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This paper focuses on the control of Pneumatic Artificial Muscles (PAMs) used in arm 

manipulator modeling and the dynamic model of the Pneumatic Artificial Muscles. 

PAMs have become popular in robotics due to their fast work capabilities, direct action 

mechanisms, and safety implementation. However, these systems often suffer from 

uncertainty, nonlinearity, and time-varying features, which negatively impact tracking 

control performance and cause instability in motion outcomes. To address these issues, 

this study presents a comparison of two controllers: an adaptive backstepping controller 

and a backstepping convolution controller. Computer simulations were used to evaluate 

the performance of both controllers. The results demonstrate that the adaptive 

backstepping controller effectively eliminates chattering, reduces error, and maintains 

stability in the controlled system, leading to smoother signal curves and improved 

overall response in the arm model. In conclusion, the study provides evidence that the 

adaptive backstepping controller is a more effective control solution for PAM-led arm 

manipulator systems, offering improved control of uncertainties and better motion-

tracking performance. These findings have important implications for the development 

of advanced robotic systems using PAMs. 
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1. INTRODUCTION

Actuators are typically hydraulic or pneumatic cylinders 

and DC or AC motors. Although all of these actuators' features, 

a smaller, more flexible actuator with higher power delivery 

capability is still required [1]. Pneumatic systems have the 

ability to produce high levels of power in a compact design. 

However, for applications that require higher levels of power 

and movement, electric or hydraulic systems may be necessary 

[2]. The power produced by Pneumatic Artificial Muscles 

(PAM) actuators doesn’t rely just upon pressure yet in addition 

to the condition of expansion, which adds one more wellspring 

of the spring-like way of behaving [3]. Since multilayer 

structures are the central component of these actuators, these 

PAMs that mimic human muscle movement are lightweight [4, 

5]. 

The use of PAM spans a wide range of roles in industry as 

well as robotics, biorobots, biomechanics, and artificial limb 

replacements [6]. The simplicity of use and the uncomplicated 

design of the (PAM) make it superior to traditional pneumatic 

cylinders. Muscles that are used during physical activity are 

characterized by their flexibility, lightweight nature, and high 

strength-to-weight ratio [7]. 

Due to their functional similarities to human muscles (such 

as a decrease in length as diameter increases), have been 

utilized as robotic arms, legs, and hand muscles for various 

applications, including in orthotics and medical devices [8]. 

PAMs consist a number of drawbacks. Compared to other 

actuators, PAM's confrontational structure is one drawback 

that can be overcome. Due to their highly time-varying, 

nonlinear, ambiguous parameter structure, the PAM systems' 

operating ranges are highly constrained by factors that affect 

them, such as viscosity, temperature, and supply pressure. 

PAMs are unable to be controlled, which is another significant 

problem [9]. This is because the system mechanics contains 

many non-deterministic parameters and non-linear and non-

deterministic elements that hinder the design of a reasonable 

and accurate actuator tracking controller [10]. 

PAMs are a helpful tool for creating the humanoid because 

they function crucially and closely resemble real muscles [11]. 

The nonlinear and time-varying physical characteristics make 

it challenging to control pneumatic muscles. 

Nonlinear control systems are a type of control system that 

uses mathematical models to describe and control the behavior 

of complex, nonlinear dynamic systems. nonlinear control 

systems must account for the complex interactions and 

feedback present in nonlinear systems. Designing and 

implementing nonlinear control systems can be challenging, 

as these systems exhibit a wide variety of behaviors, such as 

multiple steady states and chaos, making them difficult to 

predict and control. However, nonlinear control systems offer 

many advantages such as improved performance, better 

accuracy, and the ability to handle complex and changing 

environments. Nonlinear control systems are widely used in 

aerospace, robotics, power systems, and mechatronics fields. 

[12, 13]. 

As a result, numerous researchers have proposed various 

control strategies to address challenges in the control of 

mechanical devices powered by pneumatic artificial muscles 

(PAMs). When implementing the most current control 

techniques, models powered by PAMs can be effectively 

controlled. 
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Hassan et al. [14] developed a pneumatic braided muscle 

with an atmospheric (1 bar) focus actuator. The trigger was 

created with multiple functions in mind, such as bi-directional 

force/action for maximum stiffness during the entire stroke. 

Conventional Mc-McKibben engines do not have these 

characteristics. To assess whether the PAM concept was 

realistic, they tested it using the Finite Element (FE) modeling 

method. They note that the capabilities of PAM-actuated 

robotic mechanisms/joints can be significantly improved by 

the bidirectional actuation capability. 

Zhang et al. [15] designed a one-link joint powered by two 

polymer artificial muscles (PAMs) that were positioned in 

opposition to each other. They used a Sliding Mode Control 

(SMC) system to evaluate the precision of the tracking 

performance. The model's Saturated Adaptive Robust Control 

(SARC) algorithm, combined with the proposed controller, 

addressed the chattering issue and improved the controlled 

system's resilience to uncertainty and disturbances. The 

researchers found that the estimated parameters and good 

tracking performance were consistently within the 

predetermined ranges. 

Ba and Ahn [16] investigated a study on position tracking 

control of a pneumatic artificial muscle (PAM) system using a 

"Robust Time-delay Nonlinear (RTN) controller." They 

employed a time-delay estimator to address issues of 

uncertainty, nonlinearity, and unknown parameters in the 

PAM system while minimizing setup cost and calculation time. 

The nonlinear signal was obtained through the use of a sliding 

mode approach in the model. The Lyapunov stability law was 

then applied to ensure the asymptotic convergence of the 

closed-loop system. The researchers found that the developed 

controller exhibited excellent tracking performance with rapid 

reaction, high precision, and a low setup cost for the PAM 

system. 

Karnjanaparichat and Pongvuthithum [7] examined the 

adaptive control unit of a single robotic arm powered by 

pneumatic muscles. They assumed that the physical 

parameters of the robot arm and muscles were unknown. They 

sought to evaluate the ability of the robot arm to move and 

track a signal, with the angle error remaining within a specified 

range over a limited period of time. They found that the 

adaptive control system was able to track intersections 

effectively, even when there were significant changes to the 

system parameters. 

Tomori and Hiyoshi, [17] a technique for bi-joint leg control 

driven by PAM has been suggested. A Genetic Algorithm (GA) 

is used to time-periodic input signals according to basic cost 

functions. Adjusting the timing of the input can reduce the 

force of a leg powered by a pneumatic artificial muscle (PAM). 

However, the study did not propose a control design for cases 

of uncertainty but rather focused on improving the durability 

of the system by adjusting the cyclic input time. 

Caldwell et al. [18] proposed a braided pneumatic muscle 

actuator with an indirect adaptive controller based on the pole-

placement control method (PPCM). The PAM actuator model 

has been discovered using input-output data in consonance 

with the suggested functional form. They found the closed-

loop system's narrow throughput and, as a result, the poor 

dynamic velocity of reaction as a result of the limiting. 

Jahanabadi, et al. [19] examine how to design an integrated 

path-tracking regulator for the PAM actuated by a bi-level 

correlation manipulator using Active Force Control and Fuzzy 

Logic (AFCFL). The Fuzzy Logic (FL), which is controlled by 

an external loop Proportional Integral Derivative (PID) 

controller, is used to determine the optimal inertial matrix 

structure required by the AFC mechanism of the robot arm. In 

order to replicate the dynamic model, which is significantly 

different from the original model, a fixed-gain PID controller 

was also used as the primary tracking controller. 

There are two mathematical models for pneumatic muscle 

types: dynamic and static. 

Chou and Hannaford [20, 21], and Tondu and Lopez [22] 

created static models using virtual work to determine the 

relationship between force, pressure, and muscle length. On 

the other hand, Serres et al. [23] and Reynolds et al. [24] 

developed a dynamic model that represents muscles as a 

combination of a spring, a damping element, and a contractile 

element connected in parallel. 

However, as it is commonly used in a range of control 

applications, this paper primarily focuses on the dynamic 

model and control models. 

Previous research has portrayed that despite consequential 

improvements in the development and optimization of PAM 

and various control techniques, significant work remains to be 

completed. Previous research used FL, NN, optimization-

based control, SMC-based nonlinear control, or hybrid 

nonlinear control, all of which are examples of advanced 

control systems used to control PAM performance. However, 

the controllers used on the systems where PAM is used could 

not solve all the major problems. Still, some were able to solve 

only one or more than one such as the uncertainty, non-

linearity, and chatter that appear in the system output signal. 

It is necessary to suggest that the construction of the 

manipulators distributed by PAM varies from each other in 

previous studies. In contrast to previous research. 

Backstepping Control (BSC) technology was used in this 

study to develop a controller to track and control the 

movement of a PAM-operated single-link robot arm. 

Then use adaptive control theory (ABSC). Both controllers 

are based on state space theories, which are used to develop 

and manage highly interconnected nonlinear systems. The 

ABSC method is based on a control procedure suitable for a 

particular class of nonlinear systems. 

An adaptive control method for controlling a single-joint 

robot arm powered by pneumatic artificial muscles (PAMs) is 

presented to address essential problems with modular 

uncertainties in operating muscles. This technique is able to 

deal effectively with the effects of these doubts and 

conversations that occur in the performance. 

This research aims to design BSC and ABSC and then 

compare them to maintain and coordinate the tracking of 

desired motion while reducing chattering, non-linearity, and 

uncertainty, in the manipulator arm that is operated by PAM 

in the system to maintain the stability of the system. 

This paper will contain the following sections in a sequence: 

• The dynamics and control model includes the

development of the mathematical model of a one-link

arm powered by (PAMs) with suggestion BSC.

• The adaptive backstepping control law.

• Results and discussion show the simulation results and

discussion of the control system and model response

and the comparison results.

• In the final section, the conclusion summarizes the

paper’s main points.

The methodology of this paper is described in the first 

section the introduction, the dynamic model of the PAM, then 

the open loop results, control methods of Backstepping and 
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Adaptive Backstepping control, the results of the comparison 

and the last section is the conclusion and future work. 

 The methodology as sequence shows the sequence of 

portraying the contents of this research in Figure 1. 

Figure 1. Simplified flowchart of the methodology 

2. DYNAMIC MODEL

Figure 2 shows a model of a PAM type and dimensions of 

the fluidic muscle that this study will concentrate on the fluidic 

muscle (DMSP-20-100N-RM-CM) from the FESTO 

Company. Because it responds more quickly than other types 

and movements like a natural muscle, its work efficiency is up 

to 50% closer to the biological muscles. Theoretical Fluidic 

Muscle force at maximum operating pressure is 1500N, the 

mode of operation is single-acting mode and pulling mode, 

and the maximum working load freely suspended is 80Kg. The 

operating pressure of this kind is between 0 MPa and 0.6 MPa 

[25]. 

Figure 2 shows the two dimensions (2D) of the fluidic 

muscle type DMSP-20-100N-RM-CM.  Also, Table 1 

illustrated the values of the dimensions. 

Some of the values that affected the performance 

and considered as a limitation in this type of artificial muscle 

and affect the control results. The stroke of the muscle max. 

value is 2500 mm, and the operating pressure is from 0 bar to 

6 bar, giving force at the maximum pressure is 1500 N, and 

the max working load freely suspended is 80 Kg. 

Before forming the design control first order develop a 

mathematical model of the system that accurately echoes real 

muscle behavior. The PAM system is able to be examined and 

its connected controller is designed to suit the performance 

requirements. 

Figure 2. Dimensions of the fluidic muscle type DMSP-20-

100N-RM-CM [25] 

Table 1. Dimensions values [25] 

Dimensions value 

SW1 17mm 

SW2 10mm 

SW4 13mm 

L1 15mm 

L2 36mm 

L3 26mm 

L4 15mm 

L7 19mm 

L8 142mm 

LN 80mm 

DO 22mm 

Figure 3. PAM single-link robot arm 

Figure 3 shows a mass with PAMs actuated by arm 

positions of the triceps and biceps. The wrist moves as the 

PAMs expand and compress while the upper arm stays fixed. 

The upper arms and endpoints of the PMs are attached to a 

fixed reference point. where m denotes mass in (kg), g 

represents gravitational acceleration (m/s2), r is the pulley 

radius (m), xt represents pneumatic muscle extension (m), and 

xb is the muscle contraction (m). The PMs are attached to the 

elbow at point A, which is a rotational axis away from the joint. 

L is distance between joint and the load's center of mass. 

The amount of pneumatic muscle extension xt and muscle 

contraction xb can be expressed respectively by researches [26, 

27]: 

𝑥𝑏 = 𝑎(1 − 𝑐𝑜𝑠 𝜃)  (1) 

𝑥𝑡 = 𝑎(1 + 𝑐𝑜𝑠 𝜃 ) (2) 

The movement of the wrist shown an angle α=sin-1 (r/a) 

with the triceps corps. Within the same angle θ, the wrist is 

authorized to twist. The angle θ=0 corresponds to the wrist in 

a descending position, whereas angle θ=π represents a case 

that the wrist is positioned extremely upwards. The wrist's 

biceps muscle produces a clock - wise torque that is provided 

by research [28]: 

𝜏𝑐𝑤 =  𝐹𝑏(. ) 𝑎 𝑠𝑖𝑛𝜃 (3) 

The counterclockwise torque applied by the triceps muscle 

is described by: 
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𝜏𝑐𝑐𝑤 =  𝐹𝑡(. ) 𝑟 (4) 

 

In this equation, Ft(.) and Fb(.) represent the forces produced 

by the triceps and bicep muscles of the PAMs, respectively, 

and r is the radius of the pulley. These forces can be described 

by the dynamic PAM model: 

 

𝐹𝑏(. )  =  𝐹(𝑃𝑏)  −  𝐾(𝑃𝑏)𝑥𝑏 −  𝐵(𝑃𝑏)𝑥𝑏 (5) 

 

𝐹𝑡(. ) =  𝐹(𝑃𝑡) −  𝐾(𝑃𝑡)𝑥𝑡  −  𝐵(𝑃𝑡)𝑥𝑡 (6) 

 

In this equation, B(Pt) B(Pb) represents the bicep muscle's 

coefficient of viscous friction, L is the distance between the 

mass's centroid and the joint, B(Pt) represents the tricep 

muscle's coefficient of viscous friction, K(Pb) denotes the 

bicep muscle's spring coefficient (in units of Newtons per 

meter), K(Pt) denotes the tricep muscle's spring coefficient (in 

units of Newtons per meter). F(Pb), represents the force 

exerted by the PAM in the bicep case, and F(Pt) represents the 

force exerted by the PAM in the tricep case. The variable 'a' 

represents the distance between the joint axis of rotation and 

the PAM's attachment point. The variables F(Pb), K(Pb), and 

B(Pb) represent the bicep PAM's force, spring coefficient, and 

viscosity coefficient, respectively, and they can be expressed 

in the following form: 

 

𝐹(𝑃𝑏)  =  𝐹𝑏 +  𝐹1𝑃𝑏

𝐾(𝑃𝑏)  =  𝐾𝑏 + 𝐾1𝑃𝑏

𝐵(𝑃𝑏)  =  𝐵0𝑏 +  𝐵1𝑏𝑃𝑏

} (7) 

 

As well, F(Pt), K(Pt), and B(Pt) characterize triceps of the 

PAM force, spring, and viscosity coefficients, so that the 

associated formulas explain them: 

 

𝐹(𝑃𝑡)  =  𝐹𝑡 + 𝐹1𝑃𝑡

𝐾(𝑃𝑡)  =  𝐾𝑡 + 𝐾1𝑃𝑡

𝐵(𝑃𝑡)  =  𝐵0𝑡 +  𝐵1𝑡𝑃𝑡

} (8) 

 

It is important to point out that coefficient B relies on 

whether a muscle is already in compressed mode or stretched 

mode, which is, one has varied coefficients of the triceps and 

bicep B(Pt) and B(Pb). Therefore, by combining the torques 

described by Eq. (3) and Eq. (4), one can find the dynamics 

motion equation: 

 

𝐼�̈� =  𝐹𝑏(. )𝑎𝑠𝑖𝑛𝜃 − 𝐹𝑡(. )𝑟 −  𝑀𝑔𝐿𝑠𝑖𝑛𝜃 (9) 

 

where, I=ML2 describes the moment of mass inertia about the 

elbow and the latest term (M*g*L*sinθ) has been adjusted to 

take into consideration the mass gravity's counterclockwise 

torque on the forearm. So can achieve the following by 

substituting Eqns. (5) and (6) into Eq. (9): 

 

𝐼 �̈� = 𝑛 (𝐹 (𝑃𝑏) − 𝐾 (𝑃𝑏) 𝑥𝑏 − 𝐵𝑏 (𝑃𝑏) �̇�𝑏) 𝑎 𝑠𝑖𝑛 𝜃  
− (𝐹(𝑃𝑡) − 𝐾(𝑃𝑡) 𝑥𝑡

− 𝐵𝑡(𝑃𝑡) �̇�𝑡) 𝑟 − 𝑀 𝑔 𝐿 𝑠𝑖𝑛 𝜃 

(10) 

 

The time derivative of PM extension xt and contraction xb 

are given, respectively, as:  

 

�̇�𝑏 = 𝑎 (𝑠𝑖𝑛 𝜃) �̇� (11) 

 

�̇�𝑡 = − 𝑎 (𝑠𝑖𝑛 𝜃) �̇� (12) 

Using Eqns. (10) and (12), one can get: 

 

𝐼 �̈� = 𝑛 (𝐹 (𝑃𝑏) − 𝐾 (𝑃𝑏) 𝑥𝑏 − 𝐵𝑏 (𝑃𝑏) �̇�𝑏) 𝑎 𝑠𝑖𝑛 𝜃  
− (𝐹(𝑃𝑡) − 𝐾(𝑃𝑡) 𝑥𝑡

− 𝐵𝑡(𝑃𝑡) �̇�𝑡)  − 𝑀 𝑔 𝐿 𝑠𝑖𝑛 𝜃 

(13) 

 

The pressure of triceps and biceps PAM is given: 

 

𝑃𝑏 = 𝑃𝑜𝑏  +  ∆𝑃 (14) 

 

𝑃𝑡 =  𝑃𝑜𝑡 − ∆𝑃 (15) 

 

where, P0t, and P0b represent primary pressure of triceps and 

biceps, respectively, ∆P is designated as system's control input, 

and it displays how much pressure exists between both the 

triceps and biceps. Then combined the Eq. (14 and 16), to 

produce: 

 

𝐼�̈� = [(𝑎 𝐹0 + 𝑎 𝐹1 𝑃0𝑏 − 𝑀 𝑔 𝐿) 𝑠𝑖𝑛 𝜃
+ 𝑎2( 𝐾0 + 𝐾1 𝑃0𝑏) 𝑠𝑖𝑛 𝜃 (𝑐𝑜𝑠 𝜃
− 1)

− 𝑎2 (𝐵0𝑏 + 𝐵1𝑏𝑃0𝑏) 𝑠𝑖𝑛2𝜃. �̇�
+ 𝑎 𝑟 (𝐾0 + 𝐾1𝑃0𝑡) (1 + 𝑐𝑜𝑠 𝜃)

− 𝑎 𝑟 (𝐵0𝑡 + 𝐵1𝑡𝑃0𝑡) 𝑠𝑖𝑛 𝜃 . �̇�
− 𝑟 (𝐹0 + 𝐹1𝑃0𝑡)] + [𝑎 𝐹1 𝑠𝑖𝑛 𝜃
+ 𝑎2 𝐾1 𝑠𝑖𝑛 𝜃 (𝑐𝑜𝑠 𝜃 − 1)

− 𝑎2 𝐵1𝑏  𝑠𝑖𝑛2𝜃. �̇�

− 𝑎  𝑟 𝐾1(1 + 𝑐𝑜𝑠 𝜃)

+ 𝑎 𝑟 𝐵1𝑡  𝑠𝑖𝑛 𝜃 . �̇� + 𝑟 𝐹1]∆𝑃 

(16) 

 

where, Eq. (16) can be rewritten in the following compact 

form: 

 

�̈� = 𝑓(𝜃, �̇�) + 𝑏(𝜃, �̇�)∆𝑃 (17) 

 

where is 𝑓(𝜃, �̇�) and 𝑏(𝜃, �̇�) are defined by: 

 

𝑓(𝜃, �̇�) = ∑ 𝑓𝑖 𝑍𝑖
6
1  (𝜃, �̇�)  (18) 

 

𝑏(𝜃, �̇�) = ∑  𝑏𝑖  𝑍𝑖
6
1 (𝜃, �̇�)  (19) 

 

where, i = 1, 2, · ·, 6. The classification of coefficients' factors 

fi, Zi and bi have been listed in Table 2. The difference between 

the pressures is the ∆P and given in Eq. (14) is characterized 

as a control signal; that is u = ∆P. additionally, if state variable 

𝑥1is assigned to angular position θ and state variable x2 denotes 

angular velocity θ, then the following describes a state space 

representation: Eq. (20) [29]: 

 

𝑥1 = 𝜃, �̇�1 =  �̇� = 𝑥2, 
�̇�2 = �̈� =  �̈�1 =  𝑓(𝜃, �̇�) + 𝑏(𝜃, �̇�) 𝑢

= 𝑓 (𝑥1, 𝑥2) + 𝑏 (𝑥1, 𝑥2) 𝑢 

(20) 

 

Figure 4 presents the MATLAB/SIMULINK /R2019a for 

the PAM actuated arm. The simulation of PAM actuated arm, 

the model representation is  by using Eq. (20). Table 3 displays 

the values of the PAM model's actuated arm variables that 

were used in the simulations. These variables cause the non-

linearities and the instabilities that shown in the results of the 

open loop. 
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Table 2. Classifications of the coefficient factors fi, Zi and 

bi 

 

Zi fi bi 

𝑧1 = 𝑠𝑖𝑛 𝑥1 
𝑓1

= (𝑎 𝐹0 + 𝑎 𝐹1 𝑃0𝑏

− 𝑀 𝑔 𝐿)/𝐼 
𝑏1 = 𝑎 𝐹1/𝐼 

𝑧2

= 𝑠𝑖𝑛 𝑥1 (𝑐𝑜𝑠 𝑥1

− 1) 
𝑓2 = 𝑎2 (𝑘𝑜 + 𝐾1𝑃𝑜𝑏) /𝐼 𝑏2 = 𝑎2 𝐾1/𝐼 

𝑧3 = (𝑠𝑖𝑛2𝑥1) 𝑥2 
𝑓3

= −𝑎2 (𝐵0𝑏 + 𝐵1𝑏𝑃𝑜𝑏)/𝐼 
𝑏3

= −𝑎2 𝐵1𝑏 /𝐼 

𝑧4 = 1 + 𝑐𝑜𝑠 𝑥1 𝑓4 = 𝑎 𝑟 (𝑘𝑜 + 𝐾1𝑃0𝑡)/𝐼, 
𝑏4

= −𝑎 𝑟 𝐾1 /𝐼 

𝑧5 = (𝑠𝑖𝑛 𝑥1) 𝑥2 
𝑓5

= −𝑎 𝑟 (𝐵0𝑡 + 𝐵1𝑡𝑃0𝑡)/𝐼 
𝑏4

= −𝑎 𝑟 𝐾1 /𝐼 

𝑧6 = 1 
𝑓6 = (−𝑟 𝐹0 −  𝑟 𝐹1𝑃0𝑡)

/𝐼 
𝑏6 = 𝑟 𝐹1/𝐼 

 

 
 

Figure 4. Open loop PAM manipulator arm system 

represented by MATLAB SIMULINK 

 

 

Table 3. The mathematical values of the coefficient of the 

PAM 

 
Coefficient descriptions Values 

The nominal force that has been exerted by PAM 

(F0) 
0.986×102N 

Variation in a force exerted by PAM (F1) 0.803N 

variation in the coefficient of viscosity in the bicep 

muscle (B1b) 

4.66x10-

3N.s/m 

Bicep /nominal viscosity coefficient (B0b) 1.35N.s/m 

Standard spring coefficient (k0) 6.51N/m 

Triceps /nominal viscosity  

Coefficient (B0t) 

4.03x10-

1N.s/m 

Triceps /variation in viscosity 

 coefficient (B1t) 

12.0x10-

4N.s/m 

Nominal bicep pressure (Pob) 510.4KPa 

Variation in spring coefficient (k1) 2.12×10-2N/m 

The distance of the mass center from the joint (L) 0.46m 

Nominal triceps pressure (Pot) 400Pa 

Mass (M) 20kg 

Pulley radius (r) 0.0508m 

Distance between the PAM attachment point and 

the joint axis (a) 
0.0762m 

Gravity Acceleration (g) 9.8m/s2 

 

Both controllers that apply to the system are applied in 

MATLAB/SIMULINK software and was used to create the 

models. The results of the open loop position and velocity are 

shown in Figure 5. Using the Backstepping Control (BSC) 

then apply the Adaptive Backstepping Control (ABSC) on the 

PAM's arm manipulator model to solve the main problem and 

to stabilize the PAM and transfer its states to the balance point 

area. The since the main issue of the PAM model is unstable 

and uncontrollable due to the deficiency of speed control, 

resulting in unwanted movement that requires to be regulated. 

Figure 5 shows that the open loop system is unstable. 

Table 3 lists the mathematical values for both PAM-

actuated Single Arm Manipulators in the bicep/triceps 

positions [30]. 

 

 
a. Displacement of the single arm actuator 

 
b. Velocity of the single arm actuator 

 

Figure 5. Open loop response of the single arm actuator by 

using PAM 

 

 

3. BACKSTEPPING CONTROL DESIGN 

 

In this section, we have designed control methods for 

studying the control design for the PAM robot arm's 

movement. We developed the control design using a BSC 

technique [31, 32]. The dynamic responsiveness of the 

controlled system is directly influenced by the design 

parameters of the BSC [33]. Establish the BSC algorithm for 

a Single Arm PAM-Actuated Robot system by following the 

procedures listed [34]. 

Let the variation between actual angle position x1=θ and 

needed trajectory x1d=θd be the e as the follow [35, 36]. 

The time derivative of the error in Eq. (21), the tracking 

velocity, can be written as follows: 

 

𝑒1 = 𝑥1 − 𝑥1𝑑 (21) 

 

Defining the first virtual control α1=x2 and sub in Eq. (22) 

to get: 

 

𝑒1̇ = �̇�1 − �̇�1𝑑 (22) 

 

Defining the first virtual control α1=x2 and sub in Eq. (22) 

to get: 

 

𝑒1̇ = 𝛼1 − �̇�1𝑑 (23) 
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The Lyapunov function is a type of function that is always 

positive, and its derivative is also a function as follows: 

 

𝑉1 =
1

2
𝑒2

1  (24) 

 

𝑉1̇ = 𝑒1𝑒1̇ (25) 

 

By substituting Eq. (23) into Eq (25), we can obtain a new 

derivative of the Lyapunov function, which can be written as 

follows: 

 

𝑉1̇  = 𝑒1(𝛼1 − �̇�1𝑑) (26) 

 

A virtual control (α1 = −c1e1 + ẋ1d) is created and sub into 

Eq. (26) then: 

 

�̇�1 = −𝑐1𝑒2
1 (27) 

 

This mean V1< 0 Let the error e2, between actual state x2 and 

the first virtual control α1 described by Eq. (28) and taking the 

time derivative of Eq. (28) and using Eq. (20) to get: 

 

𝑒2 = 𝑥2 − 𝛼1 (28) 

 

𝑒2̇ = 𝑥2̇ − 𝛼1̇ (29) 

 

𝑒2̇ = 𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝛼1̇  (30) 

 

The second Lyapunov function is: 

 

𝑉2 =
1

2
𝑒2

1  +
1

2
𝑒2

2 (31) 

 

Using the time derivative of Lyapunov function and the 

derivative of Lyapunov function leads to: 

 

𝑉2̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ (32) 

 

𝑉2̇ = −𝑐1𝑒2
1 + 𝑒2(𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝛼1̇) (33) 

 

Choosing the control law: 

 

𝑢 =
−𝑐2𝑒2−𝑒1−𝑓(𝑥1,𝑥2)−𝑐1𝑒1̇+�̈�1𝑑

𝑏(𝑥1,𝑥2)
  (34) 

 

The result of the Lyapunov function's derivative is: 

 

𝑉2̇ = −𝑐1𝑒2
1 − 𝑐2𝑒2

2 (35) 

 

Figure 6 below shows graphical design of BSC for PAM - 

actuated robot arm and shows the control law that controls t he 

actuated-PAM  robot arm. 

 

3.1 Adaptive backstepping control 

 
Adaptive control can effectively address uncertainty. A 

backstepping-based adaptive control method is proposed to 

offer a non-linear recursive technique for monitoring that is 

based on the precise construction of Lyapunov functions. This 

approach enables the handling of unknown parameters and 

nonlinear effects [37]. 

In this section, ABSC was created to evaluate the 

disturbance and stabilize the position and angular orientation 

of the PAM. A parameter estimator, which provides 

estimations of unknown parameters, and a control rule are 

used to create an adaptive controller. It can guarantee the 

asymptotic tracking and boundedness of the closed-loop states 

[38, 39]. 

The sequence of equations given below can be used to 

develop the ABSC algorithm for a PAM system. 

Let e be the difference between the actual angle position x1 

= θ and the desired trajectory x1d = θd as follows: 

 

𝑒1 = 𝑥1 − 𝑥1𝑑 (36) 

 

The time derivative of the error in Eq. (36), the tracking 

velocity, can be written as follows: 

 

𝑒1̇ = �̇�1 − �̇�1𝑑 (37) 

 

𝑒1̇ = 𝑥2 − �̇�1𝑑   (38) 

 
 

Figure 6. Schematic diagram of the proposed BSC for PAM 
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Defining the first virtual control α1=x2 and sub in Eq. (38) 

to get: 

 

𝑒1̇ = 𝛼1 − �̇�1𝑑 (39) 

 

The positive Lyapunov function in Eq. (40) and the 

Lyapunov function derivative during time is in Eq. (41): 

 

𝑉1 =
1

2
𝑒2

1 (40) 

 

𝑉1̇ = 𝑒1𝑒1̇ (41) 

 

As follows: by substituting Eq. (39) into Eq. (41) to generate 

a new derivative of the Lyapunov function, which can be 

shown as follows: 

 

𝑉1̇  = 𝑒1(𝛼1 − �̇�1𝑑) (42) 

 

A virtual control is formed in Eq. (43): 

 

𝛼1 = −𝑐1𝑒1 + �̇�1𝑑 (43) 

 

Sub Eq. (43) into Eq. (42) to get: 

 

�̇�1 = −𝑐1𝑒2
1 (44) 

 

Tacking the time derivative of the virtual control: 

 

�̇�1 = −𝑐1�̇�1 + �̈�1𝑑 (45) 

 

Sub Eq. (38) into the Equation of the time derivative of the 

virtual control: 

 

�̇�1 = −𝑐1𝑥2 + 𝑐1�̇�𝑑1 + �̈�1𝑑 (46) 

 

By tacking the e2 as a tracking error, between actual state x2 

and the first virtual control α1 described by Eq. (47) and then 

taking the time derivative of Eq. (47). 

 

𝑒2 = 𝑥2 − 𝛼1 (47) 

 

𝑒2̇ = 𝑥2̇ − 𝛼1̇ (48) 

 

and using Eq. (20) to get: 

 

𝑒2̇ = 𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝐹𝑑1 − 𝛼1̇ (49) 

 

𝑒2̇ = 𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝐹𝑑1 + 𝑐1𝑥2 − 𝑐1�̇�1𝑑

− �̈�1𝑑 
(50) 

 

Fd1 is supposed to be unknown external disturbance. 

The second Lyapunov function is: 

 

𝑉2 =
1

2
𝑒1

2 +
1

2
𝑒2

2 +
1

2
𝛾1

−1�̃�𝑑1
2   (51) 

 

Using the time derivative of Lyapunov function, where the 

�̃�1 represents the estimation error disturbance: 

 

�̃�𝑑1 = 𝐹𝑑1 − �̂�𝑑1 (52) 

 

�̂�𝑑1 the estimation of disturbance Fd1 denoted. 

Tacking the time derivative of estimation error disturbance 

�̇̃�𝑑1 = −�̇̂�𝑑1 (53) 

 

Taking the derivation of equation V2 with respect of time: 

 

𝑉2̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝛾1
−1 �̃�𝑑1�̇̃�𝑑1 (54) 

 

𝑉2̇ = −𝑐1𝑒2
1 + 𝑒2(𝑓(𝑥1, 𝑥2) + 𝑏(𝑥1, 𝑥2)𝑢 − 𝛼1̇) (55) 

 

Choosing the control law: 

 

𝑢 =
−𝑐1𝑥2−𝑒1−𝑐2𝑒2−𝑓(𝑥1,𝑥2)+𝑐1�̇�1𝑑+�̈�1𝑑−�̂�𝑑1

𝑏(𝑥1,𝑥2)
  (56) 

 

from Eq. (56) and Eq. (55) and estimation error disturbance: 

 

𝑉2̇ = 𝑒1𝑒1̇ + 𝑒2𝑒2̇ + 𝛾1
−1 �̃�𝑑1�̇̃�𝑑1 (57) 

 

The derivative of Lyapunov function leads to: 

 

�̂�1
̇ =  𝛾1𝑒2 (58) 

 

Using the first update adaptive law into Eq. (56) gives: 

 

𝑉2̇ = −𝑐1𝑒2
1 − 𝑐2𝑒2

2 (59) 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

This section represents a comparison between BSC and 

ABSC for single-arm PAM-actuated robot stabilization, 

tracking, and regulatory control. Using 

MATLAB/SIMULINK/2019a simulation to investigate the 

BSC and ABSC implementation and evaluate the controllers. 

The coefficient values affecting the system for a single-arm 

PAM-actuated robot are illustrated in Table 3. both controllers 

based on the try-and-error approach in Table 4. includes the 

controller design parameter's using the method that relies on 

determining values through trial and error. 

 
Table 4. Factors that influence control design values 

 
Factors BSC ABSC 

C1 1 26 

C2 1 34 

 

A comparison was accomplished using the response of 

stability in the position tracking for the PAM-actuated arm 

moving. As mentioned previously that the BSC algorithm 

requires validation as well. The comparison has been 

performed with the use of position tracking in the valve during 

PAM-actuated arm moving. The time response for PAM 

actuated arm moving was obtained from the BSC reaching the 

equilibrium at a stable state at 6 sec. but the response of using 

the ABSC reaches its steady at 0.2 sec. Backstepping 

controllers and Adaptive Backstepping controllers based on 

the try-and-error method. 

Figures 7 and 8 below shows the position and the velocity 

control signal using the BSC technique, the position control 

signal tracking shows that at time 6 sec reaches its steady-state 

but the signal has chattering and not smooth. The error 

between the desired signal and the position with non-optimal 

BSC is 5*10-4. The Simulink of the ABSC in 

MATLAB/2019/b simulation shown in Figure 9. 
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Figure 7. Position trajectory of the BSC 

 

 
 

Figure 8. Velocity trajectory of the BSC 

 

 
 

Figure 9. PAM manipulator arm system controlled by ABSC represented by MATLAB SIMULINK 

 

The position and velocity control signal using the ABSC 

method the position control signal tracking shows in Figures 

10 and 11 that at time 0.2 sec reaches its steady-state the signal 

has been smoother and almost there is no chattering in it. The 

error between the desired signal and the position with ABSC 

is 9.985*10-6. 

Figures 12 and 13 show the compared signal between the 

BSC and ABSC that the desire to achieve obviously indicates 

that the signal of utilizing the ABSC is more accurate and less 

chattering this is cause precise performance and smoother 

movement.  

 

 
 

Figure 10. Position trajectory of the ABSC 

 
 

Figure 11. Velocity trajectory of the ABSC 

 

 
 

Figure 12. Position BSC signal 
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Figure 13. Position ABSC signal 

 

 

5. CONCLUSIONS 

 

Through using the backstepping method to control 

movement, a PAM actuator arm is developed and 

implemented in this research. The controller is then modified 

into an adaptive Backstepping controller for the PAM actuator 

arm. Furthermore, a comparison between the two controllers 

was developed. It turns out that the law of control is what 

precisely enables the arm manipulator's movements to follow 

the required trajectory. throughout the control diagram 

simulation in MATLAB/2019/b. BSC and ABSC controllers 

are developed using the trial-and-error method of fine-tuning, 

which leads to the finding of positive constants. The 

comparison showed that using ABSC reduces error, improves 

accuracy, and produces output signals with little chatter. As 

compared to the response in the PAM actuated the arm model 

in the current study utilizing the ABS controller system 

revealed a fair enhancement in the error lowering by 98% from 

the BS controller system. It has been proven that an Adaptive 

backstepping controller can control the uncertainties, and the 

chattering in the output signal and maintain the controlled 

system’s stability. 

The error in the BSC is also small but the accuracy and 

reaching the stability is more than the ABSC, however, the 

signal inaccuracy and chatter are excessive and have 

inaccurate consequences on the motion performance and the 

exact position of the PAM actuation arm. The ABSC has been 

demonstrated to be more capable of dealing with perturbations 

and uncertainty. To ensure precise results and strong 

performance, next work will utilize optimization methods to 

fine-tune the controller parameters. 
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