
Data Export and Optimization Technique in Connected Vehicle

Ayushi Jain1 , Durgesh Nandan1* , Pramoda Meduri2

1 Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune 411004, India
2 Automotive Software, Verolt Engineering Private Limited, Pune 411001, India

Special Issue: Technology Innovations and AI Technology in Healthcare

Corresponding Author Email: durgeshnandano51@gmail.com

https://doi.org/10.18280/isi.280229 ABSTRACT

Received: 10 February 2023

Accepted: 15 March 2023

As know, the autonomy level grows up, and the number of data exchanged between cars

will be more. Several electronic parts have recently been added to automobiles, increasing

the data and storage of cars. An internal network that communicates pertinent information

status about the vehicle and is aware of a specific signal is built by the electronic

components. The automobile has taken action to address this data and storage issue by

making the CAN database (also known as a DBC format file), which contains the signal

information assigned in the CAN data payload, secure. This paper demonstrates a method

for gathering data from ECU, making it understandable to humans, and sending data or a

wireless internet communication using an IOT platform. As a result, we suggest a solution:

data must be compressed for quicker and more secure transmission. Data compression is

performed before data transmission, it is used for reducing the number of bits used for each

piece of data. Moreover, source encoding is necessary to restrict the size of data storage

files. The three stages of this research are “CAN-bus data gathering, CAN data compression,

and data transmission to cloud storage.” By research, three objectives to identify the

compression ratio, Graphical User Interface (GUI), and integration will be achieved. Unlike

an existing method that is designed based on messages and signals with the Bit start,

Bitlength, and CAN data payload in this study, we demonstrate that our method outperforms

the current way of using a publicly accessible DBC format file named Open DBC as a

reference.

Keywords:

connected car, data compression, MQTT

cloud, CAN DBC format file, Graphical User

Interface (GUI)

1. INTRODUCTION

Introducing the “connected vehicle (CV) guidance system”,

a brand-new category of guiding system. This system makes

use of connected car [1] technology to achieve dynamic

vehicle guidance. The “CV guidance system” enables dynamic

guiding for “ECU network flow” through “’real-time Signal

information” and is based on “vehicle-to-vehicle [2] (V2V),

vehicle-to-infrastructure (V2I), and vehicle-to-smart terminal

(V2T) technologies”. The connections in modern cars can be

internal (like the bus systems that link the sensors and

processors inside, for example) or external (like the protocols

that allow connectivity between passing vehicles). The

connected car [3], which is a vehicle with Internet connectivity,

communication capabilities with other vehicles and road

infrastructure, and the ability to gather real-time data from

multiple sources, is predicted to be a key player in the future

Internet of Things [4]. With the support of hardware and

software that facilitate widespread knowledge transfer rapidly

via the internet, around the world, technology is developing [5]

quickly. Information technology professionals can effortlessly

by sending information over the internet. Not all data can be

sent easily, though. A method of transforming data from one

representation to another compressed (in bits) representation

that retains the same information but is as small as possible is

known as data compression. By deleting unwanted or

duplicated information, the size of the data is decreased.

Reduced storage and/or communication costs allow for the

storage [6] or transmission of the data. By compressing a file

to half its original size, the storage medium's capacity is

increased. When this occurs, it might be possible to store the

data higher up in the storage hierarchy, which would ease the

load on the system's input/output channels. Lossless and Lossy

compression are two different compression methods. The

input image and the reconstructed image are identical in a

lossless compression [7] strategy. Techniques for lossless

picture compression first divide the images into their

component pixels. Comparing lossy and lossless compression,

lossy compression offers a higher compression ratio. With this

process, there is some information loss in the compressed

image, which makes it different from the original image. The

entire transmission of information at a specific time is the

basic objective of digital communications. If the data being

transferred is huge, it will be challenging to accomplish this

goal because larger data take longer to transmit fully. The

“Huffman Algorithm, Lempel-Ziv Algorithm, Shannon-Fano

Elias Encoding, Arithmetic Coding [8], and Adaptive Coding”

are only a few of the source coding methods that are accessible.

The bulk of ECUs shares important status information about

the vehicle using the “controller area network (CAN)

protocol”, which is the de facto standard for in-car network

connectivity. To prevent hackers from learning about CAN [9]

messages that control crucial commands, automakers have

made the data in the “CAN database confidential (i.e., DBC

Ingénierie des Systèmes d’Information
Vol. 28, No. 2, April, 2023, pp. 517-525

Journal homepage: http://iieta.org/journals/isi

517

https://orcid.org/0000-0001-5839-9024
https://orcid.org/0000-0002-9762-3559
https://orcid.org/0009-0009-6200-1694
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.280229&domain=pdf

format file)”. Some studies have tried to recreate a DBC

format file to lessen this. Invasive and non-invasive strategies

can be used to classify these attempts. The intrusive technique

involves disassembling cars to directly examine an ECU and

check its programming. The non-invasive method may be

preferable for reconstruction because the intrusive procedure

can easily be stopped by any preventative measure, like

turning off a debugging port. This paper's major objective is to

create an embedded system that can connect to an M2M broker,

connect with other integrated devices using a cloud server, and

be changeable using a cloud-based web service. The MQTT

protocol was selected for this study's aims because it seemed

to best fit the requirements presented. Using a publish-

subscription architecture, MQTT [10] is an open-source TCP

protocol. Clients "subscribe" to desired subjects in publish-

subscribe ("pub-sub") by connecting to a central broker. Any

client nodes that have subscribed to that topic will get any

messages that a client "publishes" to. Since it is a TCP-based

protocol, MQTT has a comparatively high overhead but also

offers a high level of guaranteed [11] Quality of Service (QoS)

and allows both one-to-one and one-to-many messages.

MQTT is reasonably simple to utilize for apps thanks to its

many open-source libraries and active support community.

For effective graphic user interface design and development,

intelligent software and tools are needed. These tools are

utilized when creating designs, beautifying the GUI [12], and

acquiring necessary data. Utilizing these technologies has

advantages such as a streamlined design tool that enables you

to ship better designs more quickly. better typography,

redlines, colors, measurement, and other tools. This survey

offers a thorough examination of the instruments. Different

frameworks and tools, including Figma, Whimsical, and Open

Dataset, are examined based on their features and intended

uses. We developed the Connected-Car Prototyping [13]

Framework and repeatable program templates to enable the

prototype of informatics services. The platform and templates

speed up the time to market and make it easier to produce

prototypes. They are constructed using cloud concepts to

reduce the initial setup costs for prototypes and boost

scalability. It is now simple to provide connected services that

are online applications for desktops thanks to a range of tools

and back-end technologies. For numerous Web platforms and

programming languages, these frameworks and platforms

provide software development kits. They frequently offer

services like data storage, data compression, and enhancement

of application development. Time-to-market and flexibility

become essential when future client demand is unknown. We

created the Connected-Car Prototyping [14] Platform to

overcome these issues and make telematics and cloud service

development simpler. It offers a back end for programs

communicating with an automobile's ECU.

2. LITERATURE REVIEW

In this paper [15], For most of the text files, the combination

of the RLE and LZW compressors will result in somewhat

better compression than either RLE or LZW alone. Since both

the RLE and the LZW algorithms take benefit of common

redundancy in text-based files (i.e., repetitiveness or multiple

examples of phrases), combining this is beneficial. An aspect

of the two algorithms into one algorithm can lead to better

results than the individual performance, but in the end, they

find that individual performance gives more compression ratio.

In this paper [16], their text data was limited, so they

evaluated only three lossless data compression algorithms. In

the future, they plan to test lossless and lossy compression

algorithms on audio, video, and image data. LZW performs

better than the other two algorithms when it comes to de-

compressed file size, but when it comes to compression, they

discovered that LZW takes a lot longer to compress a file than

the other two methods. IoT application principles are

discussed in this study. In terms of “power, security, QoS,

communication, and durability”, we also put more of emphasis

on benchmarking and contrasting [17] “HTTP, MQTT, DDS,

XMPP, AMQP, and CoAP”. Some ap-plications are

introduced using the benefits and drawbacks of each protocol

in connection to other user rules to simplify this comparison.

Comparatively speaking, MQTT is a very efficient protocol

[18].

In this paper [19], the Author used ESP8266 for their high-

end application i.e., a smart irrigation system using the Internet

of things; to operate the system wirelessly using an application

called Blynk.

According to them [20], the “MCP2515 TJA1050 CAN-bus

converter” board is the optimum method for gathering data

from ECUs due to data clocking for each frame of data packets.

Data from the ECU is sent to the cloud utilizing the REST

architectural approach and an ESP8266 Wi-Fi module. By

using software that can create algorithms and transfer data

using the HTTP request Protocol.

In this paper [21], they presented GUI Fetch, a code-search

method that makes use of the rising number of open-source

applications available in public repositories to give users

access to code that may be utilized as a starting point for the

apps they want to create. In addition to supporting early

prototyping and giving developers a place to start when

creating GUI-based apps, GUI may also assist designers in

determining whether or not there are already apps that are

similar to the one they want to create. They put GUI Fetch into

practice for Android apps and tested it out empirically.

3. PROPOSED METHODOLOGIES

To help you understand our process more clearly, we've

included some background information in this section.

3.1 In-vehicle network

Many car features are electronically regulated for the

comfort and safety of the driver. A modern automobile has

several ECUs fitted to run the digital features. The status of a

vehicle is periodically measured by ECUs, and some

operations are controlled based on these observations. The

ECU either starts the engine on its own or sends instructions

to another ECU to start the engine based on the measurement.

Vehicles can function more safely and effectively thanks to

this automated control system, and more are being created all

the time. Modern luxury cars frequently have a number of

ECUs fitted. A group of ECUs creates an internal network

within the vehicle where they can communicate. The internal

network can be further subdivided into sub-networks based on

comparable functions. An ECU communication protocol, such

as LIN, CAN, or Flex Ray, is re-quired for in-vehicle networks.

The CAN protocol, which offers a limited transmission delay

between ECUs, is the most popular of them.

518

3.2 CAN protocol

The two distinct frame formats that are provided in the CAN

standard are the “standard frame format and the extended

frame format (only described in CAN 2.0 B) [22]”. In contrast

to the regular frame format, which only supports an “11-bit

identifier, the extended frame format supports a 29-bit

identification that is made up of the 11-bit identity plus an 18-

bit extended identifier”. Most ECUs in a car is smaller than 2

power 11 and communicate with one another using the

common frame format. “Data, remote, error, and overload

frames” are the four main frame types used by ECUs to

exchange data inside an “in-vehicle CAN network”. Data

frame messages are the most typical CAN communications

that ECUs send. A CAN data frame includes fields including

an “identifier (ID), data length code (DLC), data, and cyclic

redundancy check (CRC)”, as seen in Tables 1 and 2. The three

stages involved in the process are as follows:

Table 1. Standard CAN frame format

SOF 11 Bit Identifier RTR IDE R0 DLC

DATA up to 8 Bit CRC ACK EOF IFC

Table 2. Extended CAN frame format

SOF
11 Bit

Identifier
S RR IDE

18 Bit

Identifier
RTR R1

R0 DLC

DATA

UPTO

8 Bit

CRC ACK EOF IFS

Instead of the receiver's identifier, the identifier field relates

to the transmitters. In general, it is expected that ECUs do not

share the same identifier and that a single ECU has several

identifiers. Typically, manufacturers go to tremendous lengths

to maintain the secrecy of which identifiers correspond to

which functions.

3.3 Structure of data payload field

There must be at least one signal in a CAN data payload

[23]. A signal is a bit of information that an ECU sends, like a

car speed or the rotational speed of its wheels. The DBC

format file for the appropriate vehicle specifies the length and

quantity of the signals, which change depending on the CAN

ID. Our method is intended to count the list of signals and their

length in CAN data without the use of a DBC format file by

analyzing CAN traffic. Additionally, signals include a variety

of information types, including the following.

The values of a physical value signal, such as the speed of

the wheels or the angle of the steering wheel, correspond to a

physical state of a vehicle. As a result, various signals are

transmitted over a CAN network inside the car. A signal called

a counter always has a value that is one higher than the

previous message. For a certain CAN ID, the counter allows

“verification of the ECU transmitting messages”. Additionally,

a receiving ECU can identify a retransmission of a previously

received CAN message. A signal called a checksum contains

the results of a checksum on a payload of data. Checksums

frequently find transmission mistakes. Although the CRC field

in the CAN data is specified, some manufacturers provide a

second checksum field in the CAN data to enable a more

robust, dependable CAN connection in their vehicles. An

unchanging signal is one that is unused or constant. The DBC

format file standard states that a signal's maximum and

minimum values may be the same. It suggests a constant.

Additionally, unused fields can be given to some bits in a data

payload.

3.4 Data compression

Digital data transmission and reception are the focus of

digital communications. These kinds of data can hold the data

that must be conveyed. It can be in text, image, video,

document, among other formats. Prior to transmission, the data

must be transformed into digital format, which produces a

stream of bits with a logic value of either 1 or 0. These details

must always be transmitted in full at a specific time. Source

encoding is employed in this situation to make up for it. Source

encoding is a method for lowering the typical number of bits

utilized for a particular file. To maximize data transfer, this is

utilized to compress the data.

There are different kinds of source coding methods,

including the “Shannon-Fano Algorithm, Lempel-Ziv

Algorithm, and Huffman Algorithm”. “The Huffman and

Lempel-Ziv algorithm” is the most often utilized of these since

it produces code words with high compression ratios and a

short average length. The entire transmission of information at

a specific time is the basic objective of digital communications.

If the data being transferred is huge, it will be challenging to

accomplish this goal because larger data take longer to

transmit fully.

The applications of the Huffman and Lempel-Ziv

Algorithms, two source encoding methods, to many sorts of

data formats, only text, are the main emphasis of this study.

These algorithms were widely utilized because they produce

code words with short average lengths and high compression

ratios.

3.4.1 Huffman algorithm

The “Huffman code” is a variable-length, “prefix-free code”

that can achieve the shortest codeword length for a given

symbol that may be longer than its entropy. In this algorithm,

the least frequent symbol is given the fewest bits, followed by

the most frequent symbol given the most bits. ASCII character

data compression is the focus of Huffman coding. Numerous

types of data, including text, audio, video, and images, are

compressed using it. This method is based on developing a

complete binary tree for each symbol in the original file after

figuring out the probability of each symbol and sorting the

symbols by reducing probability. Lossless compression

techniques are included in the Huffman compression

algorithm [24]. A compression technique known as lossless

compression does not alter the underlying data information to

make it smaller.

Huffman's approach is that each ASCII character is

typically represented by 8 bits. As an illustration, if a file has

the character "UUVWX" in a row, it has 40 bits, 5 bytes, or 5

bits. We only require a file that is 10 bits in size (0010111110)

if each character is assigned a code, such as U=0, V=10,

W=111, or X=110. that specifies that codes must be identical,

or that a code cannot be generated from some other code.

3.4.2 Run length encoding

RLE, also known as run-length encoding, is the most

straightforward data compression approach. This algorithm

distinguishes between runs and non-runs by identifying

successive symbol sequences as runs. This algorithm handles

a certain amount of redundancy. Based on their redundancies

519

and their lengths, it evaluates whether there are any repetitive

symbols. All other sequences are regarded as non-runs, while

consecutive recurrent symbols are labelled as runs. For

instance, if the file "AYAZZZZA" is chosen to optimize, the

first three letters are regarded as a non-run with a length of 3,

while the following four characters are regarded as a run with

a length of 4 because the symbol Z is repeated. This

algorithm's primary priority is to locate the runs in the source

file and to mark each run's symbol and length [25]. While

storing all the non-runs and not using any of those runs for the

compression process, the RLE algorithm uses those runs to

optimize the main research file.

The Run Length Encoding Algorithm and others are

implemented and analyzed in a set of data files to calculate the

performance of the lossless compression technique. The

mentioned factors are evaluated to measure results.

3.4.3 Lempel Zev Welch algorithm

In general, the LZW method uses a dictionary and is a

lossless compression algorithm. Dictionary-based techniques

do this instead of having a statistical model as their core. A

dictionary is a collection of all words that can be used in a

language. Larger and more frequent dictionary words are

represented by the entries' indexes, which are preserved in a

table-like format. The most popular method is known as the

LZW algorithm [26]. Instead of repeating string patterns, these

index values are used during compression. Instead of using

repetitive string patterns, these index values are used during

compression. The dictionary is generated dynamically during

the compression process; thus, it is not necessary to send it

along with the encoded message for decompression. During

decom-pression, the same dictionary is dynamically created.

3.4.4 Evaluate the performance of the different algorithms

Depending on the application, a compression algorithm's

performance can be evaluated using a variety of factors. As a

result, calculating effectiveness is challenging, and many

measurements should be used to analyze the performance of

those compression categories. The measurements used to

evaluate how well lossless algorithms work are listed below.

Compression Ratio: It describes the proportion of the source

file's size to the compressed file's size.

𝐶𝑅 =
𝑆𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

Saving percentage:

𝑆𝑎𝑣𝑖𝑛𝑔 %

=
𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 − 𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

Compression factor: It is the absolute opposite of

compression ratio.

𝐶𝐹 =
𝑆𝑖𝑧𝑒 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝑠𝑖𝑧𝑒 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

The relative compression ratios, compression factor, and

saving percentage for each compression approach are shown

in Table 3 and, as can be seen. Of all the data sets, the run

length encoding has the most reasonable compression ratio.

RLE is hardly ever used in lossless data compression today.

The Huffman encoding approach, which focuses solely on

minimizing input data redundancy, is the optimal alternative

based on what is currently known about compression ratio.

Although, Huffman encoding, which provides a moderate

compression percentage and factor. The success of Lempel-

Ziv-Welch encoding in obtaining higher compression ratios

depends in large part on dictionary size.

Table 3. Shows the comparison between saving%,

compression factor, and ratio

File size
Run length

encoding

Huffman

encoding

LZW

method

4096

Compressed

file
1919 1650 1450

Compression

ratio
0.468 0.402 0.354

Compression

Factor
2.134 2.487 2.824

Saving

Percentage
53.14% 59.71% 64.59%

16384

Compressed

file
7707 6707 5707

Compression

ratio
0.470 0.409 0.348

Compression

Factor
2.127 2.444 2.873

Saving

Percentage
52.96% 59.06% 65.16%

1024

Compressed

file
500 450 314

Compression

ratio
0.488 0.439 0.306

Compression

Factor
2.049 2.277 3.267

Saving

Percentage
51.11% 56.05% 69.30%

65536

Compressed

file
35530 29930 19646

Compression

ratio
0.542 0.456 0.299

Compression

Factor
1.847 2.192 3.344

Saving

Percentage
45.78% 54.33% 70.20%

262144

Compressed

file
131144 92534 65300

Compression

ratio
0.500 0.352 0.249

Compression

Factor
2 2.840 4.016

Saving

Percentage
49.97% 64.70% 75.03%

3.5 GUI design

As a starting point for designing our platform, we initially

gathered high-level functional and non-functional

requirements. A GUI's main objective is to free the user up to

focus on the current task. The interface between a human and

a computer must be flawless for this to happen. An effective

GUI [27] design eliminates the barrier to user-computer

communication and enables focus on the issue at hand. The

market success of today's software applications relies on

effective GUI design since a good GUI makes an application

simple, useful, and efficient to execute. There are numerous

ways to present information given a collection of data to

display. The readability of the material is enhanced by proper

grouping, which can also highlight connections between the

information. Three selectable tabs have been used to organize

520

the GUI information.

•Technical details and evaluation: The user must specify

their name (for login credentials) and, if desired, the name of

the testing organization. Other information about the car may

be recorded, such its physical value, arbitration ID,

hexadecimal value, vehicle identification (year of launched)

etc. On the other hand, the vehicle model-dependent signal

measurement parameters that are dynamically modifiable can

be calibrated online.

•Real – Time data: Real-time data enables the user to view

signal information immediately or as needed.

•Historical data record: Information from the database may

be accessed and viewed, and it can also be compressed.

This Figure 1 shows the flowchart of GUI design, it

describes how we design the GUI for our research so there are

some steps:

• First, search for the Car name (for example i.e... Maruti) it

will fetch the data from the database.

• After showing the data of the Car, it shows the data of the

variant and launched a year of data.

• There is an option for uploading a DBC text file.

• After uploading the file, it will show the list of messages

and signals with CAN ID.

• After getting lists, we can get Real-time data of all signals

which we selected.

Figure 1. Flowchart of GUI web design

CAN DBC format file: DBC files are sometimes used to refer

to database files for CAN.

A straightforward text file called a DBC file offers

instructions for turning raw CAN bus [28] data into numbers

or into a human-readable format. The DBC file is offered since

it is the most often used method of managing data

identification and translation. In order to provide a mechanism

to retain records in a CAN network, the DBC file [29] format

was developed as shown in Figure 2.

Figure 2. CAN data using DBC file

A text file known as a CAN DBC file (CAN database)

contains instructions for translating raw CAN bus data into

"physical. We have a file, which we have taken from the Open-

source platform (Nissan leaf) that "extracts" parameters

(signals) from the data bytes, we have a CAN DBC that has

decoding rules for the CAN ID. Steer angle rate, Gas pedal

inverted, and many more such signals. Figure 3, specifies how

to decode CAN messages and signals at the core of a DBC file:

DBC message syntax explained

• The ID must be distinct and in decimal, and the message

begins with BO_ (not hexadecimal).

• To act as an "extended ID" indication, the DBC ID adds

three additional bits to 29-bit CAN IDs.

• The name should be distinct, 1-32 characters long, and

allow for [A-z], numbers, and underscores.

• A number between 0 and 1785 must make up the length

(DLC).

• The sender is the name of the transmitting node or, in the

absence of a name, Vector XXX.

DBC signal syntax explained

• There are one or more signals that begin with SG_ in every

message.

• The name may be up to 32 characters long, distinct, and

may contain any combination of letters, digits, and

underscores (a-z).

• Beginning with 0, the bit start signals the beginning of the

signal in tqhe data payload.

• Signal length is equal to bit length.

• The @1 indicates the byte order.

• The plus symbol indicates that a value is unsigned (vs - for

signed signals).

• The physical value linear equation uses the (scale, offset)

values (more below).

• The receiving node's name is known as the receiver; once

more, Vector XXX is used by default as shown in Figures 4

and 5.

Figure 3. DBC message and signal syntax

521

Figure 4. List of messages from the DBC file

Figure 5. List of signal from the DBC file

MQTT Cloud: MQTT is an OASIS standard messaging for

IOT MQTT is utilized in many different industries today,

including manufacturing, telecommunications, and the

automobile sector. It utilizes one-to-one, one-to-many, and

many-to-one communication mechanisms and has the highest

overhead and QoS of TCP. The MQTT protocol is employed

as a suitable protocol mechanism for the Internet of things and

M2M claims. It makes use of a publish/subscribe protocol

built for simple M2M protocol. An MQTT broker receives

messages that an MQTT [30] client publishes and that other

clients have subscribed to or have reserved for future

subscriptions.

Benefits of using MQTT:

• Lightweight and efficient.

• Bi-directional communication.

• Reliable message delivery.

• Security enabled.

The widely used and well-supported Linux platform MQTT

broker Mosquitto is simple to use. The cloud-based Mosquito

[31] MQTT broker is in operation. As a result, it may receive

messages from IoT devices everywhere. You can use that

Cloud MQTT broker with many Telematics boards on various

networks. To connect with the broker, each Telematics board

needs to be attached to a router that provides internet access.

The boards can communicate with one another by publishing

and subscribing to the same topics because they use the same

MQTT broker. You may have many IoT devices (such as ESP

node MCU and Arduino Uno board) communicate with one

another using a cloud MQTT broker even if they are on

different networks by using a cloud based MQTT broker

(different locations connected to different routers).

Figure 6 shows that we used Open DBC, a publicly

accessible online database, as the baseline for evaluating our

methodology. As previously indicated, it is challenging for

researchers to secure a genuine DBC format because

automobile makers keep them in strict confidence. One

possible solution to this issue is Open DBC. SPI will be used

to connect the CAN trans receiver to the Arduino, and CAN

Hi/Low will be used to connect to the ECU. Using the software,

we used a serial CAN trans receiver and Arduino to create an

algorithm that transfers data to the cloud using the MQTT

protocol. After transferring data and using an algorithm,

compressed data will be shown in the GUI web application. In

Figure 7, it shows the generalized system architecture of Raw

data.

Figure 6. Integration between GUI design and hardware

Figure7. Generalized system architecture of cloud, raw data,

and signals

Hardware Setup: The hardware configuration, shown in

Figure 8, System Architecture consists of:

• Arduino uno (with external Wi-fi module connected).

• CAN trans receiver, the Arduino will be connected to the

MCP2515 CAN-bus converter through the Serial Peripheral

Interface (SPI).

• By using software, we use a serial CAN trans receiver and

Arduino to create an algorithm that transfers data to the cloud

using the MQTT protocol.

• After transferring data and using an algorithm, compressed

data will be shown in the GUI web application.

Figure 8. Generalized system architecture of hardware

522

After the platform system experiment. The completed

hardware setup is constructed, as shown in Figure 8. The

Arduino UNO microcontroller will receive data in CAN

communication from the ECU (Signal) via a CAN transceiver.

SPI will be used to connect the CAN trans receiver to the

Arduino, and CAN Hi/Low will be used to connect to the

ECU. Data from the ECU will be in the form of a data packet,

which will also include other data in hexadecimal format.

Using the REST architectural technique and the Telematics

Wi-Fi module, data obtained from the ECU will be sent to the

cloud. By using software serial, the [32] MCP2515, and

Arduino may create algorithms that transfer data using the

MQTT protocol. For future works, this proposed system can

be simulated in MATLAB & Simulink as this software by

MathWorks has great capabilities [33, 34].

4. RESULTS

4.1 Hardware implementation

From the experiment, Creating the final hardware

configuration is shown in Figure 9. We successfully used

hardware implementation to send and receive CAN IDs and

Data bytes. The outcome includes several CAN-bus data

gathering, CAN-bus data conversion, and cloud-sending

methods. There are some snapshots of the hardware module,

which is shown in Figures 10 and 11. From this experiment,

user interfaces (UI) for end users are also available, including

web interfaces that include real-time data signals and UI

provided by cloud storage providers. The experiment's output

should resemble Figure 12 after completion. The outcome of

data acquired from the ECU through CAN-bus is shown in the

figure.

Figure 9. Hardware connection that consists of Arduino and

CAN transreceiver

Figure 10. Arduino board connect with CAN bus converter

Figure 11. MCP2515 CAN-bus converter board

Figure 12. Output from Arduino and CAN transceiver

4.2 GUI design for web application using tool

After Hardware implementation, our main objective is to

free the user up to focus on the GUI. To give users an

accessible and functional Web application, we used a tool.

After entering the login credentials, the web program will

provide a list of all vehicles along with their variants and the

year they were released. The DBC text file will be requested

for uploading in that web application, and after uploading, it

will display a list of the messages and signals that are

contained in the DBC file. Following the selection of signals,

the real-time value of the vehicle for web design will be

displayed.

Figures 13, 14, 15, and 16 display the results of GUI design

information obtained from the ECU and telematics via CAN-

bus.

Figure 13. Welcome login page for a selection of vehicle

523

Figure 14. Upload DBC file

Figure 15. List of messages and signal

Figure 16. Real-time signal value from vehicle

5. CONCLUSION AND FUTURE SCOPE

The results of the experiment indicate that using an Arduino

(with an external wi-fi module connected) and a CAN

transceiver is the optimum method for gathering data from an

ECU. Our study offers good end-to-end security and a

compression ratio of up to 65-75% using the LZW

compression method. This study provides real-time data

visualization, reduces bandwidth needs, and effectively uses

available bandwidth to lower costs per byte. We successfully

developed a web application with a GUI for gathering signal

data. We will upload data collected from the ECU to the cloud

using a telematics Wi-Fi module. MCP2515 and Arduino

developed algorithms that send data via the MQTT protocol

by using software serial. We may enhance our research

interests outside the automobile business to include sports

medicine, healthcare, and many more. We employed the CAN

database protocol for our research, but we might also use other

protocols in the future, such as LIN or Ethernet.

REFERENCES

[1] Berdigh, A., El Yassini, K. (2017). Connected car

overview: Solutions, challenges and opportunities. In

Proceedings of the 1st International Conference on

Internet of Things and Machine Learning, pp. 1-7.

https://doi.org/10.1145/3109761.3158382

[2] Darbha, S., Konduri, S., Pagilla, P.R. (2018). Benefits of

V2V communication for autonomous and connected

vehicles. IEEE Transactions on Intelligent

Transportation Systems, 20(5): 1954-1963.

https://doi.org/10.1109/TITS.2018.2859765

[3] Coppola, R., Morisio, M. (2016). Connected car:

Technologies, issues, future trends. ACM Computing

Surveys (CSUR), 49(3): 1-36.

https://doi.org/10.1145/2971482

[4] Kim, Y., Oh, H., Kang, S. (2017). Proof of concept of

home IoT connected vehicles. Sensors, 17(6): 1289.

https://doi.org/10.3390/s17061289

[5] Yang, X., Sun, Z., Li, J., Yan, J., Li, T., Quan, W., Xu,

D., Antichi, G. (2019). Fast: Enabling fast

software/hardware prototype for network

experimentation. In Proceedings of the International

Symposium on Quality of Service, pp. 1-10.

https://doi.org/10.1145/3326285.3329067

[6] Hossain, K., Roy, S. (2018). A data compression and

storage optimization framework for iot sensor data in

cloud storage. In 2018 21st International Conference of

Computer and Information Technology (ICCIT), IEEE,

pp. 1-6.

https://doi.org/10.1109/ICCITECHN.2018.8631929

[7] Kavitha, P. (2016). A survey on lossless and lossy data

compression methods. International Journal of Computer

Science & Engineering Technology, 7(03): 110-114.

[8] Haque, M.J., Huda, M.N. (2017). Study on data

compression technique. International Journal of

Computer Applications, 159(5): 6-13.

[9] Fassak, S., El Idrissi, Y.E.H., Zahid, N., Jedra, M. (2017).

A secure protocol for session keys establishment

between ECUs in the CAN bus. In 2017 International

Conference on Wireless Networks and Mobile

Communications (WINCOM), November 01-04, 2017,

Rabat, Morocco, IEEE, pp. 1-6.

https://doi.org/10.1109/WINCOM.2017.8238149

[10] Mishra, B., Kertesz, A. (2020). The use of MQTT in

M2M and IoT systems: A survey. IEEE Access, 8:

201071-201086.

https://doi.org/10.1109/ACCESS.2020.3035849

[11] Sidna, J., Amine, B., Abdallah, N., El Alami, H. (2020).

Analysis and evaluation of communication protocols for

IoT applications. In Proceedings of the 13th International

Conference on Intelligent Systems: Theories and

Applications, pp. 1-6.

http://dx.doi.org/10.1145/3419604.3419754

[12] Jansen, B.J. (1998). The graphical user interface. ACM

SIGCHI Bulletin, 30(2): 22-26.

[13] Silva, T.R., Hak, J.L., Winckler, M., Nicolas, O. (2017).

A comparative study of milestones for featuring GUI

prototyping tools. Journal of Software Engineering and

Applications, 10(6): 564-589.

[14] Moran, K., Bernal-Cárdenas, C., Curcio, M., Bonett, R.,

Poshyvanyk, D. (2018). Machine learning-based

prototyping of graphical user interfaces for mobile apps.

IEEE Transactions on Software Engineering, 46(2): 196-

524

221. https://doi.org/10.1109/TSE.2018.2844788

[15] Moronfolu, D.O. (2009). An enhanced LZW text

compression algorithm. Afr. J. Comp. & ICT, 2(2): 13-

20.

[16] Bhattacharjee, A.K., Bej, T. and Agarwal, S. (2013).

Comparison study of lossless data compression

algorithms for text data. IOSR Journal of Computer

Engineering (IOSR-JCE), 11(6): 15-19.

[17] Tukade, T.M., Banakar, R. (2018). Data transfer

protocols in IoT—An overview. International Journal of

Pure and Applied Mathematics, 118(16): 121-138.

[18] Singh, M., Rajan, M.A., Shivraj, V.L., Balamuralidhar,

P. (2015). Secure mqtt for internet of things (IoT). In

2015 Fifth International Conference on Communication

Systems and Network Technologies, IEEE, pp. 746-751.

https://doi.org/10.1109/CSNT.2015.16

[19] Kumar, A., Ranjan, P., Saini, V. (2022). Smart irrigation

system using IoT. In Agri-Food 4.0. Emerald Publishing

Limited, Bingley, pp. 123-139.

https://doi.org/10.1108/S1877-636120220000027009

[20] Hamid, A.F.A., Rahman, M.T.A., Khan, S.F., Adom,

A.H., Rahim, M.A., Rahim, N.A., Ismail, M.H.N.,

Norizan, A. (2017). Connected car: Engines diagnostic

via Internet of Things (IoT). Journal of Physics:

Conference Series, 908(1): 012079.

https://doi.org/10.1088/1742-6596/908/1/012079

[21] Behrang, F., Reiss, S.P., Orso, A. (2018). GUIfetch:

Supporting app design and development through GUI

search. In Proceedings of the 5th International

Conference on Mobile Software Engineering and

Systems, pp. 236-246.

https://doi.org/10.1145/3197231.3197244

[22] Reuss, H.C. (1992). Extended frame format-a new option

of the CAN Protocol. Product Concept & Application

Laboratory Hamburg, FR Germany, HAI/AN, 92002.

[23] Choi, W., Lee, S., Joo, K., Jo, H.J., Lee, D.H. (2021). An

enhanced method for reverse engineering CAN data

payload. IEEE Transactions on Vehicular Technology,

70(4): 3371-3381.

https://doi.org/10.1109/TVT.2021.3063261

[24] Kavousianos, X., Kalligeros, E., Nikolos, D. (2007).

Multilevel Huffman coding: An efficient test-data

compression method for IP cores. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, 26(6): 1070-1083.

https://doi.org/10.1109/TCAD.2006.885830

[25] Bradley, S.D. (1969). Optimizing a scheme for run length

encoding. Proceedings of the IEEE, 57(1): 108-109.

https://doi.org/10.1109/PROC.1969.6899

[26] Moronfolu, D.O., Oluwade, D. (2009). An enhanced

LZW text compression algorithm. Afr. J. Comp. & ICT,

2(2): 13-20.

[27] Vallerio, K.S., Zhong, L., Jha, N.K. (2006). Energy-

efficient graphical user interface design. IEEE

Transactions on Mobile Computing, 5(7): 846-859.

https://doi.org/10.1109/TMC.2006.97

[28] Verma, M., Bridges, R., Hollifield, S. (2018). ACTT:

Automotive CAN tokenization and translation. In 2018

International Conference on Computational Science and

Computational Intelligence (CSCI), December 12-14,

2018, Vegas, NV, USA, IEEE, pp. 278-283.

https://doi.org/10.1109/CSCI46756.2018.00061

[29] Choi, W., Lee, S., Joo, K., Jo, H.J., Lee, D.H. (2021). An

enhanced method for reverse engineering CAN data

payload. IEEE Transactions on Vehicular Technology,

70(4): 3371-3381.

https://doi.org/10.1109/TVT.2021.3063261

[30] Manohar, H.L., Reuban Gnana Asir, T. (2018). Data

consumption pattern of MQTT protocol for IoT

applications. In Smart Secure Systems–IoT and

Analytics Perspective: Second International Conference

on Intelligent Information Technologies, Chennai, India,

December 20-22, 2017, pp. 12-22, Springer, Singapore.

https://doi.org/10.1007/978-981-10-7635-0_2

[31] Light, R.A. (2017). Mosquitto: server and client

implementation of the MQTT protocol. Journal of Open

Source Software, 2(13): 265.

https://doi.org/10.21105/joss.00265

[32] Palomino, J., Cuty, E., Huanachin, A. (2021).

Development of a CAN Bus datalogger for recording

sensor data from an internal combustion ECU. In 2021

IEEE International Workshop of Electronics, Control,

Measurement, Signals and their application to

Mechatronics (ECMSM), June 21-22, 2021, Liberec,

Czech Republic, IEEE, pp. 1-4.

https://doi.org/10.1109/ECMSM51310.2021.9468837

[33] Saini, V., Shah, P., Sekhar, R. (2022). MATLAB and

simulink for building automation. In 2022 IEEE Bombay

Section Signature Conference (IBSSC), December 08-10,

2022, Mumbai, India, IEEE, pp. 1-6.

https://doi.org/10.1109/IBSSC56953.2022.10037485

[34] Zhou, B., Chikkala, J., Schmitt, R. (2019). A load-

adaptive and predictive control of energy-efficient

building automation in production environment.

Procedia CIRP, 79: 245-250.

https://doi.org/10.1016/j.procir.2019.02.058

525

