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Graph theory has grown in importance in applied mathematics as a result of its wide 

range of applications and utility. Geometry, algebra, number theory, topology, 

optimization, and computer science all employ graph theory to solve combinatorial 

issues. Both graph theory and applications rely on the concept of connectedness. Power 

domination is a generalization of the optimization method in which measuring devices 

in the specified field are put at precise spots in electronic and electrical power networks. 

In mathematics, graphs are used to define networks. The classic vertex cover problem 

and domination problem in graph theory are strongly related to monitoring an electric 

power system with as few phase measuring units (PMUs) as possible. If every vertex 

and every edge in the system are seen using the observation criteria of power system 

monitoring, a set S is a power dominant set (PDS) of a graph G. Thus, the concept of 

power domination in Strong and Complete graph is established using theorems and 

examples. 
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1. INTRODUCTION

Euler was the first to introduce the concept of graph theory 

in 1736.A graph can be used to represent information about 

object relationships. Vertices, relations, and edges are used to 

represent the items. In recent years, there has been a surge in 

interest in Graph theory. 

Because of its wide range of applications in domains 

including engineering, social science, and biology, graph 

theory has grown in prominence. A new idea in graph theory 

has been discovered by a group of mathematicians. Labeling, 

coloring, and dominance are novel concepts that are beneficial 

to all fields. 

The difficulty of monitoring an electric power system with 

the fewest available measurement equipment is similar to the 

well-known domination problem in graphs. Considered this 

problem's graph theoretical representation as a version of the 

domination problem in 1998. 

Yang et al. [1] produced some wheel-related graphs. 

Subbulakshmi and Valliammal [2], discuss the transformation 

of wheel graphs into stars. Chang and Liu [3] establish 

Cartesian Products of Some Regular Graphs. Akram et.al. [4, 

5] established vague hyper graphs. Degree of vertices and

regularity in vague graphs discussed Borzooei and

Rashmanlou [6] and Borzooei et al. [7].

Chang et al. [8] produced power dominance graphs. Bounds 

on eigenvalues and chromatic numbers was introduced by Cao 

[9]. Dean [10] introduced power dominating sets of 

hypercubes, and Dorfling and Henning [11] discovered power 

domination in grid graphs Excellent domination in fuzzy 

graphs discusses Dharmalingam and Nithya [12]. Vague sets 

develop Gau and Buehrer [13], Yang and Zhang [14] 

established the independent domination number of the strong 

product of two cycles. Domination in the join of fuzzy 

incidence graphs developed Nazeer et al. [15]. In fuzzy graphs, 

Ismayil and Begum [16] have also displayed dominance. 

Fuzzy Graph defines and classifies Karunambigai et.al [17]. 

The wheel-based cartesian product was investigated by Koh 

and Soh [18], Soh and Koh [19] and various wheel based 

Power Domination Number in this described idea of cyclic 

cartesian product by Liao and Lee [20] establish the power 

dominance of Sunlet graph and their ways of monitoring 

electrical power systems Saibavani and Parvathi [21, 22]. 

In Fuzzy graphs, Paired domination in fuzzy graphs was 

used to investigate by Manjusha and Sunitha [23, 24] 

Whitehead and Russel [25] established the cartesian product 

in graphs, and in two graphs, the cartesian product's 

dominance number and it's developed the problem in PMU, 

which Haynes et al. [26] described as a graph modelling 

problem. 

Vague Graphs are defined by Rao et al. [27], the radius of 

graphs is discussed by Yu et al. [28]. The concept of 

approximation reasoning was created by Zadeh [29]. 

Electrical power companies must evaluate the status of their 

systems on a regular basis, as described by the characteristics. 

It is defined as the magnitude of voltage at loads and the device 

phase angle at generators. The most important part of the 

monitoring strategy is to maintain track of all edges and 

vertices using the process developed in the Phase 

Measurement Unit (PMU).  

The task of finding the fewest number of PMUs to monitor 

the entire system is a graph theory problem similar to the well-

known vertex covering and domination problems. As a result, 

this subject is of interest not just to the power system sector, 

but also to graph theory as a new challenge. For a more in-

depth look at the problem of domination and associated 

subsets. 

While dominance has been studied extensively, power 
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dominance has only lately been introduced and examined, in 

particular, demonstrated that the power dominance problem is 

NP-complete even when constrained to bipartite or chordal 

graphs, and offered a linear algorithm for solving the PDS for 

trees. 

The difficulty of finding the smallest collection of PMUs to 

monitor the entire network is analogous to the well-known 

vertex coverage and dominance problems in graph theory. 

Let G = (V, E) be a graph representing an electric power 

system, with each vertex representing an electrical node (a 

substation bus that connects transmission lines, loads, and 

generators) and each edge representing a transmission line 

connecting two electrical nodes. The task of finding the fewest 

number of PMUs to monitor the entire system is a graph theory 

problem similar to the well-known vertex covering and 

domination problems. The state variable (voltage and phase 

angle) for the vertex at which it is situated, as well as its 

incident edges and end vertices, is measured by a PMU (these 

vertices and edges are said to be observed.) 

Electric utilities must constantly monitor the condition of 

their systems, which is characterized by a set of state variables. 

Placing phase measuring units (PMUs) at strategic spots 

throughout the system is one way to keep track of these factors. 

Due to the high cost of a PMU, it is preferable to keep the 

number of PMUs to a minimum while yet being able to 

monitor (observe) the entire system. When all of the state 

variables of a system can be determined from a set of 

measurements, the system is said to be observed. 
 
 

2. BASIC DEFINITIONS 

 

Definition 2.1 

A graph G is a finite non empty set of objects called vertices 

together with a set of unordered pair of distinct vertices of G, 

called edges. The vertex set and the edge set of G are 

respectively denoted by V(G) and E(G). A graph G with vertex 

set and edge set is denoted by G = (V, E). 
 

Definition 2.2 

A Complete Graph is one in which any two different points 

are adjacent. 

 

Definition 2.3 

A graph G=(V, E) is said to be strong if 𝐸(𝑣𝑖𝑖 , 𝑣𝑗𝑗) <

𝑚𝑖𝑛( (𝑣𝑖𝑖), (𝑣𝑗𝑗)) for all (𝑣𝑖𝑖 , 𝑣𝑗𝑗) ∈ 𝑉. 

 

Definition 2.4 

If all the edges are strong edge in an G then it is called 

strengthened graph. 

 

Definition 2.5 

2-degree of v is defined as the sum of the degree of the 

vertices adjacent to v and it is denoted by t(v). 

 

Definition 2.6 

Average degree of v is defined as 
𝑡(𝑣)

𝑑(𝑣)
, where t(v).is the 2-

degree of v and d(v) is the degree of 𝑣 and it is denoted by da(v). 

 

Definition 2.7 

A graph is called pseudo regular if every vertex of G has 

equal average degree. 

 

 

3. POWER DOMINATION IN GRAPHS 

 

Definition 3.1 

Let G = (V, E) be a graph. A set S of vertices of G is a 

dominating set (DS) of G if each node of V(G)-S is adjacent to 

other node in S. A DS S of G is referred to as minimal DS in 

no proper subset of S is a DS. 

 

Definition 3.2 

A minimum DS in a graph 𝐺  is a DS of minimum 

cardinality. The cardinality of a minimum DS is called the 

domination number (DN) of G and is denoted by γ(G). 

 

Definition 3.3 

A set D of vertices of G is a strong DN of G if every vertex 

of V(G)-D is a strong neighbor of other vertex in D. 

 

Definition 3.4 

A minimum strong DS as a strong DS of minimum scalar 

cardinality. The scalar cardinality of a minimum strong DS is 

called the strong domination number of G. 

 

Definition 3.5 

A set S⊂V(G) is said to be a power domination set (PDS). 

If each vertex and each edge in G(V, E) observes by the 

vertices in PDS. The minimum cardinality of the PDS is called 

Power Domination Number 𝛾𝑃(𝐺). 

 

Theorem 3.1 

If G=(V, E) is a strengthened graph, then equal number of 

vertices of PDSs of G having equal value. 

 

Proof: 

Assume that G=(V, E) is a strengthened graph. Then every 

edge of G is strong edge. If possible, let (m11, m22) be an edge 

of G which is not strong edge. Then equal number of vertices 

PDSs of G having equal weight. But G is not a strengthened 

graph, which is a contradiction. Hence allPDSs of G having 

equal weight. We wanted to locate as many respiration 

cylinder companies as conceivable in order to save cash and 

time. Assume there are four distinct oxygen engine stores in a 

city that stockpile oxygen cylinders to health centers. 

 

Example 3.1 

Consider Figure 1 For the graph G=(V, E). 

 

 
 

Figure 1. Strengthened graph 

 

Theorem 3.2 

Let G = (V, E) be a graph, and 𝛾𝑃(𝐺) = 0 if c only includes 

one strong arc. 

 

Proof: 

Assume G=(V, E) as a graph. If c includes only one strong 
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arc, then γP(G)=0. Conversely suppose that γP(G)=0. To prove 

that G contains only one strong arc. If possible, G contains 

more than one strong arc, then γP(G)≠0. which is a 

contradiction. Hence G contains only one strong arc. 

 

Theorem 3.3 

Let G = (V, E) be a graph and if G is Complete Graph then 

all PDSs of G have equal value. 

 

Proof: 

Assume that G is Complete Graph. Then by the definition 

of Complete Graph, 𝜇2(𝑚11, 𝑚22) =
𝑚𝑖𝑛( 𝜇1(𝑚11), 𝜇1(𝑚22)) for every 𝑚11, 𝑚22 ∈ 𝑉. Suppose G 

has at least one weak (𝑚11, 𝑚22) edge then, 𝜇2(𝑚11, 𝑚22) <
𝑚𝑖𝑛( 𝜇1(𝑚11), 𝜇1(𝑚22))  and which implies that 

𝜇2(𝑚11, 𝑚22) < 𝑚𝑖𝑛( 𝜇1(𝑚11), 𝜇1(𝑚22))  , for some 

𝑚11, 𝑚22 ∈ 𝑉 . This contradicts our assumption that G is 

Complete Graph. Hence all PDSs have equal value. 

 

Example 3.2 

Consider Figure 2 For the graph G=(V, E). 

 

 
 

Figure 2. Graphs of PDS 
 

Theorem 3.4 

Let G be an graph and if G having at most two non strong 

arcs, then G contains PDS. 

 

Proof: 

Assume G to be a graph. If G having at most two non strong 

arcs, then G contains PDS. 

Conversely, suppose that G contains PDS. To prove that G 

having at most two non strong arcs. If possible, G contains 

more than two non strong arcs, then G does not contain a PDS, 

which is a contradiction. Hence G having at most two non 

strong arcs. 

 

Example 3.3 

Consider Figure 3 For the graph G = (V, E). 

 

 
 

Figure 3. Graphs of PDN 

 

Theorem 3.5 

Let G be a graph with power dominate edges. If S is a 

minimal PDS, then V-S is a PDS.  

 

Proof:  

Let S be a minimal PDS of G. Assume V-S is not PDS. Then 

there exists a vertex to x∈S such an extent that x is not power 

dominated by anyone vertex in V-S. Since G has power 

dominate edges, x is a power dominate of somewhere around 

one vertex in S-{x}. Then S-{x} is a PDS, which contradicts 

the minimality of S Subsequently, every vertex in S is a power 

dominate of no less than one vertex in V-S. Hence V-S is a PDS. 

 

Example 3.4 

Consider Figure 4 for the graph G=(V, E). 

 

 
 

Figure 4. Graph of PDS 

 

Theorem 3.6 

A graph G=(V, E) as even cycle is both PRG and TPRG 

then G contains PDN. 

 

Proof: 

Let G=(V, E) be a PRG. Then its graph G as even cycle and 

G be both PRG and TPRG. Here are two cases that arise. 

 

Case (i)  

Let G be both PRG and TPRG with stable values in V and 

E. In G all arcs are strong and some PDSs of G having equal 

number of vertices. Then by the 2.5 definition G contains PDN. 

 

Example 3.5 

Let GPR be both PRG and TPRG with the vertices 

e11,f11,g11,h11 and edges (e11,f11),(e11,h11),(f11,g11),(g11,h11). Here 

all arcs are strong. 

 

Case (ii) 

Let G be both PRG and TPRG with stable values in V and 

with equal alternative values in E. In G all arcs are strong and 

some PDSs of G having equal number of vertices. Then by the 

2.5 definition G contains PDN. 

 

Example 3.6 

In Figure 5, let G be both PRG and TPRG with the vertices 

e11,f11,g11,h11 and edges (e11,f11),(e11,h11),(f11,g11),(g11,h11). Here 

all arcs are strong. 

 

 
 

Figure 5. PRG and TPRG with PDN 

 

From Figure 4 and 5, Let G have n vertices and n edges. 

Since G is a connected graph, it has a spanning tree T with n 

vertices and n-1 edges. Let e be the edge not in T, with its 

endpoints u and v. There is a unique path γ between u and v in 

T (since T is a tree). The union of e and γ is a cycle. Suppose 

that there is some other cycle δ. If δ does not contain e, then it 

is contained in T, contradicting that T has no cycles. If δ does 
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contain e, write it as the union of e and a path in T. Then it is 

a path from u to v. But γ is the only path from u to v in T. 

 

 

4. APPLICATION 

 

Recognizing the critical importance of sustained oxygen 

supply-alongside pharmaceutical drugs such as 

dexamethasone - for the therapies of COVID-19, the Access 

to COVID Tools Incubator Therapeutics pillar is adopting a 

new role to coordinate and actively support for greater oxygen 

supply. 

Consider the businesses i11, j11, k11 and l11 that sell oxygen 

cylinders. The vertices in G represent the shops, while the 

edges represent the collaboration of one shop with another. 

The PDSs for the figure are 𝐷1 = {𝑙11}, 𝐷2 =
{𝑖11, 𝑗11}, 𝐷3 = {𝑖11, 𝑘11}, 𝐷4 = {𝑖11, 𝑙11}, 𝐷5 = {𝑗11, 𝑙11}, 𝐷6 =
{𝑗11, 𝑘11}. 

 

Table 1. Power Domination Number of Figure 6 

 
Power Dominating Set Power Domination Number 

D1 1 

D2 2 

D3 2 

D4 2 

D5 2 

D6 2 

 

In Table 1, calculating the base cardinality among other 

PDSs. Obviously D1 has the base cardinality among other 

PDSs, so we presume that it tends to be the most ideal decision 

since it will set aside time and cash for patients. Along these 

lines, the excess shops should expand oxygen cylinder creation, 

with the goal that patients can be distinguished at the earliest 

opportunity and don't need to go to various shops and went 

through a huge load of cash. 

 

Example 4.1 

For the graph G=(V, E). 

Among other PDSs, calculating the base cardinality. 

Obviously, D1 has the lowest cardinality among all PDSs, so 

we assume it is the strongest decision because it will save time 

and funds for patients. In Tables 2 and 3, the edges and vertices 

has been referred for the application. 

 

Table 2. Vertex values of Figure 6 

 
Vertex Value 

i11 0.6 

j11 0.6 

k11 0.6 

l11 0.6 

 

Table 3. Edge values of Figure 6 

 
Edge Value 

i11 j11 0.5 

j11 k11 0.5 

k11 l11 0.5 

l11 i11 0.5 

i11 k11 0.4 

j11 l11 0.4 

 
 

Figure 6. Graph of PDN 

 

 

5. CONCLUSIONS 

 

The dominance theory survey is intriguing because of the 

wide range of applications and dominant traits that can be 

established. The goal of this paper is to give a study of 

dominance theory in connection to different graphs. We 

constructed a solid [power supremacy] concept based on arcs. 

This paper introduces the concept of the power dominance 

number for entire graphs and presents some intriguing results. 

The Power Domination Number for larger graphs created 

by different wheel family graphs with pathways and cycle 

graphs was investigated. The examples provided in regard to 

the current problem's nature are straightforward to 

comprehend. These concerns, as well as the aforementioned 

theorems, can be proven in a variety of power dominance 

models. 
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