the

computed differences are divided into: (i) unbreakable

changes, (ii) brittle and resolvable changes, (iii) brittle and

insurmountable changes.

264

Wachsmuth [12] suggests fusing concepts from object-

oriented refactoring and grammatical adaptation.

In this way, the definitions of instance preservation and

semantic preservation are built upon the definitions of

metamodel relations.

A group of transformations that are based on QVT relations

are also suggested, and they are categorized as refactoring,

construction, and reduction transformations.

In Models employing the Model Change Language (MCL)

[13] are presented with a co-evolution approach. The

relationships between the components of the various

metamodel versions are defined by the evolver. Relationships

can take many different forms, from straightforward one-to-

one mappings between classes to more intricate mappings for

adding items to new subclasses or modifying the confining

hierarchy.

Herrmannsdoerfer et al. [14] in order to minimize the

migration effort, COPE proposes an integrated way to define

the linked development of métamodèles and models. In this

regard, a collection of so-called linked transactions, which

together make up a larger co-evolution issue of modular

transformations, achieve the co-evolution of métamodèles and

related models. In order to reduce the work required for

migration, coupled transactions are further classified into

custom coupled transactions and reusable coupled transactions.

Reusable coupled transactions are those that are preset and do

not require user input [15, 16].

EMF Compare [17] is a tool which can match, combine

(two and three ways), and compare EMF/Ecore models.

Instead of using distinctive identifiers, it employs a distance

connection to match similar parts. UMLDiff [18] employs a

distance relationship that takes structure and names into

consideration and is also non-ID based. Unlike EMF Compare,

which covers EMF/Ecore-based models like Ecore, UML, etc.,

UMLDiff focuses exclusively on UML models. The UMLDiff

technique is expanded by DSMDiff [19] to handle domain-

specific modeling languages.

Williams et al. [20] use a search-based methodology to

compute a (near) optimum history model. As a result, the

historical model will include a variety of possible

modifications that might lead to a model changing from one

edition to another. A fitness function that chooses the much

more likely evolution was defined by the authors. Be aware

that this method depends on an operator-based tool, the adapt

tool, rather than directly detecting complicated changes. It

provides a list of operators that may undergo atomic alterations

as well as complicated ones. As a result, they concentrate more

on identifying the ideal arrangement of operators to

characterize the change.

Di Ruscio et al. [21] description of a language enables users

to actively define the evolution's alterations. A different option

is to evaluate electromagnetic fields. May be used to determine

their list of modifications.

The Model Change Language (MCL) was developed by

Levendovszky et al. [22] to allow for the specification of co-

evolution and metamodel evolution techniques.

A matching rule known as an idiom looks for a right-hand

side (RHS) in the evolved metamodel and a left-hand side

(LHS) in the original metamodel. A modification is recognized

if both are discovered. In order to identify both atomic and

complicated changes.

Garcés et al. [23] suggest computing the difference using a

number of heuristics represented as transformations in the

Atlas Transformation Language (ATL). Garcés et al. [23] still

don't fully understand the nature of the complicated alterations

or how to spot them.

By comparing MFEs, Langer et al. [4] suggested that

complicated alterations may be detected. They specify a

complicated change using the left side (LHS) and the right side

(RHS) of a graphical transformation (RHS). When LHS is

present in the original version and RHS is present in the

evolved version, a complicated change is discernible. Two

snapshots of an original metamodel and its evolving form can

be used to represent DHS and RHS. So, a complicated

change's variability is not addressed.

Precision and recall were tested by Langer et al. [4] and

averaged 98% and 70%, respectively. They want to make sure

their detection is accurate despite the lack of some necessary

adjustments.

In order to identify atomic changes, Garcia et al. [24]

compare EMFs as a preliminary step. They then use predicates

that look for instances of the atomic change class to detect

complicated changes. For each complicated modification, the

predicates are implemented as ATL transformation scripts.

They suggest that the overlap issue can be somewhat solved

by identifying the most difficult changes without the enclosed

updates, which may result in fewer calls. They do not, however,

take variable complicated modifications into consideration.

4. LIMITATIONS OF EXISTING WORK AND

CONTRIBUTION

It has been discovered that further research is necessary to

establish which refactoring techniques can be implemented,

where and when in a meta-model driven reengineering process,

and which other techniques are complementary to reach meta-

model refactoring. This was the result of a thorough analysis

of the existing work in meta-model refactoring. Narayanan's

approach defines the MCL "Model change language" [12]

using an MOF compliant metamodel. MCL is a high-level

visual language to describe the evolution of the metamodel.

MCL defines a set of idioms and a compositional approach for

specifying migration.

Using a metamodel that complies with MOF, Narayanan's

method constructs the MCL "Model change language" [12].

MCL is a high-level visual language for describing the

métamodèles development. For describing migration, MCL

specifies a collection of idioms and a compositional method.

The most typical metamodel evolution scenarios, such as

introducing a new concept, modifying an element, removing

an element, adding new subtypes, updating local models, and

automating the migration of instance models, may all be

specified using rules. For common migrating scenarios, MCL

employed a basic model that consisted of a "Maps To" link

between an LHS element from the old metamodel and an RHS

element from the new metamodel. The model uses a different

unique connection named "WasMappedTo" to identify a node;

it already underwent migration due to a prior migration

regulation. MCL is more effective since it gives a DSML

domain-specific modeling language as a specification

language, as opposed to the sprinkling approach's [13] generic

program for the migratory. The MCL is expressive, modular,

and enables for reuse of knowledge migration. It also offers a

straightforward graphical syntax. MCL can also define

intricate connections between meta entities. But in MCL, some

rules must be manually resolved, and in other situations, the

creator of the transformation's purpose must be taken into

265

consideration.

In contrast to the previously mentioned approaches, the

proposed approach addresses metamodel evolution using

already-in-use transformation languages rather than domain-

specific or M2M transformation languages.

It’s possible to avoid copying elements that are resilient to

metamodel changes and are supported by COPE by using

specialized metamodel merging algorithm. Additionally,

unlike other systems that need manual development, this

approach enables for the automated removal of obsolete model

components that are no longer covered by the updated

metamodel.

In contrast, utilizing the unified metamodel together with in

place refactoring, the method just requires one metamodel to

define evolution rules.

Last but not least, automated development of refactoring

rules for disruptive and reversible modifications is favored.

5. UML METAMODEL REFACTORING

In this method, a UML metamodel refactoring has the

objective to improve its design described. Refactoring may be

viewed as a restructuring of the information included in the

UML metamodel as a whole. The original UML metamodel

gets turned into a portion of it. Since the input UML

metamodel is modified in place, it is more effective to

implement a refactoring as an update transformation.

5.1 Description and characteristics of UML metamodel

concept

The Unified Modeling Language (UML) metamodel is a

standardized representation of the concepts and relationships

used in UML, a widely used modeling language for software

and systems design. The UML metamodel defines the

structure and behaviour of UML models and provides a way

to automatically describe and manipulate them [22, 25].

Some of the characteristics of the UML metamodel are:

• Abstraction: The UML metamodel provides abstractions

for UML model elements such as classes, interfaces,

associations and state machines.

• Extensibility: The UML metamodel is designed to be

extensible so that new elements can be added to it on

demand.

• Consistency: The UML metamodel provides a consistent

and well-defined structure for UML models, ensuring that

they can be easily understood and used by different

stakeholders.

• Semantics: The UML metamodel provides a clear and

concise definition of the semantics of UML models,

making it easier for them to be automatically interpreted

and manipulated.

• Object orientation: The UML metamodel is well suited for

modeling complex systems and software applications

because it is based on object-oriented principles.

• Platform independence: The UML metamodel is platform

independent, meaning that UML models can be created,

manipulated and transformed on any platform that

supports the UML metamodel.

Overall, the UML metamodel is a powerful tool for software

and systems design, enabling users to create, manipulate and

transform UML models in a standardized and automated way.

5.2 Example of UML metamodel refactoring

• Adding a concept: A refactoring rule's body might

generate new UML metamodel items. It is mandatory to

link a recently established UML metamodel concept to the

rest of the UML metamodel and use a structure property

for such activity.

• Duplicating a concept in certain cases, it’s like to see a

same notion in several portions of a UML metamodel.

• Finally, the last fundamental operation involving a UML

metamodel is concept deletion.

• Refactoring, when used frequently, is a potent strategy.

Only the designer's selected subset has to be refactored

and modified.

• Manual refactoring of UML metamodel can cause errors

and may result in inconsistencies. Moreover, it is very

difficult to perform all parts of the refactoring potentially

in a manual way.

Also, manual refactoring of UML metamodel according to

such changes is very time consuming and is a source of errors.

Such an issue becomes very relevant when dealing with the

refactoring of complex UML metamodel with a considerable

number of rules.

Short macro commands are utilized to streamline repetitive

tasks during UML metamodel refactoring. Refactoring is

applied based on UML metamodel changes; the default

refactoring can be expanded or even modified by designers,

who can define new refactoring rules to modify or replace the

refactoring adaption.

This allows, for example, a designer to use two different

refactoring. The assumption is that refactoring should only

change concepts that the designer has explicitly chosen. By

extension, refactoring are concrete transformations that

preserve the behavior of an application. Such transformations

only affect the appearance without adding functionality, but

allow a better understanding of the system or facilitate later

functional modifications.

The development cycle of large projects can be long for

various reasons, such as the complexity of the project, the

number of team members involved, and the need for thorough

testing and quality assurance.

As for coordinating changes in the reconstruction of the

UML underlying building meta-model, it requires a well-

defined development process, clear communication among

team members, and a robust version control system. The

development team should establish clear guidelines for

making changes and ensure that everyone is on the same page

regarding the expected outcome. Additionally, regular

meetings and progress updates can help to keep everyone

informed and prevent any misunderstandings. The use of a

version control system, such as Git, can also help keep track

of changes made to the UML meta-model and ensure that

everyone is working with the most up-to-date version.

6. THE REFACTORING PROPOSED IN THIS

METHOD

The refactoring proposed in this method applies essentially

to three concepts: concepts, methods, and variables. These

refactoring can be classified into five basic types of operations:

266

• Add.

• Modify.

• Deletion.

• Generalization of UML metamodel elements.

• Specialization of UML metamodel elements.

The last two types move elements through the inheritance

hierarchy, along with the generalization relationships. Most of

the elements that make up the meta-model can have a direct

connection to other elements of the same UML metamodel.

Adding and removing elements

It is possible to add member’s (attributes or methods) to a

concept if the new member or association does not have the

same signature as any other member or association of the

considered concept, of a super-concept or a sub-concept of it.

The deletion of associations and members is only possible

if the deleted element is not referenced in the UML metamodel.

When the inheritance structure is taken into consideration,

adding and removing concepts becomes especially interesting.

One can insert a generalization instance in the middle of a

generalization relation, between two parent elements; the

inserted element must not introduce any behavior, and

especially be of the same type as the two other concepts.

Deleting a generalization instance has the opposite effect:

One removes a useless element to link its sub-concepts directly

to its super-concepts; the element must then not be referenced

in other concepts, neither directly or indirectly - through

instances, members etc.

Generalization refactoring may be applied to concepts'

constituents such as attributes, relationships, methods, and

operations.

Private members cannot be relocated in this manner since

they are not available from the sub-concepts. This refactoring

suggests that all of the super-immediate concept's sub-

concepts have an identical element, for attributes, associations

or operations this equivalence can be checked structurally, but

the problem is more difficult for methods.

Specialization refactoring is the reverse of the previous one:

it sends an element of a concept to all its sub-concepts.

Informally, it preserves the behavior if the original concept is

not the reference context of the element, i.e., if the element is

only used via instances of sub-concepts of the original concept.

Other problems may arise if the existence of multiple

inheritances is neglected. It is necessary to check that the

concepts that will receive the transferred element do not have

a common sub concept, i.e., that the traditionally problematic

inheritance pattern in diamond does not occur.

6.1 List of refactoring rules

The proposed method offers a list of refactoring rules to the

designer and he should be able to specify rules tailored to his

needs.

The modifications made to the UML metamodel concern

the concept itself.

-Addition and deletion of a concept, modification of the

concept name.

-The definition of a concept (addition or deletion of an

attribute, modification of the name of an attribute, addition or

deletion of a parameter).

-Methods (e.g., modification of a method name or signature).

As well as a dynamic management of their modification.

The proposed method has a tool that allows to select an

element of the UML metamodel to be modified, to proceed to

the modification and to propagate the modification through the

UML metamodel by creating if necessary new versions of the

concepts. The tool will also give the possibility to modify

refactoring strategies and their corresponding rules and reuse

them. Refactoring operations supported in this method; Table

1 shows a table with all supported operations.

Table 1. Some example of a UML metamodel refactoring

operations

Refactoring

Rename a concept

Move a property of a concept

Extract concept

Association to concept

Concept to association

Generalise/restriction of proprieties

Construction

Add a concept

Add a property

Add a relationship

Edit hierarchy

Destruction

Delete a concept

Delete a property

Delete the legacy

6.2 Refactoring algorithm

The refactoring is performed in two phases:

1- Firstly, all modules and types (concepts, enumerations,

and data types) are constructed in the step. The algorithm

examines each package and type before adding them to the

new UML metamodel.

2-The second step is concerned with the accurate design of

concept internal structure. This involves adding characteristics,

references, and operations. This second step also includes the

assignment of super concepts.

A case of UML metamodel refactoring can be described by

a problem section and a solution section:

1. The problem section contains.

a- a semantic specification of the refactoring.

b- The previous UML metamodel prior to the refactoring.

2. The solution section contains.

a- the description of the refactoring steps (UML metamodel

components that have been added, updated, or deleted).

b- The refactored UML metamodel.

A refactoring rule can edit any component of the model; its

intended scope is not restricted to the components supplied as

real inputs. The cause for this is that the number of elements

that may be altered in a rule is limitless. It is often impractical

to define the components to be updated through collections or

requests.

Most of the time, a refactoring is described by a group of

rules rather than a single rule. Each rule can have a unique

signature, and a rule's guard (condition) can apply to the

guards of other rules in the same iteration. It is possible, for

example, to declare a rule that can only be performed when

some other rule is disabled.

A refactoring to change a public attribute to a private

attribute is an example of a more sophisticated refactoring.

- Refactoring process

The refactoring process is separated into many actions:

1. Determine which components of the model must be

refactored.

2. Choose the refactoring(s) to use at these situations.

3. Ensure that the refactoring, once done, maintains the

system's behavior.

267

4. Execute the refactoring.

5. Consider the impact of refactoring on UML metamodel

quality level.

6. Keep the refactored UML metamodel and its model

consistent.

Figure 1. The proposed method for UML metamodel

refactoring

The proposed method allows high-level refactoring of UML

meta-models.

It provides a visual notation for defining meta-model

refactoring chains it is supported by a GUI and a runtime

engine that loads the appropriate models and executes the

refactoring in the predefined path.

To ensure the refactoring the engine starts by reading the

UML metamodel then it looks for the refactoring that are

activated. Once these refactoring are identified, they are

loaded and executed, and produce the corresponding output

metamodel. The process continues until that no activated

refactoring remains unexecuted. Figure 1 shows the process

for refactoring of UML meta-models.

Then the next refactoring is activated and executed. The

current version of the runtime executes the refactoring

sequentially.

The proposed approach supposes that the designer who

validates and verifies the refactoring.

After UML metamodel refactoring, designers can perform

verification to ensure that the changes made to the UML

metamodel have the intended effects on the code operation.

The following are some ways to verify the UML metamodel

validity after refactoring:

Simulation: The designer can simulate the behavior of the

UML metamodel to ensure that it meets the requirements of

the system and that the changes made during refactoring have

not introduced any errors or unintended behavior.

Model Generation: The designer can generate model from

the updated UML metamodel and compare it from the original

UML metamodel to verify that the changes made during

refactoring is valid.

Model Review: The designer can perform a model review

to verify that the model generated from the updated UML

metamodel meets the design and implementation standards of

the organization.

Performance Testing: The designer can perform

performance testing to verify that the changes made during

refactoring have not impacted the efficiency of the model.

These are others verification methods that can be used after

UML refactoring. The exact methods used will depend on the

specific requirements and constraints of the project. These

methods will be studied and explored in future work.

6.3 Refactoring the UML metamodel in complex system

There are several steps involved in refactoring the UML

metamodel for a complex system:

1. Analysis: Before making any changes, it is important to

thoroughly analyze the existing metamodel to understand its

strengths and weaknesses and to identify areas for

improvement. The various aspects and domains involved in

the system, including hardware and software components, as

well as the static structure and dynamic behaviour, should be

considered in this analysis.

2. Planning: A plan for the refactoring process, including

goals, scope and schedule, should be created based on the

analysis.

3. Model decomposition: Decompose the existing UML

metamodel into smaller, more manageable parts. This makes

it easier to modify and understand. This may involve breaking

the UML metamodel into separate models for hardware and

software components, for example.

4. Model transformation: Use model transformation

techniques to modify the UML metamodel, such as updating

class and component diagrams, adding or removing classes

and relationships, and changing model structure.

5. Validation: Validate the updated UML metamodel to

make sure that it is an accurate reflection of the desired

behaviour of the system, both statically and dynamically. This

may involve testing the model with simulation and validation

tools.

6. Documentation: Document the changes made to the UML

metamodel and any associated updates to the development

process to ensure that the updated UML metamodel is well

understood by all team members.

It is important to continue to communicate and collaborate

with team members throughout the refactoring process, and to

make sure that everyone is aware of the goals and progress of

the refactoring effort.

7. REFACTORING IMPLEMENTATION

The described method was implemented using EMFs,

which may be thought of as an implementation of the Essential

Meta Object Facility (EMOF) (Applied to the UML class

diagram metamodel) [26, 27]. A UML metamodel is used to

Express MM2MM refactoring, a script is used to conduct

MM2MM refactoring based on distinct UML metamodel, and

a library is used to provide automated data copying in

endogenous refactoring.

A number of examples of UML metamodel refactoring

operations are illustrated in a series of from Figure 2 to Figure

11.

268

Figure 2. Rename property

Figure 3. Move a new property

Figure 4. Delete a proporty

Figure 5. Add a new class

Figure 6. Delete a new concept and reference

Figure 7. Modification of a concept and refrence

Figure 8. Change a concept name

269

Figure 9. Modification of a reference

Figure 10. Delete a reference

Figure 11. Modification of reference type

7.1 Implementation of refactoring rules

The ATL language will be used to implement several

refactoring rules in the following sections.

7.1.1 Rule of Redundant Inheritance

According to this rule if a class inherits another through two

or more separate inheritance pathways, delete all but one path

if possible. A duplicate inheritance adds no information to the

model but complicates it. The first inheritance is superfluous

and should be eliminated (see Listing 1).

Listing 1 Rule of Redundant Inheritance

7.1.2 Rule of removing an association class (see Listing 2)

Listing 2 Rule of removing an association class

270

7.1.3 In the modification case

The objective of this refactoring is to transform a RootA

element into a RootB, and transform an ElementA element

into an ElementB. There are some additional constraints to be

respected (see Listing 3):

- The order of the elements in the list must be preserved.

- An ElementB must be created from the name of a RootA.

This element is added to the first position of the list.

- The name of each ElementB must start with 'B_'.

In summary, the created list will contain one more element

than the original list. This extra element is created from of the

name of the root of the list. It will be placed in the first position

on the list.

Listing 3 code ATL in modification case

7.1.4 In the case of addition

Listing 4 ATL code for addition case

For a UML metamodel element, new UML metamodel

element is produced: Visibility and packageableElement_

visibility have the same name and are connected to the same

OwnMember.

Another Class element is created for a Class element that

has the same name, visibility, and packageableElement

_visibility, as well as the same features, isAbstract, isLeaf, and

isActive, and is linked to the same OwnAttribute. Additional

Property element is produced for a property element.

With the same name, visibility and packageableElement_

visibility (see Listing 4).

7.1.5 In the case of deletion

The source and target of the refactoring have the same

metamodel: UML2 (see Listing 5).

Rule model: For each model element, another model

element containing the following elements is created:

The attribute name is also the same, and the same with the

other UML metamodel elements.

Listing 5 ATL code in the case of deletion

The UML metamodel contains also three important

relations that can be implemented using ATL:

1. Equivalence: This relation is used to indicate that two or

more concepts are equivalent (see Listing 6).

2. Implementation Inheritance: This relation is used to

indicate that the implementation of a class is derived from

another class (see Listing 7).

3. Interface Inheritance: This relation is used to indicate that

the interface of a class is derived from another interface (see

Listing 8).

271

Listing 6 ATL code for equivalence relation

This code defines a module named "Equivalence Relation".

It creates an output UML metamodel of type "Target" from an

input UML metamodel of type "Source". In this example, the

name of each class in the "Target" UML metamodel is set to

the name of the corresponding class in the "Source" UML

metamodel .

Listing 7 ATL code for implementation of inheritance

Listing 8 ATL code for interface inheritance

This code defines a module named

"ImplementationInheritance".

It creates an output model of type "Target" from an input

UML metamodel of type "Source". The rule ParentClass

specifies the transformation from elements of type Class in the

"Source" UML metamodel to elements of type Class in the

"Target" UML metamodel for parent classes. The rule

ChildClass specifies the transformation for child classes that

inherit from a parent class.

In this example, the name and abstract status of each class

in the "Target" UML metamodel is set to the name and abstract

status of the corresponding class in the "Source" UML

metamodel. For child classes, the name of the super class in

the "Target" UML metamodel is set to the name of the

corresponding super class in the "Source" UML metamodel.

This code defines a module named "InterfaceInheritance".

It creates an output model of type "Target" from an input UML

metamodel of type "Source". The rule ParentInterface

specifies the transformation from elements of type Interface in

the "Source" UML metamodel to elements of type Interface in

the "Target" UML metamodel for parent interfaces. The rule

ChildInterface specifies the transformation for child interfaces

that inherit from a parent interface.

In this example, the name of each interface in the "Target"

UML metamodel is set to the name of the corresponding

interface in the "Source" UML metamodel. For child

interfaces, the names of the super interfaces in the "Target"

UML metamodel is set to the names of the corresponding

super interfaces in the "Source" UML metamodel.

The other proposed refactoring rules are not presented

because their complexity is identical to the preceding instances,

and it is beyond the scope of this work to detail all of them.

7.2 Application software for refactoring

In this research work an application software has been

developed that performs the proposed refactoring, this

application software allows loading the Ecore file of UML

metamodel in zone 1.

After loading the Ecore file the designer must select the

series of rules used during the refactoring (are displayed in

area 3 (the rules are executed in the order chosen by the

designer).

The description of the rule will be presented in zone 2.

The designer can add a new rule using the 'add new Rule'

button, he can also delete a selected rule using the 'delete

selected Rule' button or modify the rule using the 'update

selected Rule' button.

Once the Ecore file has been loaded and the series of rules

chosen, the designer can launch the refactoring execution and

see the result in zone 1 or cancel the refactoring using the

'cancel refactoring' button, the Application software is

presented in Figure 12.

Figure 12. Application software for refactoring

272

8. CONCLUSIONS

Very often UML metamodel designer has to modify and

refactor the existing UML metamodel.

The MDA proposes a refactoring of the UML metamodel in

several steps; however, this requires the management of UML

metamodel and the copying of data between the corresponding

UML metamodel. If large parts of the UML metamodel remain

unchanged, designers have to specify many copy operations to

avoid this problem.

 The primary aim of this paper is to shed light on the

refactoring of the UML metamodel. Firstly, a thorough

investigation of existing approaches to UML metamodel

refactoring was conducted. The study resulted in the

identification of different classifications of these approaches.

Subsequently, critical evaluation criteria were selected and

applied to the studied approaches. Upon completion of the

comparative analysis, it was observed that no approach

fulfilled all the selected criteria.

As a result of the analysis, guidelines were established.

These guidelines aim to solve the refactoring problem with

more expressiveness.

Clarity and support the change and scalability of the

refactoring strategy to ensure its accuracy.

In addition, the use of standard tools such as EMF and ATL

allows the solution to be widely distributed and facilitates its

interoperability with other systems.

In this paper, the results of the initial experimentation

utilizing the in-place refactoring approach for UML

metamodel refactoring have been reported. The experiences

indicate that refactoring of UML metamodel may be easily

described with current in place refactoring languages.

As future work, it is planned to address the consistence

problems caused by the UML metamodel refactoring and

managing the refactoring via a graphic interface and improve

the refactoring tools. Also, it is intended to measure the

performance of UML metamodel refactoring rules.

REFERENCES

[1] Opdyke, W.F. (1992). Refactoring object-oriented

frameworks. University of Illinois at Urbana-

Champaign. https://hdl.handle.net/2142/72072.

[2] Sidhu, B.K., Singh, K., Sharma, N. (2018). Refactoring

UML models of object-oriented software: A systematic

review. International Journal of Software Engineering

and Knowledge Engineering, 28(9): 1287-1319

https://doi.org/10.1142/S0218194018500365

[3] Bettini, L., Di Ruscio, D., Iovino, L., Pierantonio, A.

(2022). Supporting safe metamodel evolution with

edelta. International Journal on Software Tools for

Technology Transfer, 24(2): 247-260.

https://doi.org/10.1007/s10009-022-00646-2

[4] Langer, P., Wimmer M., Brosch, P., Markus

Herrmannsdörfer, M., Seidl M., Wieland K., Kappel G.

(2013). A posteriori operation detection in evolving

software models. Journal of Systems and Software,

86(2): 551-566.

https://doi.org/10.1016/j.jss.2012.09.037

[5] Brant, J., Roberts, D. (1999). Refactoring techniques and

tools (Plenary talk). In Smalltalk Solutions, New York,

NY.

[6] D’Souza, D.F., Wills, A.C. (1998). Objects, components,

and frameworks with UML: The catalysis approach.

Addison-Wesley Reading, vol. 1.

[7] Tokuda, L., Batory, D. (2001). Evolving object-oriented

designs with refactorings. Automated Software

Engineering, 8(1): 89-120.

https://doi.org/10.1023/A:1008715808855

[8] Tip, F., Kiezun, A., Bäumer, D. (2003). Refactoring for

generalization using type constraints. In Object-Oriented

Programming Systems, Languages, and Applications

(OOPSLA 2003), 38(11): 13-26.

https://doi.org/10.1145/949343.949308

[9] Garces, K., Jouault, F., Cointe, P., Bézivin, J. (2009).

Managing model adaptation by precise detection of

metamodel changes. ECMDA-FA 2009. Lecture Notes

in Computer Science Springer, 5562: 34-49.

https://doi.org/10.1007/978-3-642-02674-4_4

[10] Tisi, M., Jouault, F., Fraternali, P., Ceri, S., B ézivin, J.

(2009). On the use of higher order model

transformations. ECMDA-FA 2009. Lecture Notes in

Computer Science Springer, 5562: 18-33.

https://doi.org/10.1007/978-3-642-02674-4_3

[11] Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.

(2008). Automating co-evolution in model-driven

engineering. In 2008 12th International IEEE Enterprise

Distributed Object Computing Conference, Munich,

Germany, pp. 222-231.

https://doi.org/10.1109/EDOC.2008.44

[12] Wachsmuth, G. (2007). Metamodel adaptation and

model co-adaptation. In Proceedings of the 21rd

European Conference on Object-Oriented Programming

(ECOOP’07), 4609: 600-624.

https://doi.org/10.1007/978-3-540-73589-2_28

[13] Narayanan, A., Levendovszky, T., Balasubramanian, D.,

Karsai, G. (2009). Automatic domain model migration to

manage metamodel evolution. In Proceedings of the 12th

International Conference on Model Driven Engineering

Languages and Systems (MoDELS’09), 5795: 706-711.

https://doi.org/10.1007/978-3-642-04425-0_57

[14] Herrmannsdoerfer, M. (2011). COPE – a workbench for

the coupled evolution of metamodels and models. In:

Malloy, B., Staab, S., van den Brand, M. (eds) Software

Language Engineering. SLE 2010. Lecture Notes in

Computer Science, vol. 6563. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-19440-

5_18

[15] Wimmer, M., Kusel, A., Schönböck, J., Retschitzegger,

W., Schwinger, W., Kappel, G. (2010). On using inplace

transformations for model co-evolution. In Event2nd

International Workshop on Model Transformation with

ATL, 711: 65-78.

https://www.researchgate.net/publication/283612710_O

n_using_inplace_transformations_for_model_co-

evolution.

[16] Khelladi, D.E., Hebig, R., Bendraou, R., Robin, J.,

Gervais, M.P. (2015). Detecting complex changes during

metamodel evolution. In International Conference on

Advanced Information Systems Engineering, 9097: 263-

278. https://doi.org/10.1007/978-3-319-19069-3_17

[17] Barišić, A., Debreceni, C., Varro, D., Amaral, V.,

Goulão, M. (2018). Evaluating the efficiency of using a

search-based automated model merge technique. In 2018

IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), Lisbon, Portugal, pp.

193-197. https://doi.org/10.1109/VLHCC.2018.8506512

273

https://doi.org/10.1007/s10009-022-00646-2
https://doi.org/10.1145/949343.949308
https://doi.org/10.1007/978-3-642-04425-0_57
https://doi.org/10.1007/978-3-642-19440-5_18
https://doi.org/10.1007/978-3-642-19440-5_18

[18] Tsantalis, N., Ketkar, A., Dig, D. (2020). Refactoring

miner 2.0. IEEE Transactions on Software Engineering,

48(3): 930-950.

https://doi.org/10.1109/TSE.2020.3007722

[19] Mehmood, W., Shafiq, M., Saleem, M.Q., Alowayr,

A.S., Aslam, W. (2020). A feature-based evaluation of

model merge methods for e-health solutions. Journal of

Medical Imaging and Health Informatics, 10(10): 2473-

2480. https://doi.org/10.1166/jmihi.2020.3273

[20] Williams, J.R., Paige, R.F., Polack, F.A. (2012).

Searching for model migration strategies. In Proceedings

of the 6th International Workshop on Models and

Evolution, ACM, pp. 39-44.

https://doi.org/10.1145/2523599.2523607

[21] Di Ruscio, D., Iovino, L., Pierantonio, A. (2011). What

is needed for managing co-evolution in MDE. In:

Proceedings of the 2nd International Workshop on

Model Comparison in Practice, ACM, pp. 30-38.

https://doi.org/0.1145/2000410.2000416

[22] Levendovszky, T., Balasubramanian D., Narayanan A.,

Shi F. VanBuskirk, C., Karsai G., (2014). A semi-formal

description of migrating domain-specific models with

evolving domains, Software and Systems Modeling

(SoSyM), 13(2): 807-823

https://doi.org/10.1007/s10270-012-0313-5

[23] Garcés, K., Jouault, F., Cointe, P., Bézivin, J. (2009).

Managing model adaptation by precise detection of

metamodel changes. In Model Driven Architecture-

Foundations and Applications: 5th European

Conference, ECMDA-FA 2009, Enschede, The

Netherlands, June 23-26. https://doi.org/10.1007/978-3-

642-02674-4_4

[24] Garcia, J., Diaz, O., Azanza, M. (2012) Model

transformation co-evolution: A semi-automatic

approach. In: Czarnecki, K., Hedin, G. (Eds.), Software

Language Engineering, pp. 144-163.

https://doi.org/10.1007/978-3-642-36089-3_9

[25] Mumtaz, H., Alshayeb, M., Mahmood, S., Niazi, M.

(2019). A survey on UML model smells detection

techniques for software refactoring. Journal of Software:

Evolution and Process, 31(3): e2154.

https://dx.doi.org/10.1002/smr.2154

[26] The Unified Modeling Language; Kirill Fakhroutdinov;

http://www.uml-diagrams.org/, accessed on Jun. 22,

2022.

[27] OMG Unified Modeling Language;

http://www.omg.org/spec/UML/, accessed on Jun. 23,

2022.

274

http://dx.doi.org/10.1166/jmihi.2020.3273
https://doi.org/10.1007/978-3-642-36089-3_9
http://www.uml-diagrams.org/

