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The most prevalent kind of ovarian cancer is high-grade serous ovarian cancer. Drug 

resistance is the major issue in this cancer. Transcriptional fusions involving SLC25A40-

ABCB1 is a leading cause of this cancer. To understand the phenotypic consequences, 

transcriptional profile was studied using high throughput sequencing technologies. Here we 

have used that data to understand co-expressed genes and their functional role in two 

different cell types, fusion positive and fusion negative using WGCNA analysis. The major 

biological processes which are correlated with fusion positive cells are extracellular 

structure organization, external encapsulating structure organization, regulation of cell 

migration and axon guidance etc. In addition to these investigations, gene expression data 

of a PARPi-sensitive cell line and resistance was analyzed to determine the role and 

capabilities of PARP-inhibitors in controlling drug-resistant High-grade serous ovarian 

cancer. This investigation also shed light on the possible mechanism of PARPi resistant 

cases and concluded that the resistance comes from the dynamics of four biological 

processes like regulation of cell junction assembly, cell-cell adhesion, tissue 

morphogenesis, neuron projection development and negative regulation of cellular 

component organization. Further analysis with different Gene Set Enrichment analysis 

illustrates that four processes, negative regulation of lens fiber cell differentiation, 

sarcoplasmic reticulum lumen, presynaptic membrane assembly and nitrobenzene 

metabolic process are activated in PARPi resistance. These processes are connected to each 

other through an important kinase protein ERBB2 which is interpreted as a key protein in 

PARPi resistance.  
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1. INTRODUCTION

The deadliest kind of gynaecological cancer is ovarian 

cancer [1]. Seventy percent of these patients have advanced 

high-grade serous ovarian cancer [2]. Surgery followed by 

platinum/taxane chemotherapy is the standard course of action 

for HGSOC. Because of this, there is still no hope for recovery. 

25% of HGSOCs return in the first six months of treatment, 

and a 5-year overall survival rate of 31% has been recorded 

[3]. Resistance develops to the existing chemotherapeutic drug, 

resulting in a poor success rate [4]. In recurrent ovarian cancer 

that is resistant to treatment, ABCB1 fusions are common [5]. 

After therapy, high-grade serous ovarian cancer (HGSC) 

samples underwent whole-genome analysis, which revealed a 

transcriptional fusion between ABCB1 and the upstream gene 

SLC25A40 linked to an increase in ABCB1 expression and 

eventually responsible for drug resistance. Chromosomal 

closeness to ABCB1 are major determinants in being involved 

in a productive fusion event. SLC25A40-ABCB1 Fusion was 

examined by Pishas et al. [6] using high-throughput 

sequencing technologies and data was deposited in the GEO 

database for further analysis. 

We've learned more about the mechanism of resistance 

using the weighted gene co-expression analysis method. The 

phenomenon of medication resistance is extraordinarily 

nuanced. Understanding the genes and signaling pathways 

involved in chemo-resistance processes and identifying 

innovative and effective medication targets as well as drug 

discovery to improve therapeutic results are essential. 

Cellular processes such as transcription, apoptosis, and the 

DNA damage response are all controlled by the Poly (ADP-

ribose) polymerase family (PARP). The first approved cancer 

treatments that precisely target DNA damage response were 

PARP inhibitors (PARPi) [7]. Drug resistant HGSOC can be 

treated with PARP inhibitors, although this therapeutic 

strategy imposes an unacceptable burden of DNA damage 

repair failure and may cause cell death. Resistance to PARPi, 

on the other hand, is lethal. The sensitivity of PARPi was 

tested using a functional assay. To better understand how 

PARPis function in a resistant cell line, this gene expression 

data was gathered. Fusion positive cells in HGSOC, as well as 

the gene expression data from PARPi-treated cells, were 
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compared and integrated to examine the potential of PARPi to 

control resistant HGSOC. 

Pishas et al. [6] found that the NABA matrisome-associated 

pathway, exterior encapsulation structure organization, and 

regulation of cell adhesion were the most significantly 

enriched pathways in fusion-positive clones. Here we have 

extended our analysis using weighted co-expression gene 

network analysis and integrated and compared with PARPi 

treated expression data analysis to understand the benefit of 

PARPi in the drug resistant HGSOC [8]. 

In a process known as epithelial-to-mesenchymal transition 

(EMT), epithelial cells lose cell-cell adhesion and cell polarity 

while developing mesenchymal traits. Homeostasis depends 

on cell-cell adhesion and interactions with the extracellular 

matrix. Cancer cells are able to defy social order by reducing 

intercellular adhesion, which results in the breakdown of 

histological structure, a hallmark of malignant tumors [9]. 

There are many ways in which the extracellular matrix (ECM) 

influences cancer cell proliferation and development. 

Proteomes encoded by genes for ECM and ECM-associated 

proteins make up the matrisome. ECM and matrisome in 

cancer cells are highly variable [10]. A crucial mechanism in 

drug-resistant ovarian cancer has been identified as the 

heterogeneity and dynamism of cell adhesion. Chemotherapy 

itself increases resistance by altering cancer cell adhesion 

signals and the extracellular matrix (ECM) surrounding the 

cells. The aggressiveness of HGSCs is driven by an adaptive 

response called matrix adhesion, which has only recently been 

discovered [11]. We have highlighted these dynamics together 

with other dynamical biological processes, such as cell 

junction construction, tissue morphogenesis, neuron 

projection development, and regulation of cellular component 

organization, using integrated data analysis.  

 

 

2. METHODOLOGY 
 

2.1 Weighted Gene Co-expression Network Analysis 

(WGCNA) 

 

WGCNA is primarily intended for use with microarray 

datasets or count data of RNA-seq, particularly transcriptomic 

data from the Gene Expression Omnibus (GEO) in order to 

construct a correlation network [12]. It is a powerful method 

for finding clusters (modules) of strongly associated genes in 

biological investigations. These modules are then used to scan 

genes for prospective biomarkers and medicinal targets. Genes 

with similar expression patterns are grouped into modules by 

WGCNA (GSE183210) using a systematic approach to 

clustering genes [13]. Cells with drug resistance due to fusion 

(SLC25A40-ABCB1 fusion) were subjected to transcriptome 

comparisons with counterparts with drug resistance due to 

non-fusion (fusion negative) cells. Data reduction and 

unsupervised classification are two features of the Weighted 

Correlation Network Analysis (WGCNA). If there is an 

association between the expression of two genes, the network 

will create a link between them. Based on the correlation value, 

genes may be more or less linked (the weights). Soft 

thresholding parameter (β) for network development was used 

in this package, which was set at 0.8 for scale-free topology 

model fit. Using R software, the WGCNA package was used 

to analyze the data. Different coloured modules were depicted 

in a cluster dendrogram. The Pearson correlation analysis was 

used to examine the relationship between gene modules in 

order to identify the module with the strongest association with 

genes that were fusion positive. There were also generated 

values for the gene significance (GS) and module membership 

(MM). GS>0.85 and MM>0.85 were chosen as critical 

selection criteria for key genes. 

 

2.2 Enrichment analysis 

 

Metascape and Enrichr [14] were used to analyze the GO 

and KEGG pathway enrichment of module genes to 

investigate their potential biological roles [15]. It is a search 

engine and a resource for curated gene sets that gathers 

biological information for the purpose of facilitating further 

biological discoveries. For experimental biologists, Metascape 

is a useful and efficient tool for the analysis and interpretation 

of OMICs-based investigations in the era of big data. GSEA 

(gene set enrichment analysis) is a tool for identifying classes 

of genes or proteins that are over-represented in a large set of 

genes and may be associated with phenotypes or disease 

characteristics. The strategy employs statistical methodologies 

to identify gene groups that are significantly enriched or 

depleted R package, Cluster Profiler was used for GSEA 

analysis [16]. 

 

2.3 Analysis of differentially expressed genes 

 

In sensitive cell lines, PARP inhibition can prevent the 

development of an EMT phenotype; however, in resistant cell 

lines, this does not happen. The GEO2R software package was 

used to analyze the difference in gene expression between the 

sensitive and resistant cell lines treated with PARPi (Smyth 

G.K 2005, Sean D and Paul S.M., 2007). P value (0.05) was 

used to identify the DEGs (differentially expressed genes). 

 

 

3. RESULTS 
 

We integrated and compared the WGCNA result of drug 

resistant fusion positive cell line (GSE183210) and 

differentially expressed genes in PPARi resistant case 

(GSE149940). 

 

3.1 Analysis of resistant HGSOC 

 
HGSOC cells with SLC25A40-ABCB1 fusions were 

studied by transcriptome analysis of fusion-positive cells 

versus fusion-negative cells for the phenotypic consequences 

of these fusions in High Grade Serous Ovarian Cancer 

(HGSOC). Dendrograms from WGCNA analysis show that 

the Turquoise module is strongly correlated with the trait. 

Figure 1 and 2 show the module's dendrogram and their 

correlation. 

Total 1460 genes were found in the Turquoise module. 

Those genes were studied for gene ontology and functional 

enrichment analysis using both Metascape and Enrichr. 

Enrichr Pathway enrichment analysis portrays that Axon 

guidance, cell adhesion molecules, ECM receptor interaction, 

Proteoglycan in cancer and pathways in Cancer play a major 

role in the transcriptome of the fusion positive High Grade 

Serous Ovarian Cancer. The biological process involved 

extracellular matrix organization, extracellular structure 

organization, external encapsulating structure organization 

and regulation of cell migration etc. (Figure 3). Metascape, on 

the other hand, proposes four biological processes: cell 
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adhesion regulation, cell junction organization, cell projection 

organization regulation, and positive regulation of cell 

component biogenesis (Figure 4). 

Total 1124 genes were found in blue genes that are 

downregulated in fusion positive cells. The most prevalent 

downregulated pathways were nervous system development 

and Cancer pathway. Involvement of nervous system 

involvement matters in the tumor microenvironment but in this 

case in the transcriptome of fusion positive cloned cell we 

cannot conclude anything about that. Few Pathways of Cancer 

are diminished in fusion positive cells also. Detailed analysis 

is required to investigate the cancer pathway in both the cases. 

 

 

 

Figure 1. Modules generated by WGCNA using the data, 

GSE183210. Phenotypic consequences of SLC25A40-

ABCB1 fusions in High Grade Serous Ovarian Cancer 

(HGSOC) 

 

 
 

Figure 2. Module Trait relationship in fusion positive and 

fusion negative HGSOC. Violet color shows anti correlation 

light brown shows correlation 
 

 
(a) Biological process 

 

(b) KEGG pathway 

 

Figure 3. GSEA analysis of the Turquoise module using 

Enrichr. (a) Biological process; (b) KEGG pathways 

 

 
(a) Turquoise module 

 
(b) Blue module 

 

Figure 4. Functional enrichment analysis using Metascape, 

(a) Turquoise module; (b) Blue module 

 

 

3.2 Analysis of PARPi treated cells 

 
To understand the potential of PARPi to treat HGSOC 

ovarian cancer we have compared the phenotypic consequence 

data of fusion positive HGSOC cell transcriptome data with 

gene expression data of PARPi sensitive. 

 

3.3 Differentially expressed genes 

 
The GEO database was used to obtain the dataset 

(GSE149940) containing the gene expression profiles of six 

AsPCs resistant to PARP inhibitors and six AsPCs sensitive to 

it. These findings were made possible thanks to the GPL4133 

platform (Agilent-014850 Whole Human Genome Microarray 

4x44K G4112F) [17]. DEGs between PARP-inhibitor 

resistant and sensitive AsPC were identified using the publicly 

available GEO2R tool based on the cutoff values of | log2FC| 

≥1.1 and p-values<0.05, which were calculated using the 

inbuilt R/Bioconductor and limma packages v3.26.8 from the 

GEO2R tool. For further investigation, the top 135 
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differentially expressed genes (DEGs) (32 up-regulated and 

103 down-regulated genes) were found after removing the 

duplicates. 

 

3.4 Functional enrichment analysis 

 

Functional enrichment analysis shown in Figure 5, shows 

PARP-inhibitor able to downregulate many pathways like 

epithelial cell differentiation, regulation of epithelial cell 

proliferation, prostaglandin synthesis and regulation, skin 

development, negative regulation of cell differentiation and 

many more which are the cause of anticancer activity in fusion 

positive HGSOC. 

PARPi resistance is the deadliest cancer. So, understanding 

the mechanism of PARPi resistant is crucial. 

Potential gene biomarkers for PARPis sensitivity and 

resistance have been identified by Razan Sheta and colleagues. 

Here we have mainly focused on understanding the biological 

process involved in PARPi resistance. Few biological 

processes like regulation of cell junction assembly, cell-cell 

adhesion, tissue morphogenesis, neuron projection 

development and negative regulation of cellular component 

organization are both downregulated and upregulated. This 

analysis depicts that PARPi has the ability to suppress most of 

the cancer-causing pathways shown in the previous figure but 

the resistance comes from the dynamics of the above-

mentioned five processes. 

Networks of those biological processes are shown in Figure 

5 that enable us to identify functional modules. The detailed 

analysis of genes involved in the process may lead to 

identifying the actual dynamical process involved in the 

PARPi resistance. 

 

 
 

Figure 5. (a) Metascape analysis of DEG from gene 

expression profiles of PARP-inhibitor resistant AsPC and 

sensitive AsPC 

 

 

 
 

Figure 5. (b) Functional network 

 

3.5 GSEA with cluster profiler analysis 

 

 

(a) 

 

(b) 
 

Figure 6. (a) GSEA analysis of PARP-inhibitor resistant data 

(GSE149940) using cluster profiler; (b) String analysis of 

genes involved in four processes negative regulation of lens 

fibre cell differentiation, sarcoplasmic reticulum lumen, 

presynaptic membrane assembly and nitrobenzene metabolic 

process 
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GSEA analysis of PARPi resistant vs sensitive is shown in 

Figure 6. According to P adjust value, it was found that 

negative regulation of lens fibre cell differentiation, 

sarcoplasmic reticulum lumen, presynaptic membrane 

assembly and nitrobenzene metabolic process get activated in 

PARPi resistant cases. We investigated the names of the genes 

involved in these processes and analyzed them with the 

STRING database. We added three layers of nodes to get the 

relation between these apparently isolated processes. The 

result shows that SPRY2 of Negative regulation of lens fibre 

cell differentiation is connected with PTPRD of presynaptic 

membrane assembly and HSP90B1 of sarcoplasmic reticulum 

lumen through the node ERBB2. So, we conclude that ERBB2 

is highly important in the PARPi resistant process. 

 

 

4. DISCUSSION AND CONCLUSION 
 

High Grade Serous Ovarian Cancer (HGSOC) is mostly 

homologous recombination repair (HRR)-deficient. Hence, 

they are susceptible to PARP inhibition. We compared the 

result of transcriptome analysis of fusion positive cells 

(SLC25A40-ABCB1 fusions) in drug resistant HGSOC with 

differentially expressed genes in PARPi resistant and sensitive 

AsPC cell line to understand whether PPAR inhibitor can 

control the Cancer Pathways in HGSOC. It was found (Figure 

1 and Figure 5) that PPARi can downregulate most of the 

major cancer causing pathways in drug resistant HGSOC. 

Homologous Recombination restoration (HRR) and DNA 

replication fork protection, have been found as potential 

mechanisms of PARPi resistance [18] It is reported that loss 

of PTEN leads to HRD, increased genomic instability and 

replication fork collapse [19]. Likewise, there are lots of 

conflicting results also [20, 21]. But clinical studies showed 

that the PARPi had increased progression-free survival 

regardless of the presence or absence of Homologous 

recombination repair deficient (HRD). As a result, we must 

thoroughly understand how PARPi acts, particularly how the 

roles of PARPi in processes unrelated to DNA repair impact 

the anti-cancer effect of PARPi, which will aid in 

understanding the development of resistance. 

Here we found the dynamics of regulation of cell junction 

assembly, cell-cell adhesion, tissue morphogenesis, neuron 

projection development and negative regulation of cellular 

component organization plays a major role in PPARi 

resistance. From this integrative and comparative analysis in 

drug resistant HGSOC we can conclude that cross talk and 

dynamics between Axon development, cell adhesion 

molecules, tissue morphogenesis and regulation of serine 

threonine kinase activity are responsible for PARPi resistance. 

Through the GSEA analysis by Cluster Profiler and 

STRING database we conclude the four processes negative 

regulation of lens fibre cell differentiation, sarcoplasmic 

reticulum lumen, presynaptic membrane assembly and 

nitrobenzene metabolic process are activated in PARPi 

resistant. Here we found that the nitrobenzene metabolic 

process is an isolated process but other processes are 

connected by an important protein ERBB2. It functions via 

phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) 

signaling pathways. One recent study emphasizes the role of 

Akt activation in PARPi resistance [22]. Our extrapolated 

STRING analysis fetches ERBB2 as an important node which 

couldn’t be captured in the usual analysis of transcriptome. 
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