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In many ways, our everyday lives depend on having access to reliable data about the state 

of the air around us. If you can predict the air quality ahead of time, you can put in place 

the right warnings and safety measures to keep people from getting hurt. The Control 

Boards in India set up the National Air Monitoring Programme (NAMP), which checks the 

air in 342 locations in 240 cities. There are a few distinct categories for the Air Quality 

Index (AQI). The AQI in Chennai was predicted using data that was collected and pre-

processed to account for missing values and eliminate duplicates. Air quality forecasting 

using deep learning technology is investigated using a huge dataset describing the 

surrounding environment. This study suggests a scheme for classifying AQI values using 

multi-output and (MMS) based on long short-term memory (LSTM). Increased 

classification precision is achieved by using Chaotic Hunger Games Search (CHGS) in the 

hyper-parameter tuning process. When compared to conventional methods, the AQI value 

provided by the proposed deep learning model is more precise and accurate for a given 

location within a metropolis. The suggested deep learning algorithm improves forecast 

accuracy, serving as a public service announcement to bring levels down to a safe level. 

The AQI values can be reliably predicted by the deep learning method, which aids in 

sustainable urban development planning. By coordinating road traffic signals and 

encouraging people to take public transit in strategic areas, the AQI target value can lessen 

pollution. 
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1. INTRODUCTION

"Air pollution" refers to the accumulation of damaging 

compounds in the atmosphere that can have negative effects 

on human well-being [1]. Air contamination is a major 

problem in China due to the country's rapidly emerging 

economy and the accompanying rise in the number of cars and 

industrial facilities [2]. Because of this, the Chinese 

government has assisted most major cities in setting up air 

quality monitoring networks [3]. Predicting air quality 

accurately, however, helps cities grow and protects people's 

health, which is critical for addressing the problem of air 

pollution [4]. Constantly worsening air quality has had 

devastating effects on China's economy and people's health. 

Pollutant levels in the atmosphere can be measured. It is 

derived. A summary of the AQI categorization criteria is 

provided in Table 1. To put it simply, studies reveal a link 

between air pollution and breathing illnesses [5]. The 

respiratory system is the main entry point for polluted air into 

the human body, where it can have devastating effects on 

health. When it comes to limiting the negative health effects 

of urbanisation, nothing is more important than having access 

to reliable early warnings about the air quality forecast for the 

next few days. As a result, it is crucial to keep an eye on air 

quality and issue alerts when necessary. 

Table 1. Classification standards for AQI 

AQI Representative color Air quality level 

100~150 Orange Bright pollution 

150~200 Red Reasonable pollution 

200~300 Purple Plain pollution 

1~50 Green Outstanding 

51~100 Yellow Good 

301~500 Maroon Serious pollution 

In the 1980s, it became common to measure contaminants 

with the help of numerical studies and methods for making 

accurate and statistical predictions [6]. Standard statistical 

methods include time series analysis. Classical statistical 

models are employed in this area [7]. Predicting air quality, 

however, is difficult. Weather conditions (temperature, 

humidity, wind speed, precipitation, etc.), vehicular pollution, 

and factory releases are just a few of the things that can readily 

alter it. Particulate matter is deposited and dispersed 

differently depending on the temperature, humidity, and 

precipitation [8, 9]. Wind speed also plays a role in the 

diffusion of particles throughout the atmosphere. 
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This is especially true in the realms of false intellect and big 

data, where deep learning has recently become increasingly 

popular. The reason for this is that it can effectively learn 

feature illustrations from massive amounts of input statistics, 

allowing it to uncover the underlying, rich properties of the 

data. Therefore, interdisciplinary research has popularised the 

subject of predicting urban air quality concentrations using 

deep learning [9]. The two most common types of air quality 

prediction models used today are the time series estimate 

model and the spatial and temporal prediction classical [10, 

11]. When it comes to sequence learning, RNNs have proven 

to be effective. Incorporating a LSTM or gated recurrent unit 

(GRU) into RNNs allows them to acquire knowledge of 

temporal dependencies over extended periods of time [12]. 

The present study contributes primarily in four ways: We 

propose a multi-output, multi-index supervised learning 

(MMS) model for (LSTM) networks, and we show how this 

model can be used to address two major challenges in the field: 

(1) integrating data on airborne particulate matter, atmospheric 

conditions, and gaseous pollutants. improving forecast 

accuracy by considering the interplay of many contaminants; 

CHCS is a technique for hyper-parameter tuning that was 

developed by fusing with chaotic maps present in the starting 

population. Animal behaviour motivated by hunger served as 

inspiration for the HGS algorithm. With the help of idea, this 

optimization technique mimics the impact of hunger on the 

exploring events of the animals. The presented CHGS 

algorithm successfully completed the optimization process 

and arrived at the best possible result. The process does not 

stall out at a regional plateau, but rather advances to the global 

level. The CHGS optimization approach is advantageous 

because of its quick and consistent convergence. The next 

section of the paper is the blueprint for the rest of the work: 

Related works are provided in Section 2, and the projected 

model is explained in Section 3. In Sections 4 and 5, we detail 

the validation analysis and its contribution. 

 

 

2. RELATED WORKS 

 

Using correlation investigation and time series investigation 

to extract the characteristics, Zhao et al. [13] offer a novel 

statistical learning framework for AQI prediction that 

incorporates spatial autocorrelation (SAC) (SVR). 

Furthermore, trigonometric regression is used to adapt the 

target location's historical AQI series, removing the non-

stationarity. An approach to feature selection that integrates 

heuristics with reinforcement learning is used to further 

enhance prediction accuracy. As in the regions in eastern 

China. We compared the proposed framework to a number of 

baselines, and the experiment shows that, across all of the 

main sites used to make accurate air quality predictions, the 

proposed framework provides much better forecasting 

accuracy than the baselines. 

Middya and Roy [14] explore a range of prediction 

strategies to generate optimal forecasting models that are 

pollutant-specific across the preprocessing to model-building 

phases. For this reason, this research details a strategy for 

making long-term predictions for key air contaminants. In 

order to create the models for predicting the effects of 

pollutants, researchers look into eight different models. These 

include the SARIMA, and Prophet. The data used in the study 

was collected over the course of four years by air quality 

nursing facilities. For most pollutants, models like Holt-

Winters, Bi-LSTM, and ConvLSTM provide accurate 

forecasts with low MAE and RMSE. 

The work of Haq [15] tries to fill in these blanks and 

improve the accuracy of air pollution organisation and 

prediction. A total of five ML models were created to classify 

air pollution, with one of them being the innovative 

SMOTEDNN. Each of the five models underwent careful 

hyperparameter adjustment and effective data pre-processing. 

In order to predict air pollution for a single step-index, three 

models were created using statistical autoregression. The 

accuracy of all the models developed in this study increased. 

In particular, the innovative SMOTEDNN model 

outperformed the other replicas from the current study and 

earlier studies with an accuracy of (99.90%). 

Using the extended a (NLSTM) neural network, Zeng et al. 

[16] suggested a new forecasting model for PM2. 

In this research, we offer a new method of 5 air quality 

predictions. The results reveal that the suggested method is 

superior than state-of-the-art forecasting methods MAPE). 

Wu et al. [17] developed a novel deep Bi-LSTM, which 

integrates the residual neural network (ResNet), and the (Bi-

LSTM) to predict future NO2 and O3 concentrations in a given 

region (Bi-LSTM). Previously, temporal and geographical 

structures were revealed by auto-correlation investigation and 

cluster investigation. They demonstrated that AQMN occurred 

identically in different locations and occurred at regular 

intervals (about once per 24 hours) (similarly distributed). The 

detected spatiotemporal features were then leveraged 

adequately, and topological information about monitoring 

networks, auxiliary contaminants, and meteorological were all 

adaptively incorporated into the model. Hourly observations 

from 51 stations across Shanghai were used, together with 

meteorological information, to draw conclusions. The Res-

GCN-Bi-LSTM model enhanced the O3, respectively, relative 

to the best performing baseline model. As a result of the 

combined effects of heavy traffic emissions and the titration 

reaction, the results from the traffic monitoring stations. These 

results show that the hybrid design is superior for areas with 

high concentrations of pollutants. 

The findings of a comparison between LSTM using time-

series class data, conducted by Ding et al. [18], reveal that the 

former is vastly superior in predicting future Air Quality Index 

values. Deep learning is used to forecast Air Quality Index 

values using actual data from a single city over the course of 

720 consecutive hours. A visual presentation of the data, 

prediction model, and metrics used to determine the AQI is 

generated when building the model from the visualisation. We 

may have a better knowledge of air pollution issues, and the 

role of policymakers in improving air quality and preventing 

respiratory ailments, etc., from the visual display and model 

construction of Air indices. 

To avoid falling into the local optimum trap and the 

overfitting pitfall, Aarthi et al. [19] present the Balanced 

(BSMO) method for efficient feature selection. The Pollution 

Control Board (CPCB) provided the predicted data for four 

cities in India. When a dataset is normalised, missing values 

are populated using Min-Max Normalization. The input 

dataset is represented in depth by a Convolutional Neural 

Network (CNN). For the Bi-directional (Bi-LSTM) model, the 

BSMO method picks the pertinent characteristics depending 

on the balancing factor. There are a number of governmental 

and non-governmental organisations whose missions include 

ensuring a high Quality of Life (QoL) on a regional or state-

wide scale that may find our approach particularly appealing. 
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3. PROPOSED SYSTEM 

 

❖ Discussion of the suggested mechanism's specific 

implementation follows. To begin with, the acquired 

Dataset was pre-processed to fill in any blanks and 

eliminate any unnecessary information. The AQI has 

the potential to serve as both a descriptive framework 

and a crucial means of risk communication. It informs 

the general public on the present state. Because of this, 

there is a potential threat to health, especially among 

the young, the poor, and the elderly who are more likely 

to have conditions such as respiratory and 

cardiovascular disease. 

❖ For the common man, the AQI is "One Number- One 

Color-One Description" of the air quality in his area. 

Values of the (AQI) and concordant background 

concentrations of the eight contaminants are shown in 

Table 2. As a complex composition, the effects of 

exposure to outdoor air pollution on human health 

varied widely. Sulfur dioxide. The (Cleanness Mission). 

Eight contaminants are used to determine air quality: 

❖ Particulate matter (PM2.5), 

❖ Ozone (O3), 

❖ Particulate matter (PM10), 

❖ Sulphur Dioxide (SO2), 

❖ Nitrogen Dioxide (NO2), 

❖ Carbon Monoxide (CO), 

❖ Lead (Pb), and 

❖ Ammonia (NH3) 

 

See Table 3 for a rundown of the AQI readings and the 

associated health effects. 

 

Table 2. Value of the (AQI) and concordant background concentrations of the eight contaminants 

 
Health limits for each pollutant group and the air quality index 

AQI Category 

(Range)↓ 

→ Classifications for pollutant measurements according to health thresholds and effects 

PM10 24-hr PM2.5 24-hr NO2 24-hr O3 8-hr 
CO 8-hr 

(mg/m3) 
SO2 24-hr NH3 24-hr Pb 24-hr 

Good (0− 50) 0− 50 0− 320 0− 40 0− 50 0− 1.0 0− 30 0− 200 0− 0.5 

Severe (401− 500) 430 + 250+ 400+20 748+* 34+ 1600+ 1800+ 3.5+ 

Satisfactory (51− 100) 51− 100 31− 60 41− 80 51− 100 1.1− 2.0 41− 80 201− 400 0.5 –1.0 

Poor (201− 300) 251− 350 91− 120 181− 280 169− 208 10− 17 381− 800 801− 1200 2.1− 3.0 

Abstemiously 

polluted(101− 200) 
100− 250 61− 90 81− 180 100− 168 2.1- 10 81− 380 400− 800 1.1− 2.0 

Very poor (301− 400) 351− 430 121− 250 281− 400 209− 748* 17− 34 801− 1600 1200− 1800 3.1− 3.5 

 

Table 3. AQI and their related health influences 

 
AQI Related health influences 

Good (0–50) Negligeable Impact 

Satisfactory (51–100) May cause slight living discomfort to subtle people. 

Polluted (100–200) 
Asthmatics, the elderly, the young, and those with preexisting cardiac issues are only some of the populations more 

likely to struggle to breathe in these settings. 

Poor (201–300) 
People with respiratory problems or heart illness may feel uneasy after prolonged exposure, and anyone may 

experience discomfort. 

Very Poor (301–400) 

Long-term exposure could make people sick with respiratory issues. People with preexisting respiratory or 

cardiovascular conditions may be especially susceptible to this effect. Prolonged exposure could make people sick 

with respiratory problems. Sick patients, especially those with respiratory and cardiovascular conditions, may feel 

this effect more strongly. 

Severe (401− 500) 

Even healthy persons may experience some respiratory effects, and those with preexisting lung or heart conditions 

may suffer much more severely. In some cases, the negative effects on health can manifest themselves even during 

moderate exercise. Possibility of respiratory effects in healthy individuals; potential for more severe effects in those 

with preexisting lung or heart conditions. Even mild exercise may have negative effects on health. 

 
3.1 Dataset description 

 

Chennai provided the data used in this analysis [20]. There 

are three different stations located at Manali, Velachery, and 

Alandur. RH, PM2.5 levels, BP, WS, and WS intensity are the 

wind-related variables that have been gathered from these 

locations for further study (WD). All stations combined 

produced a dataset with 35039 data rows, for a grand total of 

105117 data rows, and the composed data are displayed in 15-

minute intervals corresponding to the time period 2020. There 

was almost a 78% gap in PM2.5 data. After processing, the 

data was cleansed to get rid of any rows with blank columns 

and filtered to only include information on rows with PM 2.5 

levels below 250 g/m3. Because not all rows contained the 

same information, we had to narrow the remaining set down 

to just 22827 rows. The dataset is depicted in detail in Figures 

1 and 2. 

 
 

Figure 1. Sample input dataset 

 

Every 15 minutes, data on atmospheric components like, 

CO, and Ozone was collected from three stations spread over 

Chennai. Each station contributes 35039 rows of data, for a 

total of 490546 rows in the Dataset, covering the period of 

time between May 1, 2019, and April 30, 2020. Data sets are 

implemented to store data that may be accessed by an 

application. Source code, macro libraries, system variables, 
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and parameters are all examples of data sets utilised by 

applications and the operating system. 

 

 
 

Figure 2. Details of the dataset 

 

3.2 Pre-processing 

 

In the first step, the data are taken from the Dataset and pre-

processed to get rid of extraneous information. As a result, the 

input data is filtered using a pre-processing procedure to 

remove extraneous information. The normalisation strategy is 

utilised for the pre-processing stage as it is more efficient at 

identifying outliers and filling in missing data. The primary 

benefit of these methods is based on the assumption that 

aggregating forecasts from classifiers may allow for more 

accurate detection of class noise in input data. As a result, the 

raw data is pre-processed to obtain silent data for subsequent 

processing, which occasionally suppresses valuable info or 

leads to the info loss. 

 

3.3 Air quality forecast perfect based on LSTM 

 

3.3.1 Time series forecast 

Both meteorological elements and the mutual limitations 

between pollutants have an impact on the concentration of air 

pollutants, in addition to the concentration of pollutants in the 

past. Regarding time series data, LSTM shines. To better 

anticipate MMS messages, we developed an LSTM-based 

prediction model. Here is how we characterise time series 

forecasting: 

The concentration of particulate matter in the air is signified 

by P=p1, p2, ..., pT, the information of meteorological factors 

is signified by W=w1, w2, ..., wT, and the concentration of 

gaseous pollutants in the air is denoted by A=a1, a2, ..., aT; 

hence, R=PWA. The 15 features that make up each element r 

i in the set R are as follows: pm2.5. 

The target prediction time series is denoted by z1=(t,t + 1,t 

+ 2,...,t + N), whereas O z1=o1, o2, ..., os and Fz1=f1, f2, ..., 

fs are the experiential and forecast values of s air pollutant 

pointers. 

Predicting the concentration of the target pollutant for the 

next N hours requires looking at the time series before time t, 

which is represented by z2=t-1, t-2, ..., t-D. O pz2, O wz2, and 

O az2 stand for the air quality observation consequences of 

particle pollutants, atmospheric factors, and gaseous pollutants, 

respectively, over the past D hours. The same holds true for z2 

[1, T] and O pz2, O wz2, O az2, R. 

were utilised to evaluate the results of the predictions. That 

example, RMSE and MAE have their limits, in that the same 

algorithm model can be used to solve multiple issues, and they 

cannot capture the benefits and drawbacks of this model for 

diverse problems. Because the data dimensions are unique 

across different practical applications, it is difficult to 

determine for which problem a given model is most suited for 

making predictions. As a result, the accuracy of the predictions 

is measured on a scale from 0 to 1. R2 is the regression, and is 

used to assess. Eq. (1) is provided to help with the RMSE 

computation. Below are the formulas for determining both 

MAE and R2: 

 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑖 − 𝑝𝑖|

𝑚

𝑖=1

 (1) 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑝𝑖)2𝑚
𝑖=1

∑ (𝑦𝑖 − �̂�)2𝑚
𝑖=1

 (2) 

 

where, yi, pi, and yb stand for the expected, measured, and 

mean levels of air pollution. This is the number of samples 

used in the experiment, denoted by m. When the Mean 

Absolute Error and (RMSE) are both modest and the R2 value 

is high, the model error is small and the prediction presentation 

is good. 

 

3.3.2 MMS prediction model 

Through a process of layer-by-layer feature translation, 

deep learning is able to take the features of a sample in one 

space and convert them to a new feature space, which 

improves prediction, leverages massive data to learn features, 

and better represents the data's rich internal information. 

Gathering relevant information is the first stage. Using time-

space analysis, we may extract the air quality time series data 

set R. The next step. Next, come the data entry and anticipated 

outcomes. The D-hours-earlier time series would be 

transformed into numerous 2-by-2 matrices. To facilitate 

LSTM's processing of input data, a computational architecture 

with multiple layers and an adequate number of neuron nodes 

was crafted. Through the network's learning and tuning, we 

determined which input and output layers would be most 

beneficial, and we shaped the function association from input 

to output to ensure that the resulting association was as 

accurate as possible. Decoding the LSTM output and obtaining 

the final prediction result required a completely linked layer, 

which was analogous to the model's output layer. 

The first step is to obtain the raw data from each illustrative 

station in Chennai (S1, S23, S29, and S31); the second step is 

to apply the aforementioned MMS model to process the data 

in order to obtain a sequence at times T, T+1, ..., T+N (the 

attentiveness sequence of SO2); and the third step is to 

calculate the average value of each pollutant index (PM2.5). 

 

3.3.3 Steps of MMS prediction model 

Processing the data beforehand is the first stage. The raw 

dataset should undergo outlier removal and missing value 

stuffing before being fed into the model. This will reduce the 

likelihood of unwanted effects from the data dimension on the 

prediction outcome and speed up the rate at which the data 

converges. The range of the data has been standardised to (0, 

1). 

After that, you must change the file type. Synchronizing 

input and output sequences, as is done in supervised learning, 

from the original data sequence. A multivariate time series is 

used for analysis. The multivariate time series can be put to 

use by utilising.  

Third, initialise the LSTM's parameters by splitting the data 

into a training and testing set. Limiting the number of 

generations, configuring the sum of neurons, and determining 

the size of the fully linked network all require setting the epoch. 

The process of training an LSTM model involves selecting an 

appropriate, loss function, and optimization method. 
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Fourth, anticipate using the perfect. Investigating how well 

the model does on a test set. 

Output: Prediction model parameters such as maximum 

epoch, sum of neurons, learning rate, minibatch size, L2 

regularisation should be saved. 

Several hyperparameters in this study were determined with 

the aid of CHGSA. These hyperparameters included the 

number of LSTM layers, the sum of neurons in each LSTM 

layer, the number of fully connected layers, time lag D. In 

order to find the optimal parameter, we hold all other variables 

constant and examine how they affect the model's ability to 

make predictions. 

 

3.4 Hyper-parameter optimization using Hunger Games 

Search (HGS) optimization algorithm 

 

The Human Genome Project (HGS) is an example of a 

optimization technique. Used to tackle optimization problems 

subject to restrictions, it is easy to implement, stable, and 

competitive [21]. The HGS algorithm is predicated on the idea 

that animals would act in ways that best satisfy their hunger. 

The animals' social behaviours serve as inspiration, while their 

hunger dictates the extent of their foraging. Using the idea of 

"Hunger" as a driving force behind all human endeavours, this 

dynamic optimization method is based. The hunger is 

simulated in the HGS optimization algorithm through the use 

of weights that are meant to reflect how the hunger impacts the 

search stages. Animal logic is employed as the basis for the 

algorithm's operation. Animals engage in these behaviours, 

which are viewed as adaptively evolving in nature, because 

they do so in an effort to increase their chances of obtaining 

food. 

 

3.4.1 The logic of search, games 

Animals follow social norms that are shaped by their 

surroundings. The behaviour and appearance of animals are 

subject to rules. An animal's hunger will influence its decisions 

and actions. Animals' nervousness and the hunters' uneasiness 

both increase when they're hungry. When their energy reserves 

are low, animals will search for food. In order to make a clean 

transition between exploration and defence, they need to look 

for food in addition to moving across habitats. The ability to 

flee from predators and discover new food sources is bolstered 

by animals' social lives. Living in groups increases an animal's 

chances of survival. Animals who are in better health have a 

greater chance of survival in the wild because they are better 

equipped to find food. Nature provides its own version of 

"Hunger Games," where the stakes are high and each false 

move could be fatal. Animals' actions can be influenced not 

just by physical needs like hunger but also by psychological 

ones like fear of humans acting as predators. There is a direct 

correlation between the intensity of hunger and the intensity of 

the quest for food. This means the animal is making a greater 

effort to find food in the days leading up to his death. Species 

migrations and logical alternatives underpin the proposed 

optimization strategy. 

 

3.4.2 Mathematical model 

In this subsection, we present the fundamental exact 

equations underlying the HGS optimization procedure. As 

such, the mathematical model is constructed around 

behaviours that are driven by hunger. 

Getting ready to dig in: Everyone is believed to get along 

and aid one another. Eq. (3) [21] provides the central equation 

of the proposed HGS optimization method, and it is this 

equation that embodies the individuals' cooperative 

communication: 

 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

=

{
 
 

 
 𝐺𝑎𝑚𝑒1: 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (1 + 𝑟𝑎𝑛𝑑𝑛(1))                                 𝑟1 < 𝑙

𝐺𝑎𝑚𝑒2: �⃗⃗⃗� 1𝑋 𝑏 + 𝑅 → �⃗⃗⃗� 2 |𝑋 𝑏 − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |,   𝑟1 > 𝑙, 𝑟2 > 𝐸

𝐺𝑎𝑚𝑒3: �⃗⃗⃗� 1𝑋 𝑏 − 𝑅 → 𝑊2
⃗⃗ ⃗⃗  ⃗ |𝑋𝑏⃗⃗ ⃗⃗ − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |,     𝑟1 > 𝑙, 𝑟2 < 𝐸

 
(3) 

 

In Eq. (3), people are searching for both sites close to the 

optimal one and other locations far away from it. This 

guarantees that the search space is fully covered during the 

exploration process. 

Hunger's part: Mathematical expressions of the population 

starving characteristics in the exploration field are provided, 

and W1 is determined using the formula (4) [21]. 

 

𝑊1
⃗⃗ ⃗⃗  ⃗(𝑖) = {

ℎ𝑢𝑛𝑔𝑟𝑦(𝑖)
𝑁

𝑆𝐻𝑢𝑛𝑔𝑟𝑦
× 𝑟4    𝑟2 < 𝑙

1,                                              𝑟3 < 𝑙

 (4) 

 

Meanwhile, �⃗⃗⃗� 2 in Eq. (3) is calculated as shown in Eq. (5): 

 

�⃗⃗⃗� 2(𝑖) = 2(1 − 𝑒−|ℎ𝑢𝑛𝑔𝑟𝑦(𝑖)−𝑆𝐻𝑢𝑛𝑔𝑟𝑦|)
𝑟5

 (5) 

 

where, hungry is the hungry of the populace. r3, r4, and r5 are 

random values among 0 and 1. N is the population size. 

SHungry describes the synopsis of the populaces’ hungry 

feelings. 

The hungry (i) can be signified exactly as shadows Eq. (6) 

[21]: 

 

ℎ𝑢𝑛𝑔𝑟𝑦(𝑖)

= {
0,                          ∀𝐴𝑙𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) == 𝐵𝐹

ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) + 𝐻, ∀ 𝐴𝑙𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = 𝐵𝐹
 

(6) 

 

where, AllFitness(i) is the suitability of the present iteration. 

The optimal population has their hunger reduced to zero at 

each repetition. Meanwhile, the old population's hunger is 

multiplied by the new hunger (H). H values for each 

population are distinct from one another. Optimization using 

the HGS method is designated in pseudo-code form in 

Procedure 1. 

 

Algorithm 1. Pseudo-code of HGS 

Initialize the parameters and positions 
while (t ≤ T) 

Calculate the fitness of all individuals 
Update BF, WF, Xb, BI 

Calculate the Hungry, W1, W2 

for each individual 

Calculate E 

Update R and positions 

end for 

t = t + 1 
end while 

eturn BF and Xb 

 

3.4.3 Chaotic hunger games search optimization algorithm 

(CHGS) 

The initial population in meta-heuristic optimisation 

techniques is chosen at random between two given boundaries. 

437



 

The effectiveness of optimization algorithms relies heavily on 

the state of the agents at the outset. The quality of the starting 

population greatly affects the final product. In this study, we 

use chaotic maps to enhance the founding population. The idea 

of using chaotic maps to alter the seed population in 

metaheuristic algorithms was introduced [22, 23]. 

Based on the discussion [23], it has been shown that the 

logistic chaotic maps are the most computationally efficient of 

the modern chaotic maps; this is because they use a random 

initialization of statistics close to 0 and 1. Mathematical 

representations of this sympathetic of chaotic mapping are 

provided in Eq. (7). 

 

𝑦1 = 𝑟𝑎𝑛𝑑, 
𝑦𝑖+1 = 4𝑦𝑖(1 − 𝑦𝑖), ∀ 𝑖 ∈ 𝑁 

(7) 

 

In this case, rand is a random vector between 0 and 1. As a 

result, the proposed CHGS optimization method uses the 

values produced from this kind of chaotic mapping to define 

its initial population, rather than the values provided by the 

HGS. The HGS simulation performance is enhanced by this 

replacement of the starting population. 
 

 

4. RESULTS AND DISCUSSION 

 

After conducting a battery of tests, we settled on an LSTM 

architecture that included three hidden layers, each containing 

150 neurons; additionally, we used a single fully-connected 

layer consisting of a single node. In addition, the tanh function 

is used as the (LSTM) model. Best results were obtained when 

training was limited to 100 iterations and the batch size was 

set to 512. 

Using the air quality time series t, the prediction model 

attempts to approximation the concentration of during the next 

N hours. Based on the findings of several studies, even a very 

short delay may not be enough to ensure that the model 

receives adequate information for its long-term memory. 

However, if there is a long lag time, more noise from unrelated 

sources can enter the picture and distort the prediction. 

Because of this, we tested the model's prediction ability using 

the aforementioned three assessment indicators across the 

range of time lag D values. The results demonstrate that the 

hypothesis that "more time elapses, the less inaccuracy the 

model will have" is false. Even after adding more historical 

concentration data, the model's accuracy has not improved. 

Contrarily, as D grows larger, model training time increases 

with each epoch, and model performance degrades overall. To 

this end, we set D=9, and the resulting model required far less 

time and produced significantly fewer errors. 

 

4.1 Model evaluation metrics 

 

Prediction tests using the AQI index were used to validate 

the model and demonstrate its efficacy in assessing air quality. 

Overfitting occurs when too many training data points are used 

during model development, while underfitting occurs when 

too few are used. Consequently, the precision of the model 

depends critically on the method of data division that is used. 

Here, we normalised 8784 data points and used 95% of them 

for training and the remaining 5% for testing. To assess the 

accuracy of the model's predictions, we choose to use the 

(RMSE), mean absolute percentage error (MAPE), and R-

squared (R2). The required formulae are shown in Eqns. (8)-

(11). 

 

𝑀𝐴𝐸 =
1

𝑛
∑|�̂�𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (8) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑖=1

 (9) 

 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

�̂�𝑖 − 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

 (10) 

 

𝑅2 = 1 −
∑ (�̂�𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (�̅�𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

 (11) 

 

where, yi was either the actual value, the mean value, or any 

combination of the two; yi was the forecast value. The model 

fitting effect was enhanced as the MAE, RMSE, and MAPE 

values decreased. In addition, the perfect fitting impact was 

enhanced when R2 approached 1. Table 4 shows the statistical 

breakdown of the dataset, including the number of 

observations, means, standard deviations, null observations, 

25%). 

 

Table 4. A statistical synopsis of the dataset's exploratory variables 

 
 PM2.5 (Std60) NO2 (Std80) SO2 (Std80) CO (std4) Ozone (Std180) AQI 

count 21707.000000 21707.000000 21707.000000 21707.000000 21707.00000 21707.000000 

mean 30.321609 12.088319 6.528234 0.703744 37.195119 22.412852 

std 38.133978 9.771051 5.782149 0.403747 36.083979 14.346564 

min 0.010000 0.010000 0.010000 0.000000 0.010000 2.871111 

25% 12.710005 5.670000 3.300006 0.450000 11.050000 15.11153 

50% 22.700000 10.31000 5.950000 0.660000 26.320000 20.075278 

75% 36.580000 16.17000 8.370000 0.8600 48.9600 26.445 

max 999.990000 312.93000 179.35000 10.000000 199.550000 359.8366 

 

The validation analysis is based on 70%-30%, 90%-10% 

and 80% and 20% of training and testing data. The generic 

models are considered and implemented using the collected 

datasets and results are averaged in Tables 5 to 7. 

The Validation Analysis in Table 5 above is based on 70%-

30% of the data. In this analysis, we have used different 

models such as CNN, RNN, LSTM, LSTM-MMS, and LSTM-

MMS-CHGS. CNN achieved an MAE of 8.65, an RMSE of 

13.02, an MAPE of 20.53 0.73, and an R2 value of 0.73 in this 

experimental analysis. and next the RNN reached the MAE of 

20.95, the RMSE of 27.90, the MAPE of 37.62, and finally the 

R2 value of 0.75. The next technique, LSTM, reached the 

MAE value of 8.87 and also the RMSE value of 11.21, the 

MAPE value of 25.12, and finally the R2 value of 0.8. Another 
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method of LSTM-MMS reached the MAE of 6.05, the RMSE 

of 9.43, the MAPE of 14.25, and finally the R2 value of 0.89. 

And finally, we evaluated the method of LSTM-MMS-CHGS 

and reached the MAE value of 4.42, the RMSE value of 9.12, 

the MAPE value of 10.05, and finally the R2 value of 0.96, 

respectively. By this comparison and analysis, the proposed 

model achieved better results than additional models. 

 

Table 5. Validation analysis based on 70%-30% of data 

 
Model MAE RMSE MAPE R2 

CNN 8.65 13.02 20.53 0.73 

RNN 20.95 27.90 37.62 0.75 

LSTM 8.87 11.21 25.12 0.8 

LSTM-MMS 6.05 9.43 14.25 0.89 

LSTM-MMS-CHGS 4.42 9.12 10.05 0.96 

 

In the Table 6, it is represented that the analysis of various 

models is based on 80%-20% of the data. In this analysis, we 

have used different models such as CNN, RNN, LSTM-MMS, 

and LSTM-MMS-CHGS. In this experimental analysis, CNN 

reached an MAE of 11.02 and a RMSE of 14.15, as well as an 

MAPE of 22.64 and a final R2 value of 0.79. The RNN then 

achieved an MAE of 17.11, an RMSE of 23.32, an MAPE of 

32.37, and an R2 value of 0.82. The next technique, LSTM, 

reached the MAE value of 7.62, the RMSE value of 10.21, the 

MAPE value of 22.87, and finally the R2 value of 0.86. 

Another method of LSTM-MMS reached the MAE of 6.04, 

the RMSE of 7.46, the MAPE of 14.13, and finally the R2 

value of 0.89. And finally, we evaluate the method of LSTM-

MMS-CHGS and reach the MAE value of 4.02, the RMSE 

value of 7.11, the MAPE value of 8.07, and finally the R2 

value of 0.97, respectively. By this comparison and analysis 

the projected model reached the better results than other 

replicas. 

 

Table 6. Analysis of various models based on 80%-20% of 

data 

 
Model MAE RMSE MAPE R2 

CNN 11.02 14.15 22.64 0.79 

RNN 17.11 23.22 32.37 0.82 

LSTM 7.62 10.21 22.87 0.86 

LSTM-MMS 6.04 7.46 14.13 0.89 

LSTM-MMS-CHGS 4.02 7.11 8.07 0.97 

 

Table 7 depicts the comparative analysis of the proposed 

model using 90%-10% of the data. In this analysis, we have 

used different models such as CNN, RNN, LSTM-MMS, and 

LSTM-MMS-CHGS. CNN achieved a MAE of 10.11, a 

RMSE of 13.25, a MAPE of 21.02, and an R2 value of 0.73 in 

this experimental analysis.The RNN then achieved a MAE of 

20.95, a RMSE of 27.90, a MAPE of 37.62, and an R2 value 

of 0.75.The next technique, LSTM, reached the MAE value of 

7.65, the RMSE value of 11.21, the MAPE value of 25.12, and 

finally the R2 value of 0.87. Another method of LSTM-MMS 

reached the MAE of 6.05, the RMSE of 9.43, the MAPE of 

14.25, and finally the 21 values of 0.89. And finally, we 

evaluate the method of LSTM-MMS-CHGS and reach the 

MAE value of 4.05, the RMSE value of 6.25, the MAPE value 

of 8.05, and finally the R2 value of 0.97, respectively. By this 

comparison and analysis, the projected model achieved better 

results than other models. The MAE, MAPE, RMSE and R2 

analysis for various training and testing data is shown in 

Figure 3, Figure 4, Figure 5 and Figure 6 respectively. 

Table 7. Comparative analysis of proposed model using 

90%-10% of data 

 
Model MAE RMSE MAPE R2 

CNN 10.11 13.25 21.02 0.73 

RNN 19.35 26.25 42.11 0.84 

LSTM 7.65 10.25 22.85 0.87 

LSTM-MMS 6.05 8.32 14.21 0.89 

LSTM-MMS-CHGS 4.05 6.25 8.05 0.97 

 

 
 

Figure 3. MAE analysis for various training and testing data 

 

 
 

Figure 4. RMSE analysis 

 

 
 

Figure 5. MAPE analysis for three ratios of training and 

testing data 
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Figure 6. R2 analysis 

 

 

5. CONCLUSIONS 

 

Forecasting air quality is hard because particles and gases 

are mobile, changeable, and hard to predict in time and place. 

However, the ability to analyse, forecast, and monitor air 

quality is becoming increasingly vital due to the critical effects 

of air pollution on individuals and the situation, especially in 

urban areas. Many cities have taken action to minimise air 

pollution based on AQI estimates and projections. The 

received dataset has been pre-processed in order to fill in any 

gaps and remove any extraneous data. This method makes 

AQI forecasts under a wide variety of weather scenarios. Then, 

the LSTM model is used to make an accurate prediction of the 

AQI in the area of interest using deep learning. With the use 

of the AQI, the citizens of a big city can learn about the air 

quality where they live. Through the application of deep 

learning, a precise AQI estimation was accomplished in a 

major city. Public transportation and road traffic signal 

synchronisation are two areas where the city planning 

committee can benefit from the expected values. In areas 

where pollution levels are exceptionally severe, it may be 

possible to switch to a system consisting solely of electrically 

powered or non-motorized vehicles. In metropolitan settings, 

these forecasts will be especially helpful in creating a 

sustainable community for developing nations. In the future, 

the AQI values of a city can be improved by using the hybrid 

deep learning algorithm to suggest an air pollution reduction 

strategy. The places most at risk from air pollution can be 

pinpointed using forecasted AQI values. 
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