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This article presents the mathematical model of unsteady state horizontal radial flow 

in homogenous and anisotropic confined aquifers in polar coordinate which 

represented an important problem. We design optimal neural network to solve this 

problem. Also, we estimate the parameters of transmissivity aquifer with high 

accuracy. The optimality depending on choosing optimum architectural with suitable 

training algorithm and transfer function. The best design neural network is trained by 

new training algorithm say LNA. The retrained almost fast by suitable transferring 

function. Based on the modified architecture, the training and testing phases of the 

solving process are divided into two. The dataset is separated into three sections 

during the training phase: 60% of the training data, 20% of the validation data, and 

20% of the test data. The total square error (TSE) for the trained phase with using the 

bach propagation algorithm (BPA) is 4.1499e+01 while it is 9.5898e-03 if we using 

suggested training algorithm (LNA). The LNA has a much smaller TSE when 

compared to the BPA. These much smaller values of the TSE indicate that LNA 

performs better than the BPA for the same number of iterations. So suggested 

architecture has many advantages such loss function computed on a random sample of 

the domain, high performance, avoid local minima and can be adapted for the online 

dynamic modeling, automation, control and robotics applications. 
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1. INTRODUCTION

Partial differential equations overall unsteady state partial 

differential equation (USSPDE) arises in some branches of 

science and engineering. Unsteady-state operation can arise 

from such things as variations in feedwater quality (and so 

organic load), permeate flow rate (and hence hydraulic load) 

and aeration rate. In an experiment the effects of unstable 

flow and sludge wastage were assessed [1], it was established 

that the level of carbohydrate in the supernatant before and 

after each sludge withdrawal increased. Whilst the increase 

following wastage was thought to be due to the sudden stress 

experienced by cells due to biomass dilution (which in 

extreme cases is known to lead to foaming in full-scale plant), 

increase before sludge withdrawal was attributed to the high 

MLSS concentration and the resulting low DO level in the 

bioreactor. It was concluded that unsteady-state operation 

changed the nature and/or structure (and fouling propensity) 

of the carbohydrate rather than the overall EPS formation. 

These findings corroborated results previously reported on 

effects of transient conditions in feeding patterns: the 

addition of a pulse of acetate in the feedwater has been 

shown to decrease significantly the biomass filterability due 

to the increase in SMP levels produced [2]. More detailed 

characterization of the impact of a wide range of unsteady-

state conditions on the EPS present in activated sludge has 

recently been presented [3]. Along with changes in DO level, 

variation in the ratio of monovalent and polyvalent cations 

present in the feedwater can result in sludge deflocculation, 

usually leading to increased supernatant SMP levels. In the 

experiments [4], high monovalent/polyvalent ratios resulted 

in significant deflocculation and decline in hydraulic 

performance [5]. 

Hence being of fundamental importance the existence of 

suitable methods to find their solution [6]. Since exact 

solution is available only in limited cases, the construction of 

efficient numerical [7, 8] or approximate approaches is 

essential [9-11]. Effective methods, such as the Adomain 

decomposition method (ADM) [12, 13]; HPM [14, 15] and 

finite element method (FEM) [16], have been developed for 

solving unsteady state partial differential equation (USSPDE) 

in stationary environments [17]. Given unsteady state 

problem with known parameters and initial or boundary 

conditions, the numerical methods [18-20] can be used to 

calculate the approximate solution at some points in the 

domain (discrete case), producing the results as a table can be 

interpolated to get the solution elsewhere in the domain. One 

disadvantage of such methods is that, necessary to discrete 

the domain as meshes so increase the size of the table 

significantly therefore memory required [21, 22]. Neural 

networks (ANNs) provide an optimal representation 

technique for adaptive USSPDE solutions since they are 

adjust parameters that can be modified by using suitable 

training algorithm [23, 24] and because of their ability to 

approximate well any nonlinear functions on compact space. 

So, ANNs give solutions are characterized by other 

advantages over solutions getting by FEM and FDM. One 

advantage is that the solution is represented by a small 
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number of parameters, which reduces the amount of required 

memory [25-27]. Another advantage is that the solution is 

valid on the domain without need for interpolation. 

Commonly ANN can be implemented to provide a solution 

of unsteady state problems many of applications of ANNs for 

solving PDEs can be found in researches [22]. 

This article has been arranged as follows: In section 2, 

define and gives a background of the ANNs. In section 3, 

mathematical model of unsteady state confined aquifers is 

presented. Design optimal ANN for solving USSPDE is 

given and demonstrated through example problems in with 

implementation and discussions for the results will be given 

in section 4. Finally, the conclusion is given in section 5. 

 

 

2. NEURAL NETWORKS 
 

A neural network is a parallel, distributed information 

processing structure consisting of processing elements 

interconnected via unidirectional signal channels called 

connections. Each processing element has a single output 

connection that branches ("fans out") into as many collateral 

connections as desired; each carries the same signal, the 

processing element output signal. The processing element 

output signal can be of any mathematical type desired. The 

information processing that goes on within each processing 

element can be defined arbitrarily with the restriction that it 

must be completely local; that is, it must depend only on the 

current values of the input signals arriving at the processing 

element via impinging connections and on the values stored 

in the processing element's local memory [13]. 

Thus for a given input vector x, the input to this neuron is 

Wj
Tx . We assume that each of the hidden neurons has 

identical transfer function σ, but that bias bj. So the output 

from the jth hidden neuron is σ(Wj
Tx + bj). 

Now we denote the weight connecting the jth hidden node 

to the output by ʊ𝑗. The output function g(x) of the ANN is 

therefore [1]:  

 

𝑔(𝑥) =  ∑ ʊ𝑗

𝑘

𝑗=1

 𝜎(𝑊𝑗
𝑇𝑥 + 𝑏𝑗) 

 

Note that σ must be sigmoidal functions, so we choice 

suitable σ herein defined as [18]:   

 

𝜎(𝑛𝑖) =
𝑒𝑛𝑖 − 1

𝑒𝑛𝑖 + 1
  

 

Then, the ANN input-output equation is 

 

Ŷ = Ф(𝑥𝑇𝑤𝑇 + 𝑏𝑇)ʊ𝑇 

 

where, 𝑊 ∈ 𝑅𝑛×𝑟 ;  ʊ ∈  𝑅1×𝑛 ; and 𝑏 ∈  𝑅𝑛×1 , are the 

adjustable input weights, output weights and bias 

respectively. 

The structure of interconnections ANN can be classified to 

different classes of ANNs architecture such feed forward 

neural network (FFNN) and Feedback neural network 

(FBNN). Herein we choose FFNN. 

 

 

3. MATHEMATICAL MODEL OF THE PROBLEM 

WITH UNSTEADY STATE CONDITIONS 
 

Unsteady state flow occurs from the moment pumping 

starts until steady state flow is reached. Consequently, if 

confined aquifer is an infinite, horizontal, completely and it's 

of constant thickness is pumped at a constant rate; there will 

always be unsteady-state flow. In practice, the flow is 

considered to be unsteady as long as the changes in water 

level in the well and piezometers are measurable or in other 

words, as long as the hydraulic gradient is changing in a 

measurable way [26]. 

We will solve Eq. (1) that govern the radial flow with 

homogenous and anisotropic hydraulic conductivities in 

confined aquifer, where 
∂h

∂t
≠ 0. 

 

1

𝑟′

𝜕ℎ

𝜕𝑟′
+

𝜕2ℎ

𝜕𝑟′2
=

𝑆

𝑇

𝜕ℎ

𝜕𝑡
 (1) 

 

where, h is hydraulic head, S is storage coefficient, T is 

transmissivity, t: time, r'=r Tθ, and 𝑟 = √𝑥2 + 𝑦2  is polar 

coordinate. 
 

𝑟′ = √
𝑇𝑦 𝑥2 + 𝑇𝑥  𝑦2

𝑇
, 𝑇 = √𝑇𝑥  𝑇𝑦 

 

As in Theis equation, suppose  
 

𝑢 =
𝑟′2

𝑆

4𝑇𝑡
 (2) 

 

Let α =
S

T
, then: 

 

𝜕𝑢

𝜕𝑟′
=

𝛼 𝑟′

2𝑡
=

2𝑢

 𝑟′
      𝑎𝑛𝑑      

𝜕𝑢

𝜕𝑡
=

−𝛼 𝑟′2

4𝑡2
=

−𝑢

 𝑡
 (3) 

 

We can write Eq. (1) as following: 
 

1

𝑟′

𝜕

𝜕𝑟′
(𝑟′

𝜕ℎ

𝜕𝑟′
) = 𝛼

𝜕ℎ

𝜕𝑡
 (4) 

 

Then Eq. (4) becomes: 
 

1

r′

d

du
(r′

dh

du

∂u

∂r′
)

∂u

∂r′
= α

dh

du

∂u

∂t
 (5) 

 

Now, from Eq. (2) and Eq. (3), we have: 

 
1

𝑟′

𝑑

𝑑𝑢
(𝑟′

𝑑ℎ

𝑑𝑢

2𝑢

 𝑟′
)

2𝑢

 𝑟′
= 𝛼

𝑑ℎ

𝑑𝑢

−𝑢

 𝑡
    →    

𝑑

𝑑𝑢
(𝑢

𝑑ℎ

𝑑𝑢
)

=
𝑑ℎ

𝑑𝑢

−𝛼𝑟′2

 4𝑡
= −𝑢

𝑑ℎ

𝑑𝑢
  

 

So, the following ODE is obtained: 

 

𝑑

𝑑𝑢
(𝑢

𝑑ℎ

𝑑𝑢
) = −𝑢

𝑑ℎ

𝑑𝑢
  →   

𝑑ℎ

𝑑𝑢
+  𝑢

𝑑2ℎ

𝑑𝑢2
= −𝑢

𝑑ℎ

𝑑𝑢
 

→
𝑑2ℎ

𝑑𝑢2
= −

(1 + 𝑢)

𝑢

𝑑ℎ

𝑑𝑢
 

(6) 

 

Suppose that ℎ′ =
𝑑ℎ

𝑑𝑢
, then Eq. (6) becomes: 
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𝑑ℎ′

𝑑𝑢
= −

(1 + 𝑢)

𝑢
ℎ′  𝑜𝑟  𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑙𝑦 

𝑑ℎ′

ℎ′

= −
(1 + 𝑢)

𝑢
 𝑑𝑢 

(7) 

 

Integration Eq. (7) to get: 

 

𝑙𝑛(ℎ′) = −𝑢 − 𝑙𝑛(𝑢) + 𝑐     →     𝑙𝑛(ℎ′𝑢) = 𝑐 − 𝑢    
→  ℎ′𝑢 =  𝑒𝑐𝑒−𝑢 

(8) 

 

By Eq. (3) we can get: 
 

𝑟′  
𝜕ℎ

𝜕𝑟′
= 𝑟′  

𝑑ℎ

𝑑𝑢

𝜕𝑢

𝜕𝑟′
= 𝑟′ℎ′

2𝑢

 𝑟′
= 2𝑢ℎ′ (9) 

 

In addition, from the fact (r′ = r Tθ) we get: 
 

𝑟 
𝜕ℎ

𝜕𝑟
=  

𝑟′

𝑇𝜃

 
𝜕ℎ

𝜕𝑟′
 
𝜕𝑟′

𝜕𝑟
=

𝑟′

𝑇𝜃

 
𝜕ℎ

𝜕𝑟′
 𝑇𝜃 =  𝑟′  

𝜕ℎ

𝜕𝑟′
 (10) 

 

From Darcy's law: 

 

𝑙𝑖𝑚
𝑟→0

𝑟 
𝜕ℎ

𝜕𝑟
= −

𝑄

2𝜋𝑇𝑟

 (11) 

 

where, 𝑇𝑟 =
𝑇𝑦 𝑇𝑥 

𝑇𝑦 𝑐𝑜𝑠2(𝜃)+𝑇𝑥 𝑠𝑖𝑛2(𝜃)
; 

Since r'=r Tθ and from Eqns. (8-11) we have   

 

𝑙𝑖𝑚
𝑟→0

𝑟 
𝜕ℎ

𝜕𝑟
= 𝑙𝑖𝑚

𝑟′→0
𝑟′  

𝜕ℎ

𝜕𝑟′
= 𝑙𝑖𝑚

𝑢→0
2𝑢ℎ′ = −

𝑄

2𝜋𝑇𝑟

 (12) 

 

By Eq. (8) and Eq. (12) we can get: 
 

𝑙𝑖𝑚
𝑢→0

2𝑢ℎ′ = 𝑙𝑖𝑚
𝑢→0

𝑒−𝑢𝑒𝑐    →     −
𝑄

4𝜋𝑇𝑟

= 𝑒𝑐    (13) 

 

Substituted Eq. (13) in Eq. (8) to get: 

 

ℎ′𝑢 = −
𝑄

4𝜋𝑇𝑟
 𝑒−𝑢  →   ℎ′ = −

𝑄

4𝜋𝑇𝑟
 
𝑒−𝑢

𝑢
  →  

𝑑ℎ

𝑑𝑢

=  −
𝑄

4𝜋𝑇𝑟
 
𝑒−𝑢

𝑢
  →  

𝑑ℎ =  −
𝑄

4𝜋𝑇𝑟
 
𝑒−𝑢

𝑢
𝑑𝑢 

(14) 

 

Integrating Eq. (14), to get: 

 

ℎ =  −
𝑄

4𝜋𝑇𝑟
 ∫

𝑒−𝜏

𝜏
𝑑𝜏

∞

𝑢

+ 𝐶 (15) 

 

Using boundary condition h(∞,t)=h0, we have that C=h0. 

Finally Eq. (15) becomes: 

 

𝑠𝑟 = ℎ0 − ℎ =  
𝑄

4𝜋𝑇𝑟
 ∫

𝑒−𝜏

𝜏
𝑑𝜏

∞

𝑢

 (16) 

 

The integral term appeared in Eq. (16) is called the Theis 

well function and denoted by W(u). There are different 

methods and techniques have been used to approximate the 

value of well function which vary according to the required 

of accuracy. Now we can write Eq. (16) as following: 

 

sr =
Q

4πTr

 W(u) (17) 

 

Now, suppose that the distance r in x-direction is rx, in 

case θ = 0o and hence we have Tr = Tx and from the fact: 

 

r′ = √
Ty x2 + Tx y2

T
= √

Ty r2cos2(θ) + Tx r2sin2(θ)

T
 

∴  𝑟′  = 𝑟 √
𝑇𝑦 𝑐𝑜𝑠2(𝜃) + 𝑇𝑥 𝑠𝑖𝑛2(𝜃)

𝑇
 

(18) 

 

We have r′ = rx √
Ty

Tx

4
. So, Eq. (2) becomes: 

 

𝑢 =
𝑟2𝑆

4 𝑇𝑥 𝑡
 (19) 

 

and Eq. (17) becomes: 

 

𝑠𝑟𝑥
=

𝑄

4𝜋𝑇𝑥

 𝑊(𝑢) (20) 

 

Similarly, the distance r in y-direction is ry, in case θ = 
π

2
 

and hence we have Tr = Ty and by Eq. (18) 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑟′ =

𝑟𝑦  √
𝑇𝑥

𝑇𝑦

4
, then Eq. (2) becomes: 

 

u =
r2S

4 Ty t
 (21) 

 

and Eq. (17) becomes: 

 

𝑠𝑟𝑦
=

𝑄

4𝜋𝑇𝑦

 𝑊(𝑢) (22) 

 

The Eqns. (19-22) permit determination of the formation 

constants S, Tx and Ty by means of pumping tests of wells. 

These equations can be applied in practice because (l) 

determined a value for S (2) required only one observation 

well (3) in general a shorter period of pumping, and (4) not 

required assumption of steady-state flow conditions [20].  

Because of the mathematical difficulties encountered in 

applying Eq. (20) and Eq. (22) then we will use the ANN 

suggested design to determine the values of parameter. 
 
 

4. DESIGN OPTIMAL ANN 

 

We suggest three fully inter connection layers, there are 3 

neurons in the input layer, 12 neurons in the hidden layer 

with transfer function say (tanhsig.) and 2 neurons in the 

output layers say (linsig.) transfer function illustrated in 

Figure 1. We train the suggested ANN by update back 

propagation rule. To obtain the mathematical description of 

Figure 1, φ(k) in Eq. (23) is decomposed into the past input, 

past output and past prediction error parts as in Eq. (25) 

respectively. 
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Figure 1. Architecture of the optimal ANN 

 

�̂�(𝑘) =  𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

𝐽(𝑍𝑁 , 𝜑(𝑘), 𝜃(𝑘)

 

) (23) 

 

where, �̂�(𝑘) is the value of θ(k) that minimizes Eq. (23) and 

𝐽(𝑍𝑁 , 𝜑(𝑘), 𝜃(𝑘)) is formulated as a total square error (TSE) 

type error function given as: 

 

𝐽(𝑍𝑁, 𝜑(𝑘), 𝜃(𝑘)) =  
1

2𝑁
 ∑[𝜀(𝑘, 𝜃(𝑘))]

2
𝑁

𝑘=1

 (24) 

 

𝜑𝑛𝑏
(𝑘) = [ 𝑢(𝑘 − 𝑑), … , 𝑢(𝑘 − 𝑑 − 𝑚)]𝜏  

 

𝜑𝑛𝑎
(𝑘) = [ 𝑦(𝑘 − 1), … , 𝑦(𝑘 − 𝑛)]𝜏    (25) 

 

and  

 

𝜑𝑛𝑎
(𝑘) = [ 𝜀(𝑘 − 1, 𝜃(𝑘), … , 𝜀(𝑘 − 𝑛, 𝜃(𝑘))] 

 
The outputs of the ANN model illustrated in Figure 1 can 

be expressed in terms of the network parameters as: 

 

ŷ(𝑘|𝜃(𝑘)) =  𝐹𝑖 ( ∑ 𝑊𝑖,𝑗 𝑓𝑗

𝑚+𝑛

𝑗=1

(𝑎 ⃗⃗⃗ ⃗) +  𝑊𝑖,0 ) (26) 

 

where,  

 

a ⃗⃗⃗ = ∑ Wj,lm φlm

m

lm=1

(k) + ∑ Wj,in 

n

in

φin
(k − 1) + Wj,0  

 

j is the number of hidden neurons; (𝑊𝑗,𝑙𝑚 𝑎𝑛𝑑 𝑊𝑗,𝑖𝑛
) and 

Wi,j are the hidden and output weights respectively; 𝑊𝑗,0  and 

Wi,0 are the hidden and output biases;  𝐹𝑖 (�⃗⃗� ) is a linear 

activation function for the output layer and 𝑓𝑖 (�⃗�)  is an 

hyperbolic tangent activation function for the hidden layer 

given here as: 

 

𝑓𝑖 (�⃗�) = 1 −
2

𝑒2−𝑎 ⃗⃗⃗⃗ + 1
 (27) 

 

Here, the network weights and biases constitute θ(k). 

The minimization problem of Eq. (23) is re-written as: 

 

�̂�(𝑘) =  𝑎𝑟𝑔 𝑚𝑖𝑛
𝜃

𝐽( 𝑍𝑁 , 𝜑(𝑘), 𝜃(𝑘)

 

) (28) 

 

It should be noted that there are several ways on how ZN 

can be presented to the training algorithm at each time step. 

The most popular way being the batch mode where all the 

data set is evaluated at each time step. 

The minimization of Eq. (28) is based on an iterative 

procedure which starts with a randomly initial θ(k) and 

updates  �̂�(𝑘)  iteratively according to the following typical 

updating rule: 

 

𝜃𝐼+1(𝑘) =  𝜃𝐼(𝑘) +  ∆𝜃𝐼(𝑘) (29) 

 

where, θI(k) denotes θ(k) at the current iteration I, ∆θI (k) is 

the searching direction, θI+1(k) is the global minimum and 

�̂�(𝑘) = 𝜃𝐼+1(𝑘) if certain stopping criteria are satisfied. 

The most commonly used method for updating θI+1(k) is the 

BPA. This algorithm uses the gradient method [8]. 

BPA has been reported to be characterized by poor 

performance [16]. To improve the performance of the BP 

algorithm, we suggest the following training algorithm say 

LN- algorithm (LNA). LNA uses the linear approximation 

error 𝜀�̃�(𝑘, 𝜃(𝑘)) to the error ε(k, θ(k)) in (27) expressed as: 

 

𝜀�̃�(𝑘, 𝜃(𝑘)) = 𝜀(𝑘, 𝜃𝜏(𝑘))

+ [𝜃(𝑘)

− 𝜃𝜏(𝑘)]𝑇𝛻[𝜀(𝑘, 𝜃(𝑘))]|
𝜃(𝑘)−𝜃𝜏(𝑘)

= 𝜀(𝑘, 𝜃𝜏(𝑘))

− [𝜃(𝑘)

− 𝜃𝜏(𝑘)]𝑇𝛻[ŷ(𝑘| 𝜃(𝑘))]|𝜃(𝑘)−𝜃𝜏(𝑘)
𝑇  

(30) 

 

We obtain the LNA searching direction given as: 

 

∆𝜃𝐼(𝑘) =  −𝑅[𝜃𝐼(𝑘)]−1𝐺[𝜃𝐼(𝑘)] (31) 

 

where,  𝐺[𝜃𝐼(𝑘)]  and 𝑅[𝜃𝐼(𝑘)]  are the gradient and exact 

LNT Hessian matrices respectively. 

Using standard BPA the LNA can be stated as: 𝜃𝐼+1(𝑘) =
 𝜃𝐼(𝑘) + ∆𝜃𝐼(𝑘). 

Thus, we summarize the procedure of training ANN based 

on suggested update LNA for in a stepwise as follows: 

(1) Specify τ, τmax, D, 𝜆𝑚𝑎𝑥  ∈ [1, 103]  and m, n for 

θ(k); where 𝐷 =  𝛼𝑎 𝐼 [𝛼ℎ   𝛼0]; I is an identity matrix, αh 

and α0 are the weight decay values for the input-to-hidden 

and hidden-to-output layers respectively. 

(2) Initialize 𝜆𝜏 ∈ [0.1, 10−2],  𝛿𝜏  ∈  [0.1,  10−4], 𝑠 ∈

 [0.1, 10−2], 𝜃(𝑘) and evaluate  𝐽(𝑍𝑁 , 𝜑(𝑘), 𝜃(𝑘))  in the 

following: 
 

𝐽(𝑍𝑁, 𝜑(𝑘), 𝜃(𝑘)) =  
1

2𝑁
 (∑[𝜀(𝑘, 𝜃(𝑘))]

2
𝑁

𝑘=1

+ 𝜃𝑇(𝑘)𝐷𝜃(𝑘)) 

(32) 

 

(3) While τ=1, compute 𝐺[𝜃𝜏(𝑘)] and ∆ 𝜃𝜏(𝑘) using: 

 

𝜃𝜏+1(𝑘) =  𝜃𝜏(𝑘) − ∆𝜃𝜏(𝑘) 
 

∆𝜃𝜏(𝑘) =  −[ 𝑅[𝜃�̂�(𝑘)] + 𝜆𝜏𝐼]−1 𝐺[𝜃𝜏(𝑘)] 

 

(4) Evaluate the ratio ατ from the following: 

 

𝛼𝜏 =  
  𝐽( 𝜃𝜏(𝑘))− 𝐽( 𝜃𝜏(𝑘)+∆𝜃𝜏(𝑘))

 𝐽( 𝜃𝜏(𝑘))−𝐽𝜏( 𝜃𝜏(𝑘)+∆𝜃𝜏(𝑘))
  (33) 

 

(5) Update λτ according to the following conditions 
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on  ατ  If ατ>0.75, then λτ ← 0.5 ∗  λτ  and go to Step 6. If 

ατ<0.25, then λτ ← 2 ∗ λτ and go to Step 6. 

(6) If  𝐽( 𝜃𝜏(𝑘)) −  𝐽( 𝜃𝜏(𝑘) + ∆𝜃𝜏(𝑘))  the  𝜃𝜏+1(𝑘) ←

 𝜃𝜏(𝑘) + ∆𝜃𝜏(𝑘) set τ ←  τ + and λτ+1  ← λτ. 

(7) If |𝑆𝜏( 𝜃𝜏+1(𝑘) − 𝜃𝜏(𝑘))| > 𝑆𝜏  or τ > τmax  or λτ >
λmax(number of iterations); go to Step 8, else go to Step 3. 

(8) Accept �̂�(𝑘) ← 𝜃𝜏+1(𝑘) and terminate. 

 

 

5. VALIDATION OF THE TRAINED NETWORK: 

RESULTS AND DISCUSSION 

 

This section illustrates the implementation of suggested 

design in previous section and discussed its results. Firstly, 

we choose the sample data then distributed in three sets: 

training set, validation set and testing set with the following 

rate distribution: 60% from data samples for the training set, 

20% for validation set and 20% for testing set. We start with 

training ANN by suggested algorithm then testing ANN and 

then validating the ANN. 

 

 
 

Figure 2. Comparison results between training, testing and 

validation for ANN 
 

The convergences of the results based on LNA for training 

suggested design to the mathematical model of unsteady state 

horizontal radial flow in homogenous and anisotropic 

confined aquifers in polar coordinate are shown in Figure 2. 

It can be seen in Figure 2, LNA shows faster but poor 

convergences with smaller computation times in the test as 

shown in the Figure 2, when compared to validation. The 

superior convergences of the LNA compared to the BPA are 

illustrated in Tables 1, 2 and in Figure 3, for Transmissivity 

Tx, Table 3, illustrate the value of transmissivity 𝑇𝑥 for all 

different distance 𝑟𝑥 computed by suggested design based on 

LNA (ANN-LNA). 

The total square error (TSE) for the ANN trained with the 

BPA and the LNA are given in the third row of Table 2. The 

LNA has a much smaller TSE when compared to the BPA. 

These much smaller values of the TSE and the MPIs indicate 

that LNA performs better than the BPA for the same number 

of iterations. 

 

 
 

Figure 3. Target for training and validation

Table 1. Training results 
 

Unit Initial Value Stopped Value Target Value 

Epoch 0 1000 1000 

Elapsed Time - 00:11:51 - 

Performance 2.86e+05 4.44e-05 0 

Gradient 1.1e+06 0.158 1e-07 

Mu 0.001 0.01 1e+010 

Validation Checks 0 0 6 
 

Table 2. Performance comparison of the BPA and LNA training results 
 

S/N  
Left rotation angle Right rotation angle 

BPA LNA BPA LNA 

1 Computation time for model identification (sec) 5.8120e+02 1.5109e+03 5.7036e+02 1.3225e+03 

2 Minimum performance index (MPI) 5.2343e-02 4.4952e-05 2.6659e-02 8.0105e-05 

3 Total square error (TSE) 4.1499e+01 9.5898e-03 1.1104e+01 2.6953e-03 

4 Mean error of one step ahead prediction of training data 1.0442e-01 1.1104e-04 7.0847e-01 2.6953e-04 

5 Mean error of one step prediction of test data 3.2832e+01 5.1594e-02 2.8006e+01 1.1955e-03 

6 Mean value of 5-step ahead prediction error 4.8886e+01 5.0041e-02 5.1418e+01 5.0736e-02 

7 final prediction error (FPE) estimate 3.7989e+01 9.8119e-02 5.1532e+01 1.4494e-02 

 

Table 3. Transmissivity Tx for different distance rx by ANN-LNA 
 

rx = x hx Tx 

6 11.642030326 100 

10 13.65248161 100 

15 15.83123131 100 

20 17.33594252 100 

25 17.94977138 100 
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5. CONCLUSIONS 

 

A new and comprehensive design of ANN based update 

back propagation training based on update Newton algorithm 

for the adaptive unsteady state horizontal radial flow in 

homogenous and anisotropic confined aquifers in polar 

coordinate has been presented, implemented and 

demonstrated in this paper with proven results. 

Optimal design for ANN training for nonlinear model 

identification that can be used to design adaptive ANN. For 

guaranteed stability and positive definitiveness, we used 2nd 

order derivative of the nonlinear optimization for training 

nonlinear adaptive design, and fault tolerant capabilities as 

demonstrated in this article.  

Furthermore, the sampling time of suggested design is 0.5 

second and/or with/ without noise and disturbances. The 

average computation time for the serial and parallel implementation 

are approximately 31.5259 and 4.4117 seconds respectively 

at each identification. Note that none of the serial or parallel 

implementation meets the sampling time of 0.5 seconds for 

the suggested design. 

In future we can use other type of ANN for solving the 

problem or other training algorithm. 
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