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An essential component of the project feasibility assessment is the conceptual cost 

estimate. In actuality, it is carried out based on the estimator's prior expertise. However, 

budgeting and cost control are planned and carried out ineffectively as a result of 

inaccurate cost estimates. The purpose of this article is to introduce an intelligent model 

to improve modeling approaches accuracy throughout early phases of a project's 

development in the construction sector. A support vector machine model, which is 

computationally effective, is created to calculate the conceptual costs of building 

projects. To get accurate estimates, the suggested neural network model is trained using 

a cross-validation method. Through the research of the literature and interviews with 

experts, the cost estimate's influencing elements are determined. As training instances, 

the cost information from 40 structures is used. Two potent intelligence methods-

Nonlinear Regression (NR) and Evolutionary Fuzzy Neural Interface Model (EFNIM)-

are offered to illustrate how well the suggested model performs. Based on the readily 

accessible dataset from the relevant literature in the construction business, their results 

are contrasted. The computational findings show that the intelligent model that is being 

provided outperforms the other two potent methods. During the planning and 

conceptual design phase, the inaccuracy is satisfied for a project's conceptual cost 

estimate. Case studies demonstrate how SVMs may help planners anticipate the cost of 

construction in an effective and precise manner. 
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1. INTRODUCTION

Building cost conceptual estimates give planners a 

foundation for assessing the project's viability at the 

conceptual planning stage. The feasibility and profitability of 

a project are both significantly impacted by erroneous cost 

estimation. Low feasibility prevents clients from selling their 

existing projects because of overestimated expenses. On the 

other side, an underestimated cost can deceive planners into 

believing it is very feasible, which would result in extra 

expenditures for the customer at the building stage. 

Overestimated or underestimated expenses, therefore, have an 

impact on clients' earnings, necessitating the use of an accurate 

measurement technique [1]. 

Experience is the main focus of the conceptual cost estimate. 

Cost estimators are limited to basing their construction cost 

estimates during the conceptual planning phase on the initial 

design and project concepts. Cost estimators consult past 

situations when there is little information, and they then assess 

the conceptual cost in light of their prior experiences [2]. 

Nevertheless, a wide range of factors affects building costs. 

Some of these characteristics, including geological property 

and decorative class, are rife with ambiguity [3]. Estimators 

cannot correctly estimate building costs using a simple linear 

method since the evaluation process is so complicated and 

imprecise. Because of this, current building cost estimates are 

imprecise. 

The related literature contains a variety of research methods 

to calculate the conceptual costs of building projects. Neural 

networks (NNs) have received a lot of attention in this sector, 

especially in the previous 10 years. An evolutionary 

conceptual cost estimation model for building was created 

using the "Evolutionary Fuzzy Neural Inference Model 

(EFNIM)". In the model, fuzzy input-output mapping is 

handled by neural networks, fuzzy logic is utilized to represent 

uncertainty and approximate reasoning, and genetic 

algorithms are predominantly employed for optimization. 

However, it takes a very considerable amount of time to 

conduct the computation to find the best answer [4]. Support 

vector machines (SVMs), a kind of artificial intelligence, were 

used to forecast the conceptual cost of building [5]. The SVM 

model was introduced for assessing the accuracy of conceptual 

cost estimates, and its use in the construction industry was 

looked at the research [6]. It was suggested to anticipate the 

cost of the construction project using an intelligent strategy 

based on the SVM. The outcomes demonstrated that the least 

square SVM's prediction accuracy was superior to the NN [7]. 

The appropriateness of any given estimating method 

depends typically on the purpose for which it is employed, the 

quantity of information available at the time of the estimation, 

and the person utilizing it. Although customers and contractors 

rely on existing cost prediction and forecasting techniques, 

real final building project prices still differ significantly from 

initial projections [8]. To suggest a general copula-based 

Monte Carlo simulation approach for forecasting the overall 

costs of building projects with dependent cost components. It 

Mathematical Modelling of Engineering Problems 
Vol. 10, No. 2, April, 2023, pp. 405-411 

Journal homepage: http://iieta.org/journals/mmep 

405

https://orcid.org/0009-0005-8197-5989
https://orcid.org/0000-0001-8641-7090
https://orcid.org/0000-0003-1415-8354
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100203&domain=pdf


 

was discovered that various dependency structures might 

produce various total cost probability distributions. Moreover, 

it is discovered that the current goodness of fit tests may be 

used to choose the copula that performs the best. The article 

concluded that the copula-based Monte Carlo simulation 

approach may reasonably anticipate the overall cost of 

construction projects [9, 10]. Firouzi et al. [11] contrast the 

precision of several estimation methodologies. By completing 

construction cost estimations using linear regression analysis 

(LRA) and support vector machine techniques (SVMs), the 

results highlight the urgent need for a solution to the problem 

of cost overruns. 

To enhance the decision-making process in feasibility 

studies, a novel intelligent model for building projects based 

on an SVM model is implemented in this study. The suggested 

approach may be successfully used to anticipate conceptual 

costs over the long run in the building sector. In the SVM 

model, a cross-validation procedure is also utilized on the 

preparation dataset to minimize overfitting and to generate 

accurate results. The available information from the relevant 

literature in the construction sector is utilized to evaluate the 

suggested intelligent model's precision in estimating the 

expenses of these projects. The applicability and usefulness of 

the suggested approach are further demonstrated by 

comparisons with other well-known methodologies. The 

suggested model exhibited improved generalization 

performance and produced lower estimation errors. Given that 

these results pertain to actual situations from practice. An 

expansion of this research suggests improving the 

recommended model to boost yields and address this issue. 

 

 

2. PROPOSED MODEL 
 

It is usually hard to accurately calculate a model using cost 

time series data produced by linear methods. In the 

construction industry, the use of linear estimation techniques 

is not feasible [12-16]. Cost information is used in building 

projects in a complex and nonlinear way. Therefore, as 

conventional linear estimate approaches are inappropriate for 

these projects, it is crucial to develop cutting-edge 

methodologies like artificial intelligence for estimating time 

series data. In order to address the weaknesses of the widely-

used strategies, this research reports on the cost estimate of 

these projects by suggesting a new, intelligent model built on 

two effective methodologies. 

 

2.1 Support vector machine 

 

Vapnik built the first SVMs on the back of SLT in the late 

1960s. However, from the middle of the 1990s, as more 

computer power became available, the algorithms used for 

SVMs began to emerge, opening the door for several real-

world applications with significant outcomes [16]. As shown 

in Figure 1 [17], the basic SVM works with two-class issues 

where the data are divided by a hyperplane that is specified by 

a set of support vectors. For the sake of thoroughness, a basic 

introduction to SVM is provided below. Readers can refer to 

the SVM tutorials [18] for detailed descriptions. A novel 

training method based on the SVM called least squares support 

vector machines (LS-SVM) only needs the answers to a few 

linear equations as opposed to the regular SVM's lengthy and 

computationally challenging quadratic programming issue. 

The least squares cost function is used by the LS-SVM [19]. 

 
Input Space                    Feature Space 

  

Figure 1. Nonlinear SVM [11] 

 

Classification: The SVM is designed to learn a unique 

function that categorises training instances into different 

groups according to the class labels that have been provided to 

them. This viewpoint asserts that SVMs are a category of 

supervised learning model that are mostly employed to address 

classification and regression problems [20]. By converting the 

input vector x into a high-dimensional feature space, SVM 

models developed in the new space can represent a linear or 

nonlinear decision boundary in the old space. A linear 

hyperplane can be used to partition the instances if they are 

linearly separable; if not, the case is nonlinearly separable [20]. 

Consider a given set S with n labeled training instances: 
{(x1, y1), (x2, y2), … , (xn, yn)} for the linearly separable case. 

Each training instance xi ∈ Rk, for i=1, …, n, belongs to one 

of the two classes in comparison to its label yi ∈ {−1, +1}, 

where k is the input dimension. The following equation may 

be used to explain the greatest margin hyperplane: 

 

y = b + ∑ wiyix(i)x (1) 

 

where denotes a dot product, a test example is represented by 

the vector x, and support vectors are represented by the vectors 

x(i)s. The parameters, b and wi in this equation, which 

determines the hyperplane, must be learned by the SVM. To 

create a perfect hyperplane, the following sequential quadratic 

programming (QP) problem must be solved: 

 

Minimize  
1

2
‖w ‖ 

2
 

Subject to yi(wxi + b) ≥ 1         i = 1, … , n 
(2) 

 

where, the kernel function is defined as K(x(i), x). There are 

several kernels available for creating the inner products 

needed to construct SVMs with various nonlinear decision 

surfaces. The most often used kernel functions are the 

Gaussian radial basis function K(x, y) = exp (−1/δ2(x −
y)2) and the polynomial kernel K(x, y) =  (xy + 1)d, where, 

d is the degree of the polynomial kernel and δ2  is the 

bandwidth of the Gaussian radial basis function [20]. 

Regression: A version of the SVM for regression has been 

included in the SVMs, which have been created for general 

estimation and prediction applications (LS-SVM). By 

reducing the prediction error, LS-SVM seeks to identify a 

function that accurately approximates the training examples. 

By simultaneously attempting to maximize the flatness of the 

function, the danger of over-fitting is reduced when the error 

is minimized. One must once again resolve the following 

quadratic programming issue to identify an ideal hyperplane: 
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Minimize 
1

2
‖w ‖ 

2
 

Subject to ‖yi (w. xi + b)‖ ≤ ε, 
(3) 

 

where, the value ε ≥ 0 is the prediction error bound. If f =
⟨w,x⟩ + b genuinely exists and approximates all pairs (xi, yi) 

with ε precision, then the aforementioned convex optimization 

problem will be achievable. The following optimization 

problem has restrictions that are ordinarily impossible to 

satisfy, thus one inserts slack variables φi, φi
∗  to deal with 

them: 

 

Minimize 
1

2
‖w ‖ 

2
+ C ∑ (φi, φi

∗)l
i=1  

Subject to {

yi − ⟨w, xi⟩ − b ≤ ε + φi

⟨w, xi⟩ + b−yi ≤ ε + φi
∗

φi, φi
∗ ≥ 0

 
(4) 

 

The trade-off between f flatness and the maximum allowed 

deviation, ε, is calculated using the constant C. This 

optimization problem may be built as a dual problem by 

building the Lagrangian function: 

 

L =
1

2
‖w ‖ 

2
+ C ∑ (φi, φi

∗)l
i=1 − ∑ λi(ε + φi −l

i=1

yi + ⟨w, xi⟩ + b) − ∑ λi
∗(ε + φi

∗ − yi + ⟨w, xi⟩ −l
i=1

b)and λi, λi
∗ ≥ 0 

(5) 

 

Solving the Lagrangian, one provides the optimal solutions 

w∗and b∗: 

 

b∗ = yi − ⟨w, xi⟩ − ε,       0 ≤ λi ≤ C,  i = 1, … , l, 
b∗ = yi − ⟨w, xi⟩ + ε,       0 ≤ λi

∗ ≤ C,  i = 1, … , l 
(6) 

 

For nonlinear issues, the inner products can be changed by 

appropriate kernels, much like in classification. Enforcing the 

upper limit C on the absolute value of the coefficients wis 

allows us to keep an eye on the trade-off between reducing 

prediction error and maximizing the flatness of the regression 

function. The function may match the data more closely the 

greater C. The approach essentially does the least absolute-

error regression with the coefficient size restriction in the 

degenerate situation where ε=0, regardless of the amount of C. 

In contrast, if is big enough, the error decreases to zero, and 

the algorithm returns the flattest curve that contains the data, 

regardless of the amount of C [20-22]. 

 

2.2 Cross-validation technique 

 

Cross-validation [23] is a well-known technique for 

calculating generalisation mistakes. Among various cross-

validation techniques, the k-Fold cross-validation approach is 

taken into consideration in this study. K-Fold cross-validation 

is one way to enhance the holdout strategy. Each of the k 

subgroups of the dataset uses the holdout method. Every time, 

one of the k subsets is used as the test set, and the remaining 

k-1 subsets are used to create the training set. Next, the average 

error over all k trials is calculated. The main benefit of this 

method is that it doesn't matter how the data is split up. 

Each data set appears k times in the training set and exactly 

once in the test set. The variability of the resulting estimate 

diminishes as k is increased. By randomly dividing the data 

into test and training sets k times, this strategy may be changed. 

An example of how neural network architectures may be 

utilised to get the best generalisation is the k-fold cross-

validation approach. In the pertinent literature, 3 and ten-fold 

cross-validation approaches were advised to estimate practical 

applications [24]. 

 

2.3 Intelligent proposed model 

 

The proposed model is based on the LS-SVM and cross-

validation, two effective techniques. The input-output 

mapping in this model is managed by the LS-SVM, which 

focuses on the features of cost data in building projects. The 

LS-SVM is trained using k-fold cross-validation to provide 

accurate findings and to enable a more realistic evaluation of 

the accuracy by splitting the whole dataset into numerous 

training and test sets. The suggested intelligent model may be 

a mix that is both suitable and efficient computationally for 

cost estimation of construction projects. The recommended 

model's steps are as follows: dividing the data into training and 

test sets is Stage 1: The test set is used to evaluate the model's 

performance after the training set has been used to create the 

LS-SVM model. Stage 2: Instructional data the model uses 

sequential data as training data. To help prevent numerical 

difficulties, the training data are now normalised into the same 

domain (0, 1) and the sequential data represents the desired 

attributes. The function used it to normalise data is 

demonstrated in the following illustration: 

 

xsca =
xi−xmin

xmax−xmin
   (7) 

 
All the variables have no dimensions as a result of this 

change. Stage 3: Instruction in LS-SVM This step manages 

input-output mapping using the LS-SVM. The Gaussian radial 

basis function kernel is employed as a logical alternative [12, 

20]. Using the k-fold cross-validation approach on the training 

data set, the LS-SVM training is done to build the prediction 

model. 

Fitness definition: Chen and Wang [21] assert that although 

the training dataset's fitness may be easily calculated, it is 

prone to over-fitting.  

This problem is solved using the k-fold cross-validation 

technique. This technique divides the training dataset into k 

subsets at random, then uses the k-1 subset as the training set 

to construct the regression function with the specified set of 

parameters (Ci , δi). The final set is taken into account for 

validation. The preceding procedure is repeated k times. As a 

result, the fitness function is defined by the MAPECV of the 

k-fold trans procedure on the training dataset: 

 
Fitness = min f = MAPEcv, (8) 

 

MAPEcv =
1

l
∑ |

yj − yĵ

yj

|

l

j=1

× 100% (9) 

 
where, yj is the actual value; yĵ are the validation value and l is 

the number of subsets. The solution with a smaller MAPEcv of 

the training, the dataset has a smaller fitness value. Stage 4: 

The LS-SVM parameters are supplied in this stage so that the 

estimations may be made. Choose the best parameter settings 

to construct the LS-SVM model in Stage 5: LS-SVM model 

with the test dataset substituted to achieve the estimation 

values. Through testing performance, it is possible to validate 

the LS-SVM model's estimated capacity by taking into 

account performance criteria to compute the error between real 
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and estimates values. The structure of the suggested intelligent 

model is shown in Figure 2. To reduce the MAPECV during 

prediction iterations, this model is used to try to optimize the 

LS-parameter SVM's combinations. 

 

 
 

Figure 2. The proposed LS-SVM model 

 

 

3. EVOLUTIONARY FUZZY NEURAL INTERFACE 

MODEL 

 

The majority of issues in construction management are 

complicated, unclear, and environment-dependent. Neural 

networks, fuzzy logic, and genetic algorithms have all been 

effectively used in construction management to address a 

variety of issues. These three computing techniques make up 

for one paradigm's shortcomings with those of the other two. 

By combining the aforementioned three techniques and taking 

into consideration each method's advantages, Cheng [1] 

develops an "Evolutionary Fuzzy Neural Inference Model 

(EFNIM"). Since GAs is primarily concerned with 

optimization, FL with imprecision and approximation 

reasoning, and NNs with learning and curve fitting, the best 

adaptation mode is automatically found in the model. Figure 3 

depicts the EFNIM's architecture.  

The FL, NN, and GA paradigms are combined to form the 

proposed EFNIM. The benefits of one paradigm were 

balanced out by the others when FL, NNs, and GAs were used 

together. FL, NN, and GAs are largely focused on learning and 

curve fitting in the formulated model, whereas FL, NN, and 

GAs are mostly focused on imprecision and approximation 

reasoning. Technologies FL and NNs complement one another.  

A possible first step toward the development of intelligent 

machines that can replicate the operations of the human brain 

appears to be the combination of two techniques into a single 

system. The NN in Figure 3 takes the role of the fuzzy rule 

base and fuzzy inference engine of the conventional fuzzy 

logic system. The NN is used to overcome difficulties in 

collecting fuzzy rules and figuring out composition operators 

as well as to provide the integrated system a learning 

capability. A neural network with both fuzzy inputs and fuzzy 

outputs is referred to as a "neuro with fuzzy input-output," and 

it combines the FL and NN. The FNN, a general word to 

denote the fusion or union of FL and NN, is used in this study 

to initialise the "neuro with fuzzy input-output" for 

convenience of usage.  

Although the FNN is more reasonable than conventional FL 

to mimic the qualities and process of human reasoning, it has 

trouble choosing an acceptable topology and sufficient 

parameters for human inference. Furthermore, selecting a 

suitable distribution for the MFs to address different problems 

takes time, and the difficulty increases with problem 

complexity. GA is an effective tactic for addressing the 

drawbacks of FNN. The EFNIM makes advantage of GA to 

simultaneously determine the best FNN topology, best FNN 

variables, and fittest MF forms. 

 

 
 

Figure 3. EFNIM Architecture [1] 

 

 

4. MODEL VALIDATION 

 

In order to evaluate the proposed model's effectiveness, the 

accessible dataset based on an actual data presented in the 

study [3] is applied to the LS-SVM model with a cross-

validation strategy. The conceptual phase of a construction 

project's cost is affected by 10 input patterns in this dataset. 

Site studies and the owner's preliminary needs can be divided 

into two primary categories. Table 1 shows eight simulated 

validation of multi-story buildings and 32 multi-story 

buildings. These models are actual community housing 

complexes with reinforced concrete buildings that will be built 

in the Central region of Iraq between 2015 and 2022. These 

input patterns are from actual group initiatives in Taiwan 

between 1997 and 2001 [3].  

The descriptions of these patterns are as follows: (1) Site 

area (in square meters); (2) Geology property; (3) Influencing 

householder number; (4) Earthquake impact; (5) Planning 

householder number; (6) Total floor area (in square meters); 

(7) Floor over ground (in stories); (8) Floor underground (in 
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stories); (9) Decoration class; (10) Facility class; and (11) 

Normalized cost of the building project.   

The cost of building projects was in Iraqi Dinar per square 

meter. In Table 1, factors 1, 3, 5, 6, 7, and 8 are quantitative, 

whereas factors 2, 4, 9, and 10 are qualitative.  

In Table 2, the qualitative characteristics are outlined. The 

dataset contains 80 rows of data, of which 20 rows are chosen 

to evaluate the suggested intelligent model as well as two well-

known methods, namely Nonlinear Regression (NR) and 

Evolutionary Fuzzy Neural Interface Model (EFNIM). The 

sequential data is then used by the model as training data. In 

the training phase, a cross-validation approach is used to 

address the issues caused by the short training dataset. 
To avoid numerical difficulties and attributes with greater 

numeric ranges predominating those with smaller numeric 

ranges, training data are normalised into a (0, 1) range and 

sequential data reflects the suggested qualities. Data 

normalisation using a function (7). Three metrics are used to 

evaluate the performance of the proposed model: mean 

absolute average error (MAPE), mean square error (MSE), and 

R-squared (R2), as indicated by (10) to (12): 

 

MAPE =
1

N
∑ |

yi − yî

yi
| × 100%

N

i=1

 (10) 

 

MSE =
∑ (yi − yî)

2N
i=1

∑ (yi − y̅)2N
i=1

 (11) 

 

R2 = 1 −
∑ (yi − yî)

2N
i=1

∑ (yi − y̅)2N
i=1

 (12) 

 
where, yi and yî represent the actual and estimated values of 

the i-th data, respectively. y is the average of actual data and N 

is the number of data. The overall comparative results based 

on the MAPE, MSE and R2 indices are illustrated for the 

proposed model and two famous techniques in Table 3.  

 

Table 1. Patterns for conceptual estimation of building cost 

 
Input patterns 

No. Building cost 
Input Output 

1 2 3 4 5 6 7 8 9 10 11 

1 643,458,474 909.3438 1 38 1 60 7137.7 14 2 1 2 0.643458 

2 704,478,078 1715.448 2 2 1 29 6848.01 15 1 3 1 0.704478 

3 972,456,659 2259.313 1 20 1 16 6934.26 19 3 1 2 0.972457 

4 614,184,888 1851.813 1 120 1 95 9238.73 10 2 2 2 0.614185 

5 917,898,343 2989.521 1 44 1 175 19275.83 12 2 1 3 0.917898 

6 980,104,713 3913.427 2 18 1 104 6629.14 14 2 3 3 0.980105 

7 561,769,346 3144.719 1 23 1 241 24185.31 22 2 2 2 0.561769 

8 465,773,082 927.7292 1 124 1 14 10606.56 16 3 1 1 0.465773 

9 400,665,726 6019.646 1 147 1 272 43767.47 19 3 1 1 0.400666 

10 727,554,103 2982.083 1 12 1 94 16934.4 16 2 2 3 0.727554 

11 557,318,970 1928.323 2 0 1 218 13233.82 19 3 2 2 0.557319 

12 490,002,908 2238.24 2 33 1 55 17399 19 2 2 1 0.490003 

13 405,050,170 3360.313 2 78 1 154 17667.02 12 2 1 1 0.40505 

14 622,854,881 2902.823 1 22 1 160 36542.68 33 4 2 2 0.622855 

15 647,084,707 867.75 1 175 1 151 8638.9 19 3 2 2 0.647085 

16 631,327,078 1370.49 3 224 1 12 7665.56 8 2 3 2 0.631327 

17 843,956,166 2397.938 1 88 1 70 20517.38 19 3 3 3 0.843956 

18 790,419,788 840.6146 1 45 1 86 8727.04 19 3 3 3 0.79042 

19 892,811,407 4557.667 2 12 1 59 15588.21 15 2 3 3 0.892811 

20 485,025,080 822.9792 1 0 1 38 6190.73 16 2 2 1 0.485025 

21 810,924,484 1619.24 2 125 1 233 13191.88 16 2 3 3 0.810924 

22 706,456,023 2896.927 1 29 1 68 6629.14 14 1 2 2 0.706456 

23 682,456,957 7924.792 1 78 1 283 28735.09 23 3 1 2 0.682457 

24 762,860,421 1968.719 1 74 1 235 12098.87 18 2 3 3 0.76286 

25 405,280,931 3042.625 1 147 1 161 17222.73 11 2 1 1 0.405281 

26 401,588,767 1415.594 1 23 1 96 9051.38 12 2 1 1 0.401589 

27 833,538,989 1821.75 1 36 1 103 15263.04 16 2 3 3 0.833539 

28 746,872,032 2412.438 2 124 1 100 13371.74 15 2 1 3 0.746872 

29 527,979,452 3278.052 2 78 1 173 20768.76 12 2 1 2 0.527979 

30 747,795,073 1828.01 1 21 1 106 23942.59 19 2 1 2 0.747795 

31 614,712,340 2560.063 2 63 1 89 2393.2 23 2 1 3 0.614712 

32 869,867,245 3487.479 1 77 1 154 28498.2 12 1 1 2 0.869867 

33 655,161,316 3840.885 1 82 1 115 8773.19 10 1 3 1 0.655161 

34 664,128,000 2962.875 1 64 1 40 13616.38 18 3 3 2 0.664128 

35 447,608,954 1941.635 3 29 1 90 2832.2 23 2 2 1 0.447609 

36 589,922,096 3278.052 2 33 1 152 23840.39 14 3 1 1 0.589922 

37 647,315,467 2963.188 1 47 1 89 27368.39 10 1 2 2 0.647315 

38 589,922,096 3557.167 1 86 1 118 25145.72 15 2 3 1 0.589922 

39 809,737,717 2015.969 2 98 1 82 6087.76 23 1 2 3 0.809738 

40 717,301,754 2788.802 1 122 1 151 13719.02 22 2 1 2 0.717302 
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Table 2. Description of qualitative factors for conceptual cost 

estimating 

 
Influencing factor Qualitative option Value 

Geology property 

Soft 1 

Medium 2 

Hard 3 

Earthquake impact 
Low 1 

High 2 

Decoration class 

Basic type 1 

Normal type 2 

Luxurious type 3 

Facility class 

Basic type 1 

Normal type 2 

Luxurious type 3 

 

Table 3. Overall comparative results 

 
Intelligent techniques MAPE MSE R2 

Proposed model 0.625 0.1687 0.9147 

EFNIM 2.214 0.3187 0.6687 

NR 3.935 0.4987 0.5214 

 

 
 

Figure 4. Comparison of accuracy for proposed model, 

EFNIM, and NL cost estimation models 

 

 
 

Figure 5. Examples illustrate the suggested model and two 

more well-known methods 

 

MAPE and MSE often reflect accuracy as a percentage in 

statistics. According to this model, MAPE = 0.625 for LS-

SVM, 2.214 for EFNIM, and 3.935 for NL indicating that the 

LS-SVM has a lower and greater percentage error than EFNIM 

and NR, respectively. The wide applicability of the prediction 

model is measured by the coefficient of determination R2, 

which quantifies how well data points fit a curve or a line. 

When represented as a percentage, R2 computes how much of 

the variance in the output response can be attributed to the 

model's predictors. R2 values fall within the range [0,1]. As 

shown in Figure 4, the value R2= 0.9147 for our cleverly 

developed model may be understood as follows: about 91% of 

the variation in the response is attributable to the selected 

predictors, and the remaining 9% is related to unknown 

variability. 

Here, it is important to emphasize that since various types 

of predictive models may be appropriate depending on the type 

of relationship between the predictors and the dependent 

variable, it is best to test them all out to find the one that best 

fits our data and provides the most accurate predictions. The 

authors confirmed that the cross-validation approach was well 

suited for trustworthy estimation after obtaining pleasing 

results with LS-SVM with an error of less than 9%. 

As shown in Figure 5, the prediction made using the 

suggested model yields results that are adequate. The 

minimum three indices in the final prediction results of the 

suggested model show strong performance and adaptability to 

the conceptual building cost in the construction sector. Project 

managers may assess construction projects appropriately, 

particularly in feasibility studies, by utilizing the suggested 

model. Additionally, it raises the likelihood that building 

projects will be successful. 

 

 
5. CONCLUSION 

 

In order to evaluate the conceptual cost of building projects, 

a new intelligent model created with cross-validation and 

support vector machine approaches was suggested in this 

study.  

With the help of the suggested model, the LS-SVM was 

given a stronger ability to generalize the input-output 

connection it had learned throughout its training phase to make 

accurate predictions for brand-new input data. The 

Evolutionary Fuzzy Neural Interface Model and Nonlinear 

Regression were put up against the suggested model for a 

conceptual cost estimate of construction projects.  

It was determined through comparison that the cross-

validation approach was suitable for accurate estimation. 

Using the data from the building projects, the suggested model 

exhibited improved generalization performance and produced 

lower estimation errors. Given that these results pertain to 

actual situations from practice, the results MAPE=0.625, 

MSE=0.1687, and R2=0.9147 (91.5%) demonstrate the high 

predictive capabilities of the suggested LS-SVM.  

The values of the input parameters, which were taken for 

Taiwan for the period from 1997-2001, have an effect on the 

performance of the proposed intelligent model for conceptual 

cost estimation in an overall way, although it matches the Iraqi 

conditions, but this matter must be reconsidered. As an 

extension of this research, optimizing the suggested model is 

suggested to increase yields and overcome some of the 

challenges. 
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