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In this study, a nonlinear robust state feedback based on H-infinity controller for 

nonlinear systems is constructed. On the basis of a proposed cost function, the black 

hole optimization (BHO) method is employed as a successful optimization approach to 

discover the optimum parameters with relation to the proposed controller. Solving the 

H-infinity algebraic Riccati equation yields the recommended controller gain matrix.

To demonstrate the efficacy of the suggested controller, two categories of nonlinear

systems are provided as case studies. Lastly, the simulation findings reveal that the

proposed nonlinear controller is capable and enhances the performance and stability of

the nonlinear systems.
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1. INTRODUCTION

Nonlinear systems have been recognized as the most 

important subject in control field for the previous several 

decades. They are crucial because of their scientific and 

engineering applications [1]. Nonlinear phenomena are 

commonly used to describe the real-world system behavior. 

Maintaining acceptable stability margins and needed 

performance parameters in relation to closed-loop systems is 

difficult because of the substantial nonlinearity and 

uncertainty of these systems. As a result, robust control 

approaches are necessary to build nonlinear systems 

controllers that fulfill the requirements for stability and 

performance under uncertainty and nonlinearity [2]. 

A major difficulty in control theory is the construction of 

strong feedback controllers. These controllers may achieve 

asymptotically tracking and robustness in the presence of 

system disturbance and uncertainty [3]. The feedback control 

theory includes several structure options for feedback as well 

as various feedback loops. The state feedback control is a sort 

of feedback control wherein the feedback is accessible for all 

system states [4]. The H-infinity control, which is considered 

one of the state feedback control, is the most prevalent and 

successful method in robust control theory in order to reject a 

disturbance and compensating uncertainties and nonlinearities 

in the system. It gives excellent performance and stability [5-

8]. 

Previous studies have concentrated on a range of robust 

feedback control design methodologies, for example, the 

development of H-infinity state feedback control depending on 

a nearly linearized model [9, 10], based on lyapunove theory, 

the robust feedback linearization for nonlinear process control 

is built [11], the H-infinity loop - shaping strategy [12, 13], 

and a robust method of control based on linear & bilinear 

matrix inequalities, (LMIs) and (BMIs) [14, 15]. 

Each of the previous research offered somewhat difficult 

procedure for creating a nonlinear system controller that are 

particular with relation to the kind of system, which 

encouraged us to try to use another procedure design method 

which recommends a simpler and more universal approach. 

A proposed full state feedback controller is built in this 

research to realize the stability for nonlinear systems as well 

as achieve a desired performance. To determine the best 

settings for the proposed nonlinear controller, the Black Hole 

optimization (BHO) approach is utilized. The suggested 

controller in this study may successfully improve the nonlinear 

systems behaviour of fixed coefficients. 

The rest of this article is organized as following: The black 

hole optimization (BHO) is detailed in the part "Black Hole 

Optimization (BHO) method". The concept of the control 

design based on state feedback control and H-infinity control 

theory for a nonlinear system is described in the "Controller 

Design" part. The suggested controller’s parameters that will 

be adjusted by the (BHO) to get the best values for them were 

presented in the "Controller Parameters Tuning" part. Two 

categories of nonlinear systems are offered as case studies in 

the "Illustrative Examples" part to show the efficacy of the 

suggested controller. Conclusions are provided in the 

"Conclusion" section. 

2. BLACK HOLE OPTIMIZATION METHOD

The BHO is a relatively new optimization approach that is 

widely utilized to discover the most suitable solution to a 

combinatorial optimization problem [16]. It is classified as a 

metaheuristic (population-based) optimization method since it 

employs a particular trade-off for randomization versus local 

search to be able to get a solution that is optimal or almost 

perfect [17]. Local search is a popular approach for locating 

superior solutions to complex or challenging combinatorial 

optimization issues in a reasonable period of time. In addition, 

it is a method of iterative search for varying neighboring 

solutions in order to improve on current ones [16-18]. 

This approach will be used in this study to make 

adjustments to a number of significant parameters through the 

course of building the controller of a nonlinear system, 

resulting in the optimal values for these parameters which 

Mathematical Modelling of Engineering Problems 
Vol. 10, No. 2, April, 2023, pp. 581-589 

Journal homepage: http://iieta.org/journals/mmep 

581

https://orcid.org/0000-0003-4678-8051
https://orcid.org/0000-0002-3961-7273
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100227&domain=pdf


 

yield the best stability and performances. 

For this method, A population of possible solutions (stars) 

is generated randomly from of the points situated inside the 

search space. Following startup, the fitness values of the 

population are assessed, and the most qualified candidate 

(having the greatest fitness value) is chosen to represent the 

black hole, however the remaining stars become the regular 

stars. As a result, the black hole begins to attract stars from all 

directions around it, which move toward the black hole [16-

19]. The formal migration of stars toward a black hole is 

expressed as in researches [17-19]: 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑟𝑎𝑛𝑑(𝑥𝐵𝐻 − 𝑥𝑖(𝑡))  

𝑖 = 1,2,3, … , 𝑁 
(1) 

 

where, xi(t+1) and xi(t) represent the coordinates for the ith star 

on the iteration (t+1) and (t), respectively. (rand) is a number 

ranging from 0 to 1 that is created at random. The location of 

the black hole inside the search space is denoted by (xBH). 

(N) represents the number of potential solutions (stars). 

A star shifts its position as it approaches the black hole, if 

the star’s fitness value surpasses the black hole value, it is 

selected as the black hole. After then, the procedure is repeated 

also with the black hole within the new location, and stars start 

to gravitate toward that new black hole. consequently, 

traveling stars approaching to black hole have a probability of 

passing through the event horizon. every candidate solution 

(star) that exceeds the event horizon of a black hole will be 

devoured by the black hole. Then, after the swallowed star, a 

new star is formed and spread throughout in the search space 

at random. The goal of that construct is to maintain a constant 

number for candidate solutions. The following iteration begins 

when the stars have all shifted [17]. The following formula is 

used to calculate the event horizon radius (R) [17-19]: 

 

𝑅 =
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

  (2) 

 

where, fBH is the fitness value of the black hole, N denotes the 

number of solutions that are possible (stars) and fi represents 

the fitness value of the ith star. Whenever the separation of a 

star and a black hole is less than a particular radius (R), this 

star has been swallowed via the black hole. 

The BH algorithm's feasibility is determined by determining 

the best parameters for the proposed controllers. At first, 

specify the populations size and the dimensions of the problem, 

as well as the controller parameters to be optimized. In this 

method, this parameter will be represented by the stars, and the 

most effective solutions being represented by the black holes. 

The black holes then begin to engulf neighboring stars during 

the previously indicated stages. The previously optimized 

parameters (best solutions or the black holes) are then 

determined and concurrently introduced to the controlled 

system to compute the detected error and control action. As a 

result, the measured error and control action are utilized to 

determine the cost function, which is then compared to the 

prior cost during every iteration to acquire the better cost and 

afterward the ideal parameters. Lastly, after a specific number 

of iterations, this procedure is repeated until the ideal 

parameters are determined [5]. 

The use of the black hole optimization approach has two 

advantages. First, it has a basic framework that is easy to 

implement. Second, no issues there are with regard to 

parameter adjustments [16]. 

3. CONTROLLER DESIGN 

 

This part describes the steps design of suggested controller 

for systems of the model [20, 21]: 

 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1𝑑(𝑡) + 𝐵2𝑢(𝑡) 

𝑒(𝑡) =  𝐶1𝑥(𝑡) + 𝐷12𝑢(𝑡) 

𝑦(𝑡) = 𝐶2𝑥(𝑡) 

(3) 

 

where, 𝑥(𝑡) ∈ ℛ𝑛  represents state vector of the system, 

𝑑(𝑡) ∈ ℛ𝑚 denotes the exogenous disturbance,  𝑢(𝑡) ∈  ℛ𝑙  

depicts the control input , 𝑒(𝑡) ∈  ℛ𝑞  denotes the controlled 

output, 𝑦 ∈ ℛ𝑝  represents the output as measured, which is 

supposed to represent the state vector accessible for feedback, 

𝐴 ∈  ℛ𝑛×𝑛 , 𝐵1 ∈ ℛ𝑛×𝑚  and 𝐵2 ∈  ℛ𝑛×𝑙 , 𝐶1 ∈ ℛ𝑞×𝑛  denotes 

the system state control weight matrix, 𝐷12 ∈ ℛ𝑞×𝑙 represent 

the control input regulation weight matrix, 𝐶2 ∈ ℛ𝑝×𝑛  is 

aweight matrix of the output. 

Figure 1 depicts the conventional setup of the complete state 

feedback H-infinity control, while Kc is the controller gain 

matrix and M stands for the augmented system matrix [21]. 

 

𝑀 = [

𝐴 𝐵1 𝐵2

𝐶1 𝐷11 𝐷12

𝐶2 𝐷21 𝐷22

]  (4) 

 

 
 

Figure 1. The structure of H-infinity full state feedback 

control 

 

Feedback should be possible for all states of system in order 

to develop a complete state feedback H-infinity control. This 

means that C2=I.D11, D21 and D22 are all equal to zero. As a 

result, the augmented system matrix M is: 

 

𝑀 = [
𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

𝐼 0 0

]  (5) 

 

The suggested controller design must make the following 

assumptions: 

1. The pairings (A, B1) & (A, B2) are supposed to be 

controllable or, at the very least, stabilizable. 

2. The pairing (C1, A) is supposed to be observable or, at the 

very least, detectable. 

3. 𝐶1
𝑇𝐷12 = 0 & 𝐷12

𝑇 𝐷12 = 𝐼. 

It is important to remember that the nonlinear system must 

be changed to the form described in Eq. (3) utilizing a state 

variable transformation technique before being controlled in 

this approach. This transformation arranges nonlinear terms as 

well uncertainty (bad terms) at the identical channel as the 

control law u (achieving the matching requirement). In this 

circumstance, the controller may compensate for the 
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unsatisfactory terms. The diffeomorphism mapping is the 

suitable transformation for this object: 

𝜙: D→ℛ𝑛 this converts the system from x to z space [22]. 

 

𝑧 =  𝜙(𝑥) (6) 

 

The map 𝜙 must be invertable in order to: 

 

𝑥 = 𝜙−1(𝑧) (7) 

 

The z-space origin point of the modified system equals the 

point of the initial system [18]. 

 

𝜙(0) = 0 (8) 

 

The above mapping transforms our nonlinear system into 

the form shown below [9]: 

 

�̇�(𝑡) = 𝐴𝑧(𝑡) + 𝐵1𝑑(𝑡) + 𝐵2𝑢(𝑡) (9) 

 

The goal of the control challenge is to discover the optimum 

control law u*, which is state dependent, that ensures that the 

closed-loop transfer function’s (Ted) infinite norm is smaller 

than a certain value of γ as [20]: 

 

∥ 𝑇𝑒𝑑(𝑠) ∥∞< 𝛾 (10) 

 

where, γ denotes the upper constraint on the amplitude of the 

disturbance and perturbation which could be eliminated 

through the control action. The requirement in Eq. (10) 

denotes that [21]: 

 

  𝐽(𝑢, 𝑑) <  ∞𝑑  
𝑠𝑢𝑝

𝑢  
𝑖𝑛𝑓

 (11) 

 

where, 

 

𝐽(𝑢, 𝑑) = ∫ (𝑒𝑇∞

0
𝑒 − 𝛾2𝑑𝑇𝑑)𝑑𝑡  (12) 

 

The disturbance d(t) attempts to maximize the cost function 

J(t), whereas the control signal u(t) intends to minimize it. As 

a result, the physical connotation of this relationship is that the 

control action and also the disturbance are in competition with 

one other within infinmum (inf) and supremum (sup). 

Let the structure of the suggested optimal controller and 

worst-case disturbance be as follows [20]: 

 

𝑑(𝑡) = 𝐾𝑑𝑥(𝑡) (13) 

 

And 

 

𝑢(𝑡) =  𝐾𝑐𝑥(𝑡) (14) 

 

By substituting Eq. (14) into Eq. (3) results in: 

 

𝑒(𝑡) = (𝐶1 + 𝐷12𝑘𝑐)𝑥(𝑡) (15) 

 

Utilising assumption 3, we get: 

 

𝑒𝑇𝑒 = 𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐)𝑥 (16) 

 

Therefore, 

 

𝐽 = ∫ 𝑥𝑇∞

0
(𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑)𝑥𝑑𝑡  (17) 

Substituting Eqns. (13) and (14) into Eq. (3) results in: 

 

�̇� = (𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑥 (18) 

 

from the cost function in Eq. (17), can let: 

 

𝑄 = (𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑) (19) 

 

where, 𝑄 should be positive definite matrix. 

By the optimal control law, the system acquired by Eq. (18) 

is considered to be stable. Based on this assumption, let us 

develop: 

 

𝑉(𝑥) = 𝑥𝑇𝑃𝑥 (20) 

 

�̇�(𝑥) = −𝑥𝑇𝑄𝑥 (21) 

 

V(x) represents a Lyapunov function with a positive definite. 

Eq. (19) would then substituted in Eq. (21) to obtain the best 

cost function: 

 

�̇�(𝑥) = −𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥 (22) 

 

𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾𝑐

𝑇𝐾𝑐 − 𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥 = −

𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥 (23) 

 

By integrating on each side of Eq. (23) from 0 to ∞ gives: 

 

∫ 𝑥𝑇∞

0
(𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑)𝑥𝑑𝑡 =

∫ −
𝑑

𝑑𝑡
𝑥𝑇𝑃𝑥

∞

0
𝑑𝑡  

(24) 

 

𝐽 = −𝑥(∞)𝑇𝑃𝑥(∞) − (−𝑥(0)𝑇𝑃𝑥(0)) (25) 

 

Because the system in Eq. (18) should be stable according 

to the control law, x(∞)=0. As a result, the optimal cost 

function is: 

 

𝐽∗ = −𝑥(0)𝑇𝑃𝑥(0) (26) 

 

The solution to the following Lyapunov equation is 

represented by the positive definite matrix P: 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
= −𝑄 

(27) 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
= −(𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑) 
(28) 

 

(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)𝑇𝑃 + 𝑃(𝐴 + 𝐵1𝐾𝑑 + 𝐵2𝐾𝑐)
+ (𝐶1

𝑇𝐶1 + 𝐾𝑐
𝑇𝐾𝑐 − 𝛾2𝐾𝑑

𝑇𝐾𝑑) = 0 
(29) 

 

To obtain the optimum control law, Eq. (29) must be 

derived with respect to Kc and set 𝜕𝑃 𝜕𝐾𝑐𝑖𝑗
⁄ = 0, we get: 

 

𝐾𝑐 = −𝐵2
𝑇𝑃 (30) 

 

As a result, 
 

𝑢∗ = 𝐾𝑐𝑥 = −𝐵2
𝑇𝑃𝑥 (31) 

 

Similarly, we may get the applied worst-case disturbance 

via deriving the Lyapunov equation with respect to Kd and 

setting 𝜕𝑃 𝜕𝐾𝑑𝑖𝑗
⁄ = 0, we get: 
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𝐾𝑑 =
1

𝛾2 𝐵1
𝑇𝑃  (32) 

 

And 

 

𝑑∗ = 𝐾𝑑𝑥 =
1

𝛾2 𝐵1
𝑇𝑃𝑥  (33) 

 

And at optimum control condition and worst-case 

disturbance, we have the Lyapunov equation: 

 

𝑃𝐴 + 𝐴𝑇𝑃 + 𝐶1
𝑇𝐶1 − 𝑃 (𝐵2𝐵2

𝑇 −
1

𝛾2 𝐵1𝐵1
𝑇) 𝑃 = 0  (34) 

 

This formula is called H-infinity algebraic riccati equation 

(HIARE). 

The provision ∥ 𝑇𝑒𝑑(𝑠) ∥∞< 𝛾 is satisfied and provided: 

1. 𝑢∗ = 𝐾𝑐𝑥 = −𝐵2
𝑇𝑃𝑥 

2. P>0 

3. The matrix A+B1Kd+B2Kc is stable, which means that 

the matrix A+B2Kc is asymptotically stable as well. 

 

 

4. CONTROLLER PARAMETERS TUNING 

 

The black hole optimization technique is used offline, 

which means that an algorithm that works offline is given the 

entirety of issue data from the beginning and is necessary to 

develop a solution to a current problem, as well as to collect 

the proposed controller needed parameters. The black hole 

optimization method is straightforward and it was conducted 

to discover the optimal values for the components of matrix C1 

(Eq. (3)) as well as the optimal value of γ (Eq. (34)) that fulfill 

the necessary robustness in stability and performance. Figure 

2 depicts the proposed controller block diagram with the BHO 

algorithm. The goal of the BHO issue is to determine the best 

controller from the search space which minimizes the 

proposed cost function and meets Eq. (34). The following 

parameters were utilized to implement the robust controller 

design utilizing the black hole optimization (BHO): 

1. The members to be gained are: c11, c12, …, cnn and γ. 

2. the population size is fixed at 50. 

3. The maximum number of iterations is set to 100. 

The controller parameters are tuned subject to the following 

cost function: 

 

𝐽 = ∫ 𝑒2𝑡𝑓

0
(𝑡)𝑑𝑡 + ∫ 𝑢2𝑡𝑓

0
(𝑡)𝑑𝑡  (35) 

 

where, e represents the error, tf represents the final time and u 

represents the control signal. The cost function in Eq. (35) is 

used to guarantee a desirable time response specification in 

addition to the robustness which was guarantee by applying 

the H-infinity control. 

 

 
 

Figure 2. The proposed controller’s block diagram using 

BHO 

5. ILLUSTRATIVE EXAMPLES 

 

In this part, case studies are offered for two nonlinear 

system instances to exhibit the utility of the suggested 

controller. To show the efficacy for the suggested controller, 

the nonlinear system time responses both without and with the 

suggested controller are provided. The matching condition in 

Example 1 is met within nonlinear system state equations (the 

control law and the nonlinear terms are both contained within 

the same channel). The matching condition is not met in 

Example 2 (the control law and the nonlinear terms are in 

separate channels). 

 

5.1 Example (1) 

 

The nonlinear system that must be controlled is: 

 

�̇�1 = 𝑥2 

�̇�2 = 𝑠𝑖𝑛𝑥1 − 𝑢 × 𝑐𝑜𝑠𝑥1 

𝑦 = 𝑥1 

(36) 

 

Figure 3 shows the stages of designing the proposed 

controller for the system described in Eq. (36). 

 

 
 

Figure 3. The controller designing stages for example 1 

 

 
 

Figure 4. Open-loop system time response prior using the 

proposed controller 
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Figure 5. Closed-loop system time response prior using the 

proposed controller 

 

Figures 4 and 5 depict the open and closed loops nonlinear 

system time responses features respectively prior to applying 

the suggested controller. In open-loop, our system is clearly 

unstable, but in closed-loop, it is critical stable, thus to 

stabilize the system as well as obtain the desired performance, 

a controller must be built. 

There is no requirement for employ the diffeomophism 

mapping for this system since all of the nonlinear parts are 

situated within the same control channel u (the matching 

condition is met). According to the system equation (Eq. (35)), 

the factor of u is a nonlinear variable component of the state 

x1. As a result, the following procedure is necessary to convert 

the system equation (Eq. (35)) to the conventional controllable 

structure as Eq. (3): 

 

𝜈 = −𝑢 × 𝑐𝑜𝑠𝑥1 (37) 

 

where, v denotes the virtualized linear state feedback 

controller, that is: 

 

𝜈 = 𝐾𝐶𝑥 = 𝐾1𝑥1 + 𝐾2𝑥2 (38) 

 

Then the actual controller u is: 

 

𝑢 = −
𝜈

𝑐𝑜𝑠𝑥1
= −

𝐾𝑐𝑥

𝑐𝑜𝑠𝑥1
=

−𝐾1𝑥1−𝐾2𝑥2

𝑐𝑜𝑠𝑥1
  (39) 

 

The state equation for the system that results is: 

 

�̇�(𝑡) = [
0 1
0 0

] 𝑥(𝑡) + [
0
1

] 𝑑(𝑡) + [
0
1

] 𝜈(𝑡)  (40) 

 

where, 

 

𝑑(𝑡) = 𝑠𝑖𝑛𝑥1 (41) 

 

The optimal control law then was determined by using the 

(BHO) method. Table 1 shows the BHO algorithm 

optimization setting. Table 2 includes the optimized 

parameter’s ideal values as well as their limits. 

 

Table 1. The BHO algorithm setting (1st Example) 

 
Optimisation settings Value 

Problem dimensions (number of parameters) 5 

Population size 50 

Iterations count 100 

Number of rounds 1 

Table 2. The optimized parameters’ optimal values and 

bounds (1st Example) 

 
Optimized 

parameter 
Least bound Upper bound 

Optimum 

value 

γ 1 10 7.1288 

𝑐11  0 1000 24.7304 

𝑐12  0 1000 44.8355 

𝑐21  0 1000 83.699 

𝑐22  0 1000 93.5115 

 

 
 

Figure 6. Stabilization features for the states of the nonlinear 

system 

 

 
(a) 

 
(b) 

 

Figure 7. (a) Tracking properties of the controlled nonlinear 

system; (b) x2 behaviour 

 

Following that, the optimal values will be used to solve the 

H-infinity algebraic riccati problem (Eq. (34)) to get the matrix 

P of stabilizing positive definiteness as follows: 
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𝑃 = 103 [
0.1843 0.0517
0.0517 0.1272

] (42) 

 

The state feedback controller’s gain matrix was then 

calculated using Eq. (30), as shown below: 

 

𝐾𝑐 = [−51.7 −127.2] (43) 

 

Thus, the control law becomes: 

 

𝑢 =
51.7𝑥1+127.2𝑥2

𝑐𝑜𝑠𝑥1
  (44) 

 

Figure 6 demonstrates the nonlinear system time response 

behaviour after applying the suggested controller and 

achieving the stabilization. Figure 7 depicts the output tracking 

for the entry of a unit step reference and the behaviour of state 

x2 which is stable. Figure 8 shows the magnitude of error 

between input and output signals which is acceptable. Figure 

9 depicts the control action behavior. It appears that the 

suggested controller can successfully stabilizes the nonlinear 

system while maintaining acceptable performance. 

 

 
 

Figure 8. Error signal properties 

 

 
 

Figure 9. The resultant control action 

 

5.2 Example (2) 

 

Considering the nonlinear system that must be controlled: 

 

�̇�1 = 𝑡𝑎𝑛𝑥1 + 𝑥2 

�̇�2 = 𝑥1 + 𝑢 

𝑦 = 𝑥1 

(45) 

 

Figure 10 shows the stages of designing the proposed 

controller for the system described in Eq. (45). 

 

 
 

Figure 10. The controller designing stages for example 2 

 

 
 

Figure 11. Open-loop system time response prior using the 

proposed controller 

 

 
 

Figure 12. Closed-loop system time response prior using the 

proposed controller 
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Figures 11 and 12 depict the open and closed loops 

nonlinear system time responses features respectively prior to 

applying the suggested controller. 

The system is clearly unstable in both open and closed loops, 

thus to stabilize the system as well as obtain the desired 

performance, a controller must be built. Since the nonlinear 

term (tanx1) is not placed on the identical channel with the 

control action u (matching requirement not met), the 

diffeomorphism mapping for Eq. (6) is required to turn the 

nonlinear system to its controllable standard structure such as 

Eq. (9). The state variable transformation shown below is used 

to carry out the mapping: 

 

𝑧1(𝑡) = 𝑥1(𝑡), 𝑧2(𝑡) = �̇�1(𝑡) = �̇�1(𝑡) = 𝑡𝑎𝑛𝑥1 + 𝑥2 (46) 

 

Thus, the transformed state equation becomes:  

 

�̇�1(𝑡) = 𝑧2(𝑡) 

�̇�2(𝑡) = 𝑧1 + 𝑑(𝑡) + 𝑢(𝑡) 
(47) 

 

where, 

 

𝑑(𝑡) = 𝑧2𝑠𝑒𝑐2𝑧1  (48) 

 

The system in z-space then becomes: 

 

[
�̇�1(𝑡)
�̇�2(𝑡)

] = [
0 1
1 0

] [
𝑧1(𝑡)
𝑧2(𝑡)

] + [
0
1

] 𝑑(𝑡) + [
0
1

] 𝑢(𝑡)  (49) 

 

The optimal control law then was determined by using the 

(BHO) method. Table 3 shows the BHO algorithm 

optimization setting. Table 4 includes the optimized 

parameter’s ideal values as well as their bounds. 

  

Table 3. The BHO algorithm settings (2nd Example) 

 
Optimisation settings Value 

Problem dimensions (a number of parameters) 5 

Population size 50 

Iterations count 100 

Number of rounds 1 

 

Table 4. The optimized parameters’ optimal values and 

bounds (2nd Example) 

 
Optimized 

parameter 
Least bound 

Upper 

bound 

Optimum 

value 

γ 1 10 6.7995 

c11 0 1000 69.0007 

c12 0 1000 41.3458 

c21 0 1000 81.6022 

c22 0 1000 95.2433 

 

Following that, the optimal values will be used to solve the 

H-infinity algebraic riccati problem (Eq. (34)) to get the matrix 

P of stabilizing positive definiteness as follows: 

 

𝑃 = 103 [
0.5735 0.0823
0.0823 0.1274

]  (50) 

 

The state feedback controller’s gain matrix was then 

calculated using Eq. (30), as shown below:  

 

𝐾𝑐 = [−82.3554 −127.4602] (51) 

 

As a result, the optimum control law in z-space becomes: 

 

𝑢 = −82.3554𝑧1 − 127.4602𝑧2 (52) 

 

The control law is now being transformed from z-space to 

x-space: 

 

𝑢 = −82.3554𝑥1 − 127.4602𝑡𝑎𝑛𝑥1 − 127.4602𝑥2 (53) 

 

 
 

Figure 13. Nonlinear system states’ stabilization qualities 

 

 
(a) 

 
(b) 

 

Figure 14. (a) Tracking properties of the controlled nonlinear 

system; (b) x2 behaviour 
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Figures 13 and 14(a) illustrate that, despite the existence of 

disturbance, the suggested controller succeeded in providing 

nonlinear system stability and tracking performance efficiency 

with little tracking error as well as quick converging to the 

reference input. Figure 14(b) shows the behaviour of state x2 

which is stable. Figure 15 shows the error magnitude between 

input and output signals which is acceptable. Figure 16 depicts 

the permissible behavior of the control action that has been 

executed. 

 

 
 

Figure 15. Error signal properties 

 

 
 

Figure 16. The resultant control action 

 

 

6. CONCLUSION 

 

A new robust optimal controller premised on the H-infinity 

approach has been developed in this paper for two different 

kinds of nonlinear systems: the first one meets the condition 

for matching the nonlinear terms (disturbances) and control 

law, while the latter does not. The suggested controller 

architecture achieved excellent tracking performance and 

stability in both scenarios. The systems were asymptotically 

stable after applying the suggested controller. To find the 

optimal values for the controller parameters, the black hole 

optimization approach was utilized. This work has contributed 

by offering a simple design technique algorithm of the 

suggested controller for a broad variety of nonlinear systems, 

implying that it is a generic algorithm, whereas earlier studies 

exhibited a difficult design algorithm that was specific to the 

sort of nonlinear system. Finally, whenever the coefficients of 

the system are uncertain, another controller design is required. 
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