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This study employs a theoretical approach to examine the impact of a periodic magnetic 

field on MHD flow between two infinitely parallel horizontal plates via a porous 

medium. A periodic magnetic field is imposed in a direction normal to the plates when 

there is a constant pressure gradient. A periodic flow of heat is used to warm the upper 

plate, while the lower plate is kept at a constant temperature. To get numerical solutions 

to the governing partial differential equations, the finite difference approach is 

employed. Furthermore, an approach known as " Eigen function expansion " is used to 

solve the equations analytically. Here, we provide a visual depiction and accompanying 

discussion of the ways in which different variables affect the flow velocity and 

temperature fields. 
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1. INTRODUCTION

The study of magneto hydrodynamics fluid flow and heat 

transfer was presented by many researchers in the last decades 

due to its importance. The MHD study has a wide range of 

engineering applications in MHD pumps, power generators, 

cooling systems, the petroleum industry, reactors, accelerators, 

and many other applications. The influence of no uniform 

magnetic field, no uniform heat flux and porous medium on 

the flow and thermal behavior has been studied separately for 

many systems and many cases. 

Several investigations have looked at how a magnetic field 

affects the flow of a porous material between two parallel 

plates. In a rotational system with a homogeneous transverse 

magnetic field, Raju et al. [1] looked at how viscous 

dissipation and joule heating affected the steady MHD 

generated convective flow in porous medium down a 

horizontal channel. It was investigated by Idowu and Olabode 

[2] how the unsteady MHD flow and heat transfer between

infinite parallel porous plates in an inclined magnetic field and

a minimal pressure gradient behaves. Ojjela and Naresh [3]

studied the two dimensional micropolar fluid flow and heat

transfer by magneto hydrodynamics between parallel porous

plates. The MHD steady free convection flow with

temperature jump at the plates in a vertical parallel plates

micro-channel was investigated by Jha et al. [4]. When a heat

source and chemical reaction are present in a porous material

between two parallel plates impregnated with a porous

substance and placed in an oblique magnetic field, the flow of

a viscoelastic electrically conducting fluid was studied by

Hanvey et al. [5]. In their study, Dwivedi et al. [6] examine

how an oblique magnetic field affects the flow of fluid along

a horizontal conduit made of porous material. Transient free

convection flow of a fluid past an accelerating vertical plate is

studied by Abdullah [7] using a theoretical model to examine

the effect of magnetic field and periodic wall temperature.

Bingham fluid through porous parallel plates has been studied,

and the non-linear dimensionless governing equations have 

been solved numerically [8]. Delhi et al. [9] used transform 

methods to solve the differential equations to examine the 

continuous two-dimensional MHD flow between two parallel 

plates when the plates' angular velocities were different. In 

their research, Anyanwu et al. [10] looked at the effects of 

thermal radiation and chemical reactivity on the MHD Couette 

flow of a fluid between two parallel porous plates. Katagi and 

Bhat [11] looked into the challenge of maintaining laminar 

flow in a hydromagnetic field while transporting a viscous, 

incompressible, electrically conducting fluid between parallel 

plates. A solution is developed by Ebiwareme et al. [12] for an 

incompressible fluid bouncing around between two parallel 

plates at a constant speed. 

Prior research had already revealed some findings regarding 

how MHD flows behave in the absence of a homogeneous 

magnetic field. The quasielastic magnetic force was examined 

by Shliomis and Kamiyama [13] as they observed the effects 

of an oscillating pipe flow in a nonuniform magnetic field. 

Magnetohydrodynamic flow in an alternating magnetic field 

was studied by Moreau et al. [14]. An accurate solution to the 

transient Couette flow in the absence of a homogeneous 

magnetic field was reported by Asghar and Ahmad [15]. 

Goharkhah and Ashjaee [16] investigated the impact of a non-

uniform magnetic field on a ferrofluid flow with heat transfer 

via a conduit. In the presence of an alternating magnetic field, 

the MHD mixed convection of a ferrofluid in a cavity was 

investigated numerically by Ghaffarpasand [17]. Islam et al. 

[18] use computational methods to study the free convective

heat transfer of a nanofluid in a square enclosure where a non-

uniform horizontal magnetic effect predominates.

The influence of periodic wall heat flux on fluid and heat 

transfer is of great interest in engineering applications, such as 

the analysis of fluid and heat transfer in heat exchangers and 

cooling tubes. Magnetohydrodynamic flow through a channel 

in the presence of heat flux, is studied analytically by Zniber 

et al. [19]. It is shown that an increase in wall heat flux 
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frequency will improve the average heat transfer between the 

fluid and the walls at all values of Hartmann number. The 

influence of sinusoidal wall fluxes on the power-law fluid 

flowing in concentric circular heat exchanger has been studied 

by Ho et al. [20]. The temperature distribution and Nusselt 

numbers were predicted using analytical formulation. 

Using a porous medium, this study describes the findings of 

an examination into the transient convective MHD flow that 

occurs between two infinitely parallel plates. A combination 

of a periodic magnetic field perpendicular to the fluid and a 

periodic wall heat flux with a constant pressure gradient is 

used to control the fluid's behavior. Numerical solutions to the 

dimensionless equations are found and then compared to 

analytical solutions. 

2. MATHEMATICAL FORMULATION

The transient laminar incompressible viscous flow in a 

porous medium between two infinite horizontal plates is 

considered. A schematic diagram representing the physical 

model is shown in Figure 1. The plates are separated by a 

distance d, and rectangular cartesian coordinates are used as 

shown. 

Figure 1. Physical model description 

In this paper we studied the influence of a periodic wall heat 

flux 
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
cos(𝜔ℎ

∗ 𝑡∗)  and a periodic magnetic field

𝐵(𝑡∗) = 𝐵0(1 + ℰ sin(𝜔𝑚
∗ 𝑡∗))  with presence of a constant

pressure gradient. 

At the beginning, the fluid and the plates are stationary and 

are assumed to have a temperature of T∞. At time t*>0, The 

lower plate is kept stationary with a constant temperature, 

while the upper plate in its own plane begins to move with a 

constant velocity with a periodic heat flux. 

By assuming Boussinesq approximation with the presence 

of a periodic magnetic field, the unsteady momentum and 

energy governing equations are: 

𝜕𝑢

𝜕𝑡∗ = −
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝑔𝛽(𝑇 − 𝑇∞) + 𝜈

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2

𝜌
[1 +

ℰ 𝑠𝑖𝑛(𝜔𝑚
∗ 𝑡∗)]𝑢 −

𝜈

𝑘∗ 𝑢 
(1) 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡∗ = 𝑘
𝜕2𝑇

𝜕𝑦2 (2) 

The initial and boundary conditions are: 

𝑡∗ ≤ 0:  𝑢 = 0  𝑇 = 𝑇∞  for all y 

𝑡∗ > 0:      𝑢 = 0  𝑇 = 𝑇𝑤   𝑎𝑡 𝑦 = 0 

𝑢 = 𝑢0  
𝜕𝑇

𝜕𝑦
= −

𝑞

𝑘
cos(𝜔ℎ

∗ 𝑡∗)      𝑎𝑡 𝑦 = 𝑑
(3) 

Now the following non-dimensional parameters are 

introduced: 

𝑋 =
𝑥

𝑑
, 𝑌 =

𝑦

𝑑
, 𝑡 =

𝜈𝑡∗

𝑑2 , 𝜔𝑚 =
𝑑2𝜔𝑚

∗

𝜈
, 

𝜔ℎ =
𝑑2𝜔ℎ

∗

𝜈
, 𝑈 =

𝑢

𝑢0
, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝑃 =

𝑝𝑑

𝑢0𝜇
, 

𝑁 =
𝜎𝑑2𝐵0

2

𝜇
, 𝐺𝑟 =

𝑔𝛽𝑑2(𝑇𝑤−𝑇∞)

𝜈𝑢0
, 𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 𝐾 =

𝑑2

𝑘∗

(4) 

And hence the dimensionless governing equations will be: 

𝜕𝑈

𝜕𝑡
= −

𝜕𝑃

𝜕𝑋
+ 𝐺𝑟𝜃 +

𝜕2𝑈

𝜕𝑌2 − [𝐾 + 𝑁(1 +

ℰ 𝑠𝑖𝑛(𝜔𝑚𝑡))]𝑈  
(5) 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑌2
(6) 

With initial and boundary conditions of the form: 

t≤0:  U=0    θ=0    for all values of Y 

t>0:      U=0     θ=1    at Y=0 

𝑈 = 1 
𝜕𝜃

𝜕𝑌
= − cos(𝜔ℎ𝑡)      at Y=1

(7) 

3. NUMERICAL ANALYSIS

A numerical analysis using the Crank Nicolson technique 

with the Thomas algorithm is used to solve the dimensionless 

governing equations. This technique is a fully implicit finite 

difference method and is hence stable and convergent. It is 

used to solve a wide range of partial differential equations 

regarding fluid and heat transfer problems. 

The Crank Nicolson finite difference scheme for the 

dimensionless governing Eq. (6) and Eq. (5) are given by: 

𝜃𝑖
𝑛+1−𝜃𝑖

𝑛

𝛥𝑡
=

1

2𝑃𝑟
[

(𝜃𝑖+1
𝑛+1−2𝜃𝑖

𝑛+1+𝜃𝑖−1
𝑛+1)+(𝜃𝑖+1

𝑛 −2𝜃𝑖
𝑛+𝜃𝑖−1

𝑛 )

(𝛥𝑌)2 ] 

𝑈𝑖
𝑛+1−𝑈𝑖

𝑛

𝛥𝑡
= −

𝜕𝑃

𝜕𝑋
+ 𝐺𝑟𝜃𝑖

𝑛+1 − [𝐾 + 𝑁(1 +

ℰ 𝑠𝑖𝑛(𝜔𝑚𝑡))]𝑈𝑖
𝑛+1 +

(𝑈𝑖+1
𝑛+1−2𝑈𝑖

𝑛+1+𝑈𝑖−1
𝑛+1)+(𝑈𝑖+1

𝑛 −2𝑈𝑖
𝑛+𝑈𝑖−1

𝑛 )

2(𝛥𝑌)2

where, i denotes the grid points in the Y direction and n along 

the time direction. 

The above equations can be written in implicit form as: 

𝜃𝑖−1
𝑛+1 − 2 (1 +

𝑃𝑟(𝛥𝑌)2

𝛥𝑡
) 𝜃𝑖

𝑛+1 + 𝜃𝑖+1
𝑛+1 = −𝜃𝑖−1

𝑛 − 2 (
𝑃𝑟(𝛥𝑌)2

𝛥𝑡
−

1) 𝜃𝑖
𝑛 − 𝜃𝑖+1

𝑛

𝑈𝑖−1
𝑛+1 − 2 [1 +

(𝛥𝑌)2

𝛥𝑡
+

(𝛥𝑌)2

2
(𝐾 + 𝑁(1 +

ℰ 𝑠𝑖𝑛(𝜔𝑚𝑡)))] 𝑈𝑖
𝑛+1 + 𝑈𝑖+1

𝑛+1 = −𝑈𝑖−1
𝑛 − 2 (

(𝛥𝑌)2

𝛥𝑡
−

2) 𝑈𝑖
𝑛−𝑈𝑖+1

𝑛 − 2(𝛥𝑌)2 (−
𝜕𝑃

𝜕𝑋
+ 𝐺𝑟𝜃𝑖

𝑛+1)

The above equations with their boundary conditions are 

considered at every internal point in the y domain forming a 

tridiagonal system. This system of tridiagonal matrix is solved 

by applying Thomas algorithm with very small step sizes 

Δt=0.01 and ΔY=0.001 to ensure accurate results. 
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4. ANALYTICAL SOLUTION 

 

An analytical procedure using the Eigen function expansion 

method is used to validate the numerical solution. Both 

momentum and energy equations are solved using the same 

technique, and the results are compared with numerical ones. 

 

4.1 Temperature solution 

 

Firstly the solution of the following dimensionless energy 

equation will be solved: 

 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑌2
 (8) 

 

With it’s boundary conditions: 

 

𝑡 ≤ 0:       𝜃 = 0      for all values of Y 

𝑡 > 0:       𝜃 = 1         𝑎𝑡 𝑌 = 0 
𝜕𝜃

𝜕𝑌
= − cos(𝜔ℎ𝑡)          𝑎𝑡 𝑌 = 1 

(9) 

 

In order to use the eigenfunction expansion method, the 

boundary conditions must be linear and homogeneous and 

hence the following parameter is introduced: 

 

𝐺(𝑌, 𝑡) = 𝜃(𝑌, 𝑡) + (𝑌 − 1) (10) 

 

Thus, the energy equation will be: 

 

𝜕𝐺

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝐺

𝜕𝑌2
 (11) 

 

With the following corresponding boundary conditions: 

 

𝑡 ≤ 0:         𝐺 = 𝑌 − 1         for all values of Y 

𝑡 > 0:         𝐺 = 0                  𝑎𝑡 𝑌 = 0 
𝜕𝐺

𝜕𝑌
= 0                  𝑎𝑡 𝑌 = 1 

(12) 

 

let, G(Y, t)=ψ(Y)δ(t). 

Substituting G(Y, t) and it’s derivatives into Eq. (11) and Eq. 

(12) the eigenvalue problem will be: 

 

𝑑2𝜓

𝑑𝑌2
+ 𝜆𝜓 = 0 

𝜓 (0) =
𝜕𝜓

𝜕𝑌
(1) = 0 

(13) 

 

Which have the solution: 

 

𝜓𝑛(𝑌) = 𝑠𝑖𝑛(√𝜆𝑛𝑌) (14) 

 

And the eigenvalues are: 

 

𝜆𝑛 = (
2𝑛 − 1

2
𝜋)

2

 (15) 

 

The solution for δ(t) is 𝛿𝑛(𝑡) = 𝑒
−(

𝜆𝑛𝑡

𝑝𝑟
)
. 

And then the solution for G(Y, t) is: 

 

𝐺(𝑌, 𝑡) = ∑ 𝐵𝑛

∞

𝑛=1

𝑠𝑖𝑛(√𝜆𝑛𝑌)𝑒
(

−𝜆𝑛
𝑝𝑟

𝑡)
 (16) 

 

Now the initial condition G(Y, 0)=(Y-1) should be applied. 

So, the coefficient Bn will be 𝐵𝑛 =
2

𝜆𝑛
(sin √𝜆𝑛  −√𝜆𝑛) , 

where n=1, 2, ……, ∞. 

And the final solution of the dimensionless temperature is: 

 

𝜃(𝑌, 𝑡) =

(∑
2

𝜆𝑛
(𝑠𝑖𝑛 √𝜆𝑛  −√𝜆𝑛) 𝑠𝑖𝑛(√𝜆𝑛𝑌)∞

𝑛=1 𝑒
−𝜆𝑛
𝑝𝑟

𝑡
) +

(1 − 𝑌)  

(17) 

 

One of the important physical quantities is the local Nusselt 

number which is given by: 

 

𝑁𝑢 =

−𝑑 (
𝜕𝑇
𝜕𝑦

)

(𝑇 − 𝑇∞)
 

(18) 

 

Hence, according to the temperature solution, the Nusselt 

number will be: 

At the lower plate: 

 

𝑁𝑢0 =
−1

𝜃(0,𝑡)
(

𝜕𝜃

𝜕𝑌
)

𝑌=0
= − (

𝜕𝜃

𝜕𝑌
)

𝑌=0
  

= (∑
2

√𝜆𝑛
(𝑠𝑖𝑛 √𝜆𝑛  −√𝜆𝑛) ∞

𝑛=1 𝑒
−𝜆𝑛
𝑝𝑟

𝑡
) − 1  

(19) 

 

And at the upper plate: 

 

𝑁𝑢1 =
−1

𝜃(1, 𝑡)
(

𝜕𝜃

𝜕𝑌
)

𝑌=1
=

1

𝜃(1, 𝑡)
 (20) 

 

4.2 Velocity solution 

 

Using the eigenfunction analytical method, the flow 

behaviour is computed in the absence of both magnetic field 

frequency (ωm=0) and Grashof number (Gr=0).  

Now let p*=-∂P/∂x the momentum equation will be: 

 
𝜕𝑈

𝜕𝑡
= 𝑝∗ +

𝜕2𝑈

𝜕𝑌2 − [𝐾 + 𝑁]𝑈  (21) 

 

The boundary conditions are: 

 

When   𝑡 ≤ 0:  𝑈 = 0            for all values of Y 

             𝑡 > 0:  𝑈 = 0            𝑎𝑡 𝑌 = 0  

         𝑈 = 1           𝑎𝑡 𝑌 = 1 

(22) 

 

Now, the non homogeneous boundary conditions are 

converted to homogeneous ones by introducing. 

 

𝑅(𝑌, 𝑡) = 𝜃(𝑌, 𝑡) − 𝑌 (23) 

 

Hence the energy equation becomes: 

 

𝜕𝑅

𝜕𝑡
=

𝜕2𝑅

𝜕𝑌2
− [𝐾 + 𝑁]𝑅 + 𝑝∗ − [𝐾 + 𝑁]𝑌 (24) 

 

With the following boundary conditions: 
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When    𝑡 ≤ 0:       𝑅 = −𝑌       for all values of Y 

             𝑡 > 0:       𝑅 = 0            𝑎𝑡 𝑌 = 0  

                   𝑅 = 0            𝑎𝑡 𝑌 = 1 

(25) 

 

At the beginning, the following homogeneous part of Eq. 

(24) will be solved: 

 

𝜕𝑅

𝜕𝑡
=

𝜕2𝑅

𝜕𝑌2
− [𝐾 + 𝑁]𝑅 (26) 

 

By assuming R(Y, t)=α(Y)a(t), the eigenvalue problem will 

be: 

 

𝑑2𝛼

𝑑𝑌2
+ η𝑛𝛼 = 0 

𝛼(0) = 𝛼(1) = 0 

(27) 

 

The solution of α(Y) will be: 

 

𝛼𝑛(𝑌) = sin(√η𝑛𝑌) (28) 

 

The corresponding eigenvalues are: 

 

η𝑛 = (𝑛𝜋)2 (29) 

 

And the solution for the time dependent variable a(t) which 

satisfy the nonhomogeneous Eq. (24) is: 

 

𝑎𝑛(𝑡) =
2(−1)𝑛

𝑛𝜋
𝑒−(𝐾+𝑁+η𝑛)𝑡 +

1

(𝐾+𝑁+η𝑛)
(

2(−1)𝑛

𝑛𝜋
(𝐾2 + 𝑁 −

𝑝∗) +
2𝑝∗

𝑛𝜋
) (1 − 𝑒−(𝐾+𝑁+η𝑛)𝑡)   

 

The series solution of Eq. (26) is: 

 

𝑅(𝑌, 𝑡) = ∑ 𝑎𝑛(𝑡)

∞

𝑛=1

𝑠𝑖𝑛(√η𝑛𝑌) (30) 

 

Hence, the final solution will be: 

 

𝑈(𝑌, 𝑡) = ∑ 𝑎𝑛(𝑡)

∞

𝑛=1

𝑠𝑖𝑛(√η𝑛𝑌) + 𝑌 (31) 

 

 

5. RESULTS AND DISCUSSION 

 

The behavior of a viscous incompressible fluid flowing 

through a porous medium sandwiched between infinite 

parallel plates is investigated under the influence of a periodic 

magnetic field and periodic heat flux with a constant pressure 

gradient. The Crank-Nicolson method is used to numerically 

solve the governing momentum and energy equations, and the 

results are checked by solving the problem analytically with a 

uniform magnetic field and a Grasshoff number of zero. 

Graphs display how changing certain variables affects the 

velocities and temperatures.  

The impact that the Grashof number has on the 

dimensionless velocity profile is illustrated in Figure 2. It can 

be observed that the Grashoff number contributes positively to 

an increase in the fluid's velocity. 

Figure 3 depicts the influence of magnetic field strength, 

which shows that an increase in the amount of magnetic field 

strength that is applied creates a delay in the flow. 

The influence that the permeability parameter has on the 

velocity profile is shown in Figure 4. It has been observed that 

increasing K has the effect of slowing down the velocity of the 

system. 

Figure 5 illustrates the effect that the pressure gradient has 

on the system. It has been noticed that there is a correlation 

between an increase in the pressure gradient and an 

enhancement in the fluid's velocity. 

Figures 6 and 7 depict the transient velocity profiles for 

various fluid locations and magnetic field frequencies, 

respectively. Figure 6 shows that the velocity grows until it 

reaches a steady state and that the same periodic pattern of the 

velocity is observed for different locations of the flow, with 

the exception that the amplitude increases as one approaches 

the midpoint between the plates. As shown in Figure 7, the 

influence of the time-periodic magnetic field on the transient 

velocity is investigated. Different frequencies are shown to 

cause the velocity to fluctuate amplitude-wise around a mean 

value. The velocity behavior appears to have a continuous 

flow at high frequencies, and the level of fluctuation grows as 

the magnetic frequency rises. 

The effect of the Prandtl number on the temperature field 

has been shown in Figure 8. It is observed that as the Prandtl 

number increases, the temperature drops. Also, it can be seen 

that as we reach steady state behavior, the Prandtl number 

effect on the temperature becomes less significant as the value 

decreases. 

The effect of the magnetic phase angle ωmt on the 

dimensionless velocity is illustrated in Figure 9. It can be seen 

that increasing the magnetic phase angle ωmt results in slowing 

down the fluid velocity U. 

Figure 10 illustrates the influence of the heat flow phase 

angle. It is seen that increasing ωht results in an increase in the 

fluid temperature . 

 

 
 

Figure 2. Effect of Grashof number on velocity profile 

 

 
 

Figure 3. Effect of magnetic parameter on velocity profile 
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Figure 4. Effect of permeability parameter on velocity 

profile 

 

 
 

Figure 5. Effect of pressure gradient on velocity profile 

 

 
 

Figure 6. Transient velocity at different locations on the Y 

coordinate 

 

 
 

Figure 7. Effect of magnetic frequency on transient velocity 

 
 

Figure 8. Effect of Prandtl number on temperature profile 

 

 
 

Figure 9. Effect of magnetic phase angle ωmt on velocity 

profile 

 

 
 

Figure 10. Effect of heat flux phase angle ωht on temperature 

profile 

 

Table 1 provides a comparison between the analytical 

solution and the numerical solution for the transient velocity 

and temperature in the case of ωm=0 and Gr=0. The results, as 

shown in the table, are able to be compared with one another 

and found to be in excellent agreement. This implies that the 

results found using the Crank Nicolson finite difference 

method are accurate and can be trusted. 
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Table 1. Numerical and analytical results for ωm=0 and Gr=0 

Dimensionless 

Time 

Dimensionless Velocity Dimensionless 

Time 

Dimensionless Temperature 

Numerical Value Analytical Value Numerical Value Analytical Value 

0.1 0.3249 0.3377 1 0.2534 0.2548 

0.2 0.3918 0.3938 1.5 0.3034 0.3046 

0.3 0.3990 0.3990 2 0.3374 0.3384 

0.4 0.3997 0.3995 2.5 0.3642 0.3651 

0.5 0.3998 0.3995 3 0.3863 0.3871 

0.6 0.3998 0.3995 3.5 0.4048 0.4055 

0.7 0.3998 0.3995 4 0.4203 0.4210 

6. CONCLUSIONS

Consideration is given to the impact that a periodic 

magnetic field has on the flow of fluid through a porous 

medium that is sandwiched between two infinitely parallel 

plates with a constant pressure gradient and a periodic heat 

flux. A fully implicit numerical technique is utilized in order 

to solve the dimensionless governing partial differential 

equations, and an eigen function expansion method is utilized 

in order to validate the solution. Graphs illustrating the 

velocity and temperature profiles along with the effects of a 

variety of physical parameters are presented. The following 

are among the findings of the study:  

(1) The Grashoff number or the pressure gradient must be

increased for there to be an increase in the velocity of the fluid. 

(2) A rise in the Prandtl number, the intensity of the

magnetic field, or the permeability parameter causes a 

reduction in the fluid's velocity. 

(3) When a periodic magnetic field is used, it is discovered

that the transient velocity profile exhibits a periodic pattern of 

behavior. 

(4) An increase in the magnetic phase angle results in flow

retardation, while an increase in the heat flow phase angle 

values contributes to an increase in temperature. 
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NOMENCLATURE 

B0 magnetic flux density, T 

Cp specific heat, J. kg-1. K-1 

Gr Grashof number 

k thermal conductivity, W.m-1. K-1 

K permeability parameter 

N dimensionless magnetic parameter 

p pressure, N .m-2 

p* dimensionless pressure gradient 

P dimensionless pressure 

Pr  Prandtl number 

q heat flux at the wall, W.m-2 

T temperature, K 

Tw wall temperature, K 

T∞ free stream temperature 

t ̃ time, s 

t dimensionless time 

u velocity, m.s-1

U dimensionless velocity 

Nu local Nusselt number  

X, Y dimensionless coordinate 

x, y Cartesian coordinates, m 

Greek symbols 

α, δ, ψ separation variables 

Ɵ dimensionless temperature 

λ, η separation constants 

υ kinematic viscosity, m2.s-1  

ρ density, kg. m-3 

σ electrical conductivity, siemens.m-1 

𝜔ℎ
∗

 frequency of heat flux oscillation, rad.s-1 

𝜔𝑚
∗ frequency of magnetic oscillation, rad.s-1 

ωh dimensionless frequency of heat flux oscillation 

ωm dimensionless frequency of magnetic oscillation 

B dimensionless heat source length 

CP specific heat, J. kg-1. K-1 

g 

k 

gravitational acceleration, m.s-2 

thermal conductivity, W.m-1. K-1 

Nu local Nusselt number along the heat source 
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