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The different types of integral equations are very important in practice life. Volterra 

integral equations of the first kind are not a lower interest them, then the study of the 

values of the solutions and methods for solving these equations with continuous kernels 

is a must be a step. However, it is well known that these equations are ill- posed 

problems. Therefore, in this paper, we will provide a new technique for finding 

solutions to these problems, by using conversion these integral equations of the first 

kind to integro-differential equations of the second kind using Taylor series. In this 

article, we apply this technique with some numerical methods such as modified 

Simpson method and finite difference method. Finally, we will present four numerical 

examples that demonstrate the performance and efficiency of our technique. 
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1. INTRODUCTION

Integral equation of the first kind is considered ill-posed 

problem because it does not satisfy the following three 

properties: 

(1) Existence of a solution.

(2) Uniqueness of a solution.

(3) Continuous dependence of the solution ϕ(t) on the data

f(t). This property means that small errors in the data f(t) 

should cause small errors in the solution ϕ(t). 

Any problem that satisfies the three previous properties is 

called well-posed problem. For any ill-posed problem, a very 

small change on the data f(t) can give a large change in the 

solution ϕ(t). Methods for obtaining a stable approximate 

solution of an ill-posed problem are called regularization 

methods. The classic theory of regularization is well-

developed for linear ill-posed problems. For example, 

Tikhonov regularization which was established independently 

by Phillips [1] and Tikhonov [2]. The method of regularization 

consists of replacing ill-posed problem by well-posed problem 

[3-6], For Volterra integral equations, we may differentiate 

these equations with respect to t to obtain Volterra integral 

equations of the second kind which are known to be a well-

posed problem. This converting is applied [3, 4, 7] and in our 

last article [8]. 

This paper is concerned with the first kind linear Volterra 

integral equations: 

( , ) ( ) ( ),   
t

a

k t x x dx f t a x t b =    (1) 

where, ϕ(t) is unknown, k(t,x) is a kernel, and the function f(t) 

are given real-valued functions, are known and continuous in 

a≤x≤t≤b. It will often be useful to write Eq. (1) in the form: 

,)( fA =

where, the operator A is defined by: 

( ) ( )  batdxxxtktAtA
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a

,   ,)(),(: =  

where, A(ϕ):  X→Y is a linear and continuous operator, X and 

Y are the Hilbert spaces, 𝑓 ∈ 𝑌  is the given element. We 

assume that the equation A(ϕ)=f, has the unique solution 

.
0

X

Tikhonov regularization consists in approximation of the 

desired solution by the minimize of the functional: 

( ) ( ) .
2

0

2

XYN fT   −+−=F

In the functional fδ denotes perturbation of f, α>0, 
Y

.  and 

X
. denote the norm on the Hilbert spaces Y and X, 

respectively. 

Theorem 01: Assume there exists a minimum norm 

solution of A(ϕ)=f, denoted by X
0

 . Let {𝑓𝑘}𝑘∈𝑁  be a

sequence where fk→fδ and let ϕk be a minimizer of FN where fδ 

is replaced by fk. Then there exists a convergent subsequence 

of {𝜙𝑘}𝑘∈𝑁 and the limit of every convergent subsequence is a

minimizer of FN [7]. 

For more information on these topics, see for example in 

researches [7, 9]. 

In this paper, we will apply a new technique for conversion 

a linear Volterra integral equation of first kind to a linear 
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Volterra integro-differential equation of second kind by using 

Taylor series. 

2. MAIN RESULT (THE REGULARIZATION 

METHOD)

We will transfer the integral Eq. (1) to an integro-

differential equation of the second kind defined in [0,1]. It is 

important to note that the solution for an ill-posed problem 

may not exist, and if it does exist it may not be unique. We 

will use in this section the Taylor series and Leibnitz rule. 

Let A(t) be a function with derivatives of all orders with 

respect to t in an interval [0,1] than for 0<t-ε<t<t+ε<1, with 

ε→0. The Taylor series is given by: 
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2
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where, O(εn) is an unknown error term of approximation. 

In last our work [8], we transformed the Volterra integral 

Eq. (1) to an equivalent integral equation of the second kind 

defined in the interval [0,1] by using Taylor series of the first 

order, and we found this equivalent equation: 

( ) ( ) ( ) ( )
0

,
t

t K t x x dx f t   + = (3) 

where, 𝐾(𝑡, 𝑥) =
𝑘(𝑡,𝑥)+𝜀

𝜕𝑘(𝑡,𝑥)

𝜕𝑡

𝜀𝑘(𝑡,𝑡)
, 𝑓𝜀(𝑡) =

𝑓(𝑡+𝜀)

𝜀𝑘(𝑡,𝑡)
 and ϕε=ϕ if ε→0. 

For more information, see researches [9]. 

Now, by using the Taylor series of the second order Eq. (2) 

and Leibnitz rule for equation of first kind Eq. (1), we find: 
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Then, the equivalent equation of Volterra equation of the 

first kind Eq. (1) is given by: 
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after simplify, we obtain: 
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where, k(t,t)≠0, 0
),(

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t

xtk  for t∈[0,1] and ε→0, we obtain 

the Volterra integro-differential equation of the second kind of 

the following form: 
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and, ϕε(t)=ϕ(t) if ε→0. Substituting t=0 into Eq. (3) gives the 

initial condition ϕε(0)=ϕ0. 

Now, we apply modified Simpson method [10] for Eq. (4) 

and take ϕε(t)=ϕ(t). Consider let: 

,10 221210 == − njj ttttt 

be an equidistant subdivision of a step h=t2j+1-t2j for 

j=0,1,2,…,n. Our objective then, it's to approximate the 

solutions of the equivalent Eq. (4) to the nodes of even indices 

(at the point t2j), then the modified Simpson have the form: 
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with the error of integration is: 

𝐸(ℎ) = −2
(ℎ/2)5

90
(𝑓(𝜁))

(4)

Now, by the numerical integration formulas of modified 

Simpson method Eq. (5) and finite difference formulation for 

the integro-differential Eq. (4), we obtain the following 

iteration formula: 
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We approximate 

j2 and 
12 +i  by 

h

jj

2

222  −+ and ,
2

222 ++ ii 

respectively. The Eq. (6) becomes: 

𝜙2𝑗+2 =
2ℎ2

3
(∑

𝑗−1

𝑖=0

(𝐾2𝑗,2𝑖 + 2𝐾2𝑗,2𝑖+1)𝜙2𝑖

+∑

𝑗−1

𝑖=0

(2𝐾2𝑗,2𝑖+1 + 𝐾2𝑗,2𝑖+2)𝜙2𝑖+2)

+ (2ℎ. 𝐾1 + 1)𝜙2𝑗 + 2ℎ. 𝐹2𝑗.

By recurrence, we can to calculate the approximation 

solutions ϕ of the Eq. (4) in all points t2j for j=0, 1, …, n. 

Cleary from Eq. (3) the initial value of e is ϕ(0)=ϕ0=fε(0).
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3. NUMERICAL EXAMPLES 

 

In what follows, we will apply our technique of 

regularization for linear ill-posed Volterra equations, and we 

will present four illustrative numerical examples where we 

transform these equations to second kind Volterra integro-

differential equations. Examples will be used to highlight the 

reliability of the regularization method. 

 

Example 01: We consider the linear Volterra integral 

equation of the first kind [8]: 

 

( )
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0
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2

t
t

t x x dx t− + = +  (7) 

 

Can be transformed toit to Volterra integral equation of the 

second kind given by: 
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(8) 

 

And Eq. (7) can be transformed to Volterra integro-

differential equation of the second kind given by: 
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(9) 

 

for t∈[0,1] with the initial condition 𝜙𝜀(0) =
𝜀

2
10−2 + 1, et la 

solution exact ϕ(t)=1. 

 

Table 1. Comparison of the exact, the approximate solutions 

and the absolute errors for Example 01 of Eq. (9) obtained 

by Taylor approximation (ε=0.1) and modified Simpson 

method (n=40) 

 

t2j ES AS of Eq. (9) Err of Eq. (9) 

0 1.0000 1.0500 5.0000E-02 

0.1 1.0000 0.8510 1.4900E-01 

0.2 1.0000 0.9458 5.4155E-02 

0.3 1.0000 0.9886 1.1400E-02 

0.4 1.0000 0.9989 1.1472E-03 

0.5 1.0000 1.0003 3.3281E-04 

0.6 1.0000 1.0003 3.4682E-04 

0.7 1.0000 1.0003 2.7918E-04 

0.8 1.0000 1.0003 2.5477E-04 

0.9 1.0000 1.0002 2.4940E-04 

1 1.0000 1.0002 2.4855E-04 

Note: AS: The approximate solutions; Err: The absolute errors 

 

Example 02: We consider the linear Volterra integral 

equation of the first kind: 
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Can be transformed to it to Volterra integral equation of the 

second kind given by: 

 

0

1
( ) ( ) .

t

x t tt
t e x dx e 

 
 

 
− −+ +

+ =  
(11) 

 

And Eq. (10) can be transformed to Volterra integro-

differential equation of the second kind given by: 
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(12) 

 

for t∈[0,1] with the initial condition 𝜙𝜀(0) =
1+𝜀

𝜀
𝑒𝜀 and ε→0, 

et la solution exact given byϕ(t)=e-t. 

 

Table 2. Comparison of the exact, the approximate solutions 

and the absolute errors for Example 02 of Eq. (12) obtained 

by Taylor approximation (ε=0.1) and modified Simpson 

method (n=40) 

 

t2j ES AS of Eq. (12) Err of Eq. (12) 

0 1.0000 1.1052 1.0517E-01 

0.1 0.9048 0.7876 1.1725E-01 

0.2 0.8187 0.7831 3.5616E-02 

0.3 0.7480 0.7343 6.5622E-03 

0.4 0.6703 0.6695 7.7296E-04 

0.5 0.6065 0.6065 1.5206E-05 

0.6 0.5488 0.5489 6.6996E-05 

0.7 0.4966 0.4966 5.5256E-05 

0.8 0.4493 0.4494 4.6996E-05 

0.9 0.4066 0.4066 4.1838E-05 

1 0.3679 0.3679 3.7750E-05 

Note: AS: The approximate solutions; Err: The absolute errors 

 

Example 03: We consider the linear Volterra integral 

equation of the first kind [11]: 

 

0

( ) sin( ).
t

t xe x dx t− =  (13) 

 

Can be transformed toit to Volterra integral equation of the 

second kind given by: 
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And Eq. (13) can be transformed to Volterra integro-

differential equation of the second kind given by: 
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(15) 

 

For t∈ [0,1] with the initial condition 𝜙𝜀(0) =
1

𝜀
𝑠𝑖𝑛(𝜀) 

andε→0, et la solution exact given by: 

 

𝜙(𝑡) = 𝑐𝑜𝑠( 𝑥) − 𝑠𝑖𝑛( 𝑥). 
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Table 3. Comparison of the exact, the approximate solutions 

and the absolute errors for Example 03 of Eq. (15) obtained 

by Taylor approximation (ε=0.1) and modified Simpson 

method (n=40) 

 

t2j ES AS of Eq. (15) Err of Eq. (15) 

0 1.0000 0.9983 1.6658E-03 

0.1 0.8952 0.7509 1.4423E-01 

0.2 0.7841 0.7688 1.2578E-02 

0.3 0.6598 0.7023 4.2451E-02 

0.4 0.5316 0.5896 5.7936E-02 

0.5 0.3982 0.4586 6.0422E-02 

0.6 0.2607 0.3196 5.8875E-02 

0.7 0.1206 0.1765 5.5850E-02 

0.8 -0.0206 0.0314 5.2042E-02 

0.9 -0.1617 -0.1141 4.7659E-02 

1 -0.3012 -0.2584 4.2786E-02 

Note: AS: The approximate solutions; Err: The absolute errors 
 

Example 04: We consider the linear Volterra integral 

equation of the first kind: 
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Can be transformed to it to the Volterra integral equation of 

the second kind given by: 
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and Eq. (16) can be transformed to Volterra integro-

differential equation of the second kind given by: 
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(18) 

 

for t∈[0,1] with the initial condition 𝜙𝜀(0) =
5

2
𝜀(1 + 𝜀) and 

ε→0, et la solution exact given by ϕ(t)=5t. 
 

Table 4. Comparison of the exact, the approximate solutions 

and the absolute errors for Example 04 of Eq. (18) obtained 

by Taylor approximation (ε=0.1) and modified Simpson 

method (n=40) 
 

t2j ES AS of Eq. (18) Err of Eq. (18) 

0 0.0000 0.2750 2.7500E-01 

0.1 0.5000 0.4376 6.2419E-02 

0.2 1.0000 0.9529 4.7088E-02 

0.3 1.5000 1.4940 6.0162E-03 

0.4 2.0000 2.0036 3.5568E-03 

0.5 2.5000 2.5017 1.6775E-03 

0.6 3.0000 3.0001 1.0373E-04 

0.7 3.5000 3.4999 1.3103E-04 

0.8 4.0000 4.0000 2.9592E-05 

0.9 4.5000 4.5000 1.9307E-05 

1 5.0000 5.0000 1.8227E-05 

Note: AS: The approximate solutions; Err: The absolute errors 

After reading all the Tables 1-4 of the examples, we 

observed that the absolute error is very small, this indicates the 

effectiveness of our method in converting Volterra equation of 

first kind. 

In this work we used the modified Simpson method, and can 

be used other numerical methods such as the trapezoidal 

method, the Newton-Kantorovich method [12-14]. 
 

 

4. CONCLUSIONS 
 

In this paper we have solved linear Volterra integral 

equations of the first kind by converting them into Volterra 

integro-differential equation of the second kind and then 

applying the modified Simpson method and the finite 

difference method. We tested this technique by using four 

different examples. It is observed that all absolute errors have 

approached zero which was shown that numerical results were 

acceptable for all types of Volterra integral equation of the first 

kind. 
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