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Climate change which has become increasingly erratic in recent decades has become 

a problem of global warming. So that it has an impact and influence in changing 

rainfall patterns. A very volatile climate overall can threaten the success of food 

production. Information about rainfall patterns is very important to agriculture that 

relies on rainfall as the main source of irrigation. The purpose of this study is to predict 

rainfall from all time series based on rainfall data for 15 years, 10 years and 5 years. 

Prediction results were evaluated using the Nash-Sutcliffe Efficiency (NSE) statistical 

method, RMSE-Observation Standard Deviation Ratio (RSR) and PBIAS. This 

research was conducted in Aceh Besar District. Indonesia which coincided with 

Indrapuri District. Analysis of the data used in this study uses the Seasonal 

Autoregressive Integrated Moving Average (SARIMA) models. The best prediction 

results are generated from the use of rainfall time series data onto 5 years for 2013-

2017 with the evaluation value of the model obtained is in the “Very Good " category. 

Prediction models for the best rainfall predictions are (0.0.0) and (0.1.2)12 with the 

respective values of NSE of 0.84, RSR 0.41 and PBIAS - 2.8. So as a whole the closest 

prediction results in the actual values are obtained from time series rainfall data onto 

the past five years. 
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1. INTRODUCTION

The increasingly uncertain climate conditions in the last few 

decades around the world have had an impact on the declining 

rainfall trend. Natural resource management is strongly driven 

by climate. The impact of climate change has an impact on 

ecology, natural resource degradation and hydrology. Rainfall 

characteristics are very important to know. This is because at 

this time there has been the instability of rainfall patterns that 

occur due to climate change. Climate change has caused an 

increase in average air temperatures [1]. The average 

temperature is increase from 26.77℃ to 27.3℃ in the period 

1992-2002 to 2002-2011 (Peusangan watershed Aceh, 

Indonesia). The decrease in rainfall intensity is one of the 

impacts of climate change that has caused a decrease in 

agricultural output such as rice [2]. Therefore, information 

about rainfall patterns that might occur in the future is needed 

one way that can be done to find out rainfall information is to 

make predictions with all possibilities.  

The relationship between the frequency and duration of 

rainfall intensity is a representation of the amount of water that 

falls in a certain period of time [3]. So that it can be used to 

determine the time of puddle, and when a certain level of 

rainfall or flow volume will recur in the future [4]. This is 

needed as a step in making policies. Therefore, information 

about rainfall patterns that may occur in the future is needed. 

One way that can be done to find out rainfall information is to 

make predictions with all possibilities. 

Prediction is defined as an attempt made to predict the 

situation in the future by testing the situation in the past. The 

main value of forecasting is to make events in the past as a 

basis or reference for decision making by implementing 

various policies in the future [5-7]. Predictions can be made 

using time series analysis which can provide information 

about trends data. Prediction rainfall and discharge using 

vector Autoregressive has been carried out [8]. Cycles or 

fluctuations around the average length value, so that it can be 

used as a modelling and prediction tool [9-11]. The order of 

the values of the variables observed at certain continuous time 

intervals is called the time series [12]. Forecasting is done to 

predict future events that involve the collection of historical 

data that will be projected using a mathematical model [13].  

The time series method is able to determine future trends 

from past values. One of the univariate stochastic models for 

forecasting purposes can use the probabilistic Auto Regressive 

Integrated Moving Average (ARIMA) [14]. The ARIMA time 

series method has predictive accuracy in a short period of time. 

To find out the pattern that repeats itself, after a certain time 

interval, the Seasonal Autoregressive Integrated Moving 

Average (SARIMA) approach is used [15]. The SARIMA 

method successfully predicts streamflow by reducing the 

periodic intensity and creating a static series [16, 17]. General 
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notation for ARIMA (p,d,q) while SARIMA (p,d,q) (P,D,Q)S 

where PDQ gives the order of the seasonal part to see seasonal 

changes [18]. 

One of the best models for predicting annual and monthly 

rainfall is SARIMA. This method is one of the rainfall 

prediction models based on time series. This model has been 

developed to process data that has a seasonal pattern as 

mentioned by the study [19]. The SARIMA model has 

advantages because it can detect and accommodate extreme 

data. There are several cases that use the SARIMA model for 

example, exploration of demographic features and distribution 

of acute hemorrhagic conjunctivitis (AHC). Seasonal ARIMA 

(SARIMA) was employed for prediction of the composition of 

ground coal samples in a series successive grinding tests. 

SARIMA model was defined for each major component of the 

ground coal [20]. Different research for time series analysis 

which is widely used for rainfall prediction with the SARIMA 

model has also been conducted. Forecasting using ARIMA 

model was good for short-term forecasting but while for long-

term forecasting is not good for rainfall [21]. The use of the 

SARIMA method can also be used to predict educational 

facilities as practiced by the study [22]. The analysis they 

performed using a combination of the SARIMA method with 

ANN. The results of their study reported that predictions with 

the proposed hybrid model (merging SARIMA and ANN) 

were better than conventional SARIMA models. Research to 

predict rainfall trends with time series analysis using the 

SARIMA method has been conducted [23]. The SARIMA 

model used in their research is (1.1.1)(0.1.1)12. SARIMA 

model has been successful in forecasting the monthly rainfall 

[24, 25].  

Time series data modeling using the SARIMA Model has 

been carried out in hydrology, meteorology and other fields 

[26], can identify potential patterns of flood and drought 

cycles that occur in the area [27] used the SARIMA model to 

forecast rainfall. Research for analysis of predictions or 

predictions of rainfall data in several regions of the world has 

been widely carried out. However, until now still being sought 

and developed the best method for predicting rainfall in the 

future. The main objective of this research is to predict rainfall 

by grouping the data into three periods, to predict rainfall. 

Period 2003-2017, 2008-2017 and 2013-2017. Based on this 

period, the model will be evaluated according to the rainfall 

that occurred in 2018. So that the best time span data will be 

obtained for predictions at the research location. 

The model used for rainfall data analysis uses SARIMA. 

This analysis is carried out to estimate yearly rainfall data that 

can be used for predictions for the future. This is important to 

do so that future agricultural planting can be more accurate and 

not affected by the dry season. 

 

 

2. METHODS 
 

2.1 Area study 

 

The study area for data collection carried out in this area is 

the Indrapuri Subdistrict, Aceh Besar District, Aceh Province, 

shown in Figure 1. The study was conducted for six months, 

starting from May to September 2019. This research 

monitors/surveyed rainfall data at the study location and the 

next step is to analyze using the SARIMA method. 

 

 

2.2 Data type and source 

 

The data used in this study is quantitative, namely monthly 

rainfall data between Januarys to December during the period 

2003-2018. Rainfall data during this period were collected 

from BMKG of Indrapuri Station, Aceh Besar Regency, and 

Aceh Province.  

 

2.3 Methodology 

 

The use of the SARIMA method for the analysis of rainfall 

data has been described in several studies as reported by 

studies [28-30]. Where the equation used can be used as a 

guide to predict rainfall data. Analysis of rainfall data using 

the SARIMA method as in Eqns. (1) to (5). 

 

ϕP (BS) ϕp(B) (1-BS)D (1-B)d Xt  = ӨQ(BS) Өq(B) ɑt (1) 

 

ϕP (BS) = 1- ϕ1BS – ϕ2B2S- ...- ϕpBPS (2) 

 

ϕp(B) = 1- ϕ1B – ϕ2B2- ...- ϕpBp (3) 

 

ӨQ(BS) = 1+ Ө1BS + Ө2BS+ ...+ ӨQBQS (4) 

 

Өq(B)= 1+ Ө1B + Ө2B+ ...+ ӨqBq (5) 

 

where, Xt is T-time series data, ϕp (B) is Eq. AR(p), Өq (B) is 

Eq. MA (q), ϕP (BS) is parameter of Seasonal Eq. AR(P), ӨQ 

(BS) is Seasonal Eq. (Q), (1-B)d is Non-seasonal differentiator, 

(1-BS)D is Seasonal differentiator with periods and S; ɑt is 

Error value. 

 

2.4 Data stationary testing 

 

Data is said to be stationary when the time series diagram 

fluctuates around a line parallel to the time axis. If the data is 

not stationary, the differencing process can be performed. The 

analysis process for differencing can be done using Eq. (6). 

 

ΔYt = Yt – Yt – 1 (6) 

 

where, ΔYt is Proses differencing, Yt: Observation data to 

and yt-1 is Observation-t on time lag 1.  

 

 
 

Figure 1. Map of research location 
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2.5 Model identification 

 

Model identification is done to get the appropriate model to 

predict rainfall data. The identification process can be done in 

two ways namely; first observation by making ACF and PACF 

plots. While the second way can be done by trial error. The 

process for general identification of ACF (Auto Correlation 

Function) and PACF (Partial Auto Correlation Function) as 

shown in Eqns. (7) and (8). 

 

𝑟𝑘 =
∑ (𝑦𝑡 − ŷ)(𝑦𝑡−𝑘 − ŷ)𝑛

𝑡=𝑘+1

∑ (𝑦𝑡 − ŷ)2𝑛
𝑡=1

 (7) 

 

where, rk is Autocorrelation Coefficient, yt is Observation-t 

data, ŷ is Average observational data and yt-k is Observation-

t on time lag k. 

 

𝜌𝑘 =
∑ [(𝑦𝑡 − ŷ)(𝑦𝑡+𝑘 − ŷ)]𝑛

𝑘=1

√∑(𝑦𝑡 − ŷ)2 ∑(𝑦𝑡+𝑘 − ŷ)2
 (8) 

 

where, ρk is Partial Autocorrelation Coefficient, yt is 

Observation-t data, ŷ is Average observational data and yt-k is 

Observation-t on time lag k.  

 

2.6 Estimation of model parameter 

 

The identification process can be carried out using an 

estimation model with parameters so that significant results 

can be obtained. To produce significant data, the trials 

conducted can use the following hypothesis.  

 

H0: Parameter estimation=0 

H1: Parameter estimation≠0 

 

The calculated thitung is used to test whether the variable has 

a significant effect on the dependent variable or not. A variable 

will have a significant influence if the calculated thitung of the 

variable is greater than the ttable. Meanwhile, the calculation 

can be done using Eq. (9). 

 

Test statistics:  

 

𝑡ℎ𝑖𝑡𝑢𝑛𝑔 =
𝜙

𝑠𝑒(𝜙)
 (9) 

 

Test Criteria: Reject H0 if: 

 

|𝑡ℎ𝑖𝑡𝑢𝑛𝑔| >  𝑡𝛼

2
𝑛−1

 or P-value > α (10) 

 

where, Φ is Parameter estimation and Se (ϕ) is Standard error 

parameter 

 

2.7 Diagnostic check 

 

At this stage, a diagnostic check is performed for the white 

noise test. White noise testing can be done using statistical 

tests from Eq. (8) with a statistical hypothesis: 

 

H0: ρi=0, residual white noise 

H1: minimal have one ρi≠0, no residual white noise 

Testing at a significance level ɑ=5% can use Eq. (11). 

 

Q= nʹ (nʹ + 2) ∑
𝑟𝑘

2

𝑛ʹ−𝑘

𝑚
𝑘=1  (11) 

 

where, nʹ is the amount of residual, m is maximum lag time 

(number of parameters), rk is autocorrelation for team lag 

1,2,3 ..., k and k is Lag to-k. 

While for testing criteria, where accept H0 if P-value ≥ 0.05 

and rejected if H0 in other conditions. 

 

2.8 Selection of the best model 

 

The selection of the best model is based on the size of the 

best model. The best model was chosen results from the 

smallest value of MSE (Mean Square Error). Thus, to find the 

value of MSE can use Eq. (12). 

 

MSE = 
1

𝑛
∑ (𝑌𝑡−Ŷ𝑡)𝑛

𝑖=1  (12) 

 

where, n is the amount of data, Yt is observation data at time 

t and Ŷt is data prediction at time t. 

 

2.9 Prediction and comparison of prediction results with 

actual data 

 

The actual data prediction can be done using the best model 

produced in the previous stage. Furthermore, the forecast 

results obtained are compared with the actual data. Then the 

best prediction results are chosen by category by evaluating a 

better model. The interpretation values Eqns. (13)-(15) for 

Nash-Sutcliffe Efficiency (NSE), RMSE-Observation 

Standard Deviation Ratio (OSDR) or RSR and PBIAS [31] are 

shown in Table 1. 

 

𝑁𝑆𝐸 = 1 − √
∑ (𝑃𝑜𝑖 − 𝑃𝑠𝑖)2𝑁

𝑖=1

∑ (𝑃𝑜𝑖 − �̅�𝑠𝑖)
2𝑁

𝑖=1

 (13) 

 

𝑅𝑆𝑅 = √
∑ (𝑃𝑜𝑖 −  𝑃𝑠𝑖)

2𝑁
𝑖=1

∑ (𝑃𝑜𝑖 −  �̅�𝑠𝑖)
2𝑁

𝑖=1

 (14) 

 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑃𝑜𝑖 −  𝑃𝑠𝑖) ∗ 100𝑁

𝑖=1

∑ (𝑁
𝑖=1 𝑃𝑜𝑖 )

 (15) 

 
where, Poi is data of rainfall observation, Psi is data of rainfall 

prediction, �̅�𝑠𝑖  is mean of data rainfall prediction and N is the 

amount of data.  

 
Table 1. Value interpretation of NSE, RSR and percent bias 

(PBIAS) [31] 

 
Performance 

ratings 
NSE RSR PBIAS 

Very Good 
0.75 < NSE 

≤ 1.00 

0.00 ≤ RSR 

≤ 0.50 
PBIAS ≤ ± 25 

Good 
0.65 < NSE 

≤ 0.75 

0.50 < RSR 

≤ 0.60 

± 25 ≤ PBIAS 

< ± 40 

Satisfying  
0.50 < NSE 

≤ 0.65 

0.60 < RSR 

≤ 0.70 

± 40 ≤ PBIAS 

< ± 70 

Not satisfactory  NSE ≤ 0.50 RSR > 0.70  PBIAS ≥ ± 70 
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3. RESULTS AND DISCUSSION 
 

Rainfall data analysis is done directly at the location to 

obtain more accurate results that have been completed. These 

results are used to reschedule the agricultural planting period 

in the Greater Aceh Regency. Thus, the drought that often 

occurs so far after the completion of the planting period can be 

reduced. The results of the analysis carried out with several 

models that have been carried out as described as follows. 
 

3.1 Data stationary testing 
 

The best statistical data can be said if the lines shown are 

parallel to time with no repetition pattern. Analysis of trend 

data for the Autocorrelation Function (ACF) conducted in this 

study using annual rainfall data during the 2003-2017 period 

is shown in Figure 2. Time series (TS) data in the last five 

years have not shown stationary, so it must be done 

differencing by distinguishing non-seasonal and seasonal. So 

that the data that has been done differencing ACF data is 

seasonal and non-seasonal as shown in Figures 2 and 3. 

Results of the analysis of seasonal and non-seasonal rainfall 

data for ACF after differencing data showed a cut-off pattern. 

The results of rainfall data over the past five years have shown 

better results than in the last fifteen (15) and ten (10) years. 

Figure 2 (a) shows the results of non-seasonal rainfall data 

taken in Lag 1. While for Figure 2 (b) is the result of the 

analysis of non-seasonal rainfall data at Lag 12. The results of 

the analysis using the method described in the previous chapter 

show that the higher the lag tested shows better. Whereas 

shown in Lag 12 for the MAPE value of 99.9 lower than 

MAPE (Mean Absolute Percentage Error) 1 of 100.8. 

However, the MAD and MSD values in Lag 1 are lower than 

Lag 12 with values of 83.1 and 10849.9 instead of 99.1 and 

16203.0. 

Furthermore, data analysis was performed for seasonal 

rainfall data by testing 35 Lags. Tests for seasonal rainfall data 

are carried out to investigate the results of ACF as shown in 

Figure 2 (c) and (d). The results of rainfall data testing for 

Trend Analysis Plot (TAP) using data for the past five years 

show parallel time growth. However, trends for seasonal ACF 

show results with time series (TS). So the ACF trend needs to 

be done differencing, but only for seasonal lag. It’s  the results 

of the analysis for seasonal and non-seasonal rainfall data. 
 

3.2 Identification mode 
 

Identification of annual rainfall levels can be done with two 

PACF models as shown in Figure 3. The results of this analysis 

are displayed for Lag 1 and Lag 12, because both of these Lags 

the data displayed is easier to analysis, while the other Lags 

show a trend. There are the results of rainfall data after 

differencing. Data analysis conducted in this stage is rainfall 

data during the 2003-2017 period. Where the results for order 

1 testing with seasonal and non-seasonal rainfall data with the 

model carried out at the time of differencing were respectively 

(0.1.1)12. In more detail, the overall results tested are shown in 

Table 2. Analysis results for rainfall data for the past five years 

have shown comparable results between lines parallel to time. 
 

3.3 Model parameter estimation and diagnostic checks 
 

The results of the analysis using several models show 

significant results for each time series with the values 

determined Ljung-Box shown in Table 2. The autocorrelation 

analysis helps detect patterns and check for randomness. Its 

mean lag in ACF (Autocorrelation Function) and PACF 

(Partial Autocorrelation Function) plot. ACF plot: it is merely 

a bar chart of the coefficients of correlation between a time 

series and lags of itself. The PACF plot is a plot of the partial 

correlation coefficients between the series and lags of itself. 

12 shows the lags in ACF and PACF Plot. So the results of 

testing by applying the model as described in the previous 

chapter that the results of the analysis in this paper have met 

the requirements as stated predetermined.  

Tests conducted in this study were made with three tests. 

Where the first test is done with rainfall data for the 2003-2017 

period, the second test uses the 2008-2017 rainfall data and the 

third uses the 2013-2017 rainfall data. Based on the results 

shown in Table 2, rainfall data for the past five years has 

shown a cut-off or has been predicted after differencing. 

 

3.3.1 Selection of the best model 

After differencing is done by using several models, then the 

best selection is made based on the smallest MSE value of each 

model in each time series. So that the MSE results for each 

model selected based on the time series as shown in Table 3. 

The results shown in Table 3 are the smallest MSE results at 

the time of TS testing in each test carried out three times. The 

selection of MSE for testing rainfall data over the past five 

years 2013-2017 uses more than eight models that produce the 

smallest MSE value. While for the 2003-2017 data produced 

six models with the smallest MSE and for rainfall 2008-2017 

produced five models with the smallest MSE. Thus, the 2013-

2017 rainfall data shows a cut off compared to 2008-2017 and 

2003-2017. 

 

 
 

(a) Analysis of rainfall trends 2003-2017 for lag 1 

 

 
 

(b) Analysis of rainfall trends 2003-2017 for lag 12 
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(c) Autocorrelation Function (ACF) plot after differencing

lag 1 

(d) Autocorrelation Function (ACF) plot after differencing

lag 12 

Figure 2. Analysis of rainfall trends 

(a) Plot PACF after differencing Lag 1

(b) Plot PACF after differencing Lag 12

Figure 3. Plot PACF 

Based on the results shown in Table 3, the smallest MSE 

value was recorded in the 2003-2017 Time series with a model 

using (0.0.0) (0.1.1)12 of 4343.86. For the smallest MSE results 

in the 2008-2017 Time series using the model (0,0,0) (0,1,2)12 

amounted to 4603.71. While the smallest MSE value for the 

2013-2017 Time series was arranged on the use of the model 

(0.0.0) (0.1.2)12 at 4628.16. Thus, these models will be used 

as models when testing for the next Time series prediction. 

3.3.2 Prediction result 

Based on the results shown in Table 3, the smallest MSE 

value was recorded in the 2003-2017 Time series with a model 

using (0.0.0) (0.1.1)12 of 4343.86. For the smallest MSE results 

in the 2008-2017 Time series using the model (0,0,0) (0,1,2)12 

amounted to 4603.71. While the smallest MSE value for the 

2013-2017 Time series was arranged on the use of the model 

(0.0.0) (0.1.2)12 at 4628.16. Thus, these models will be used as 

models when testing for the next Time series prediction. 

Predicted results by using the best model selection before each 

TSP. The results of the prediction analysis of the best models 

in each Time series are shown in Table 4. 

This analysis was carried out using annual data between 

January and December. This data analysis aims to find out the 

actual rainfall data, TSP 2003-2017, 2008-2017 and 2013-

2017. The highest actual rainfall was recorded in November at 

323 and the lowest was found in August at 41. The lowest TSP 

(Time Series Prediction) for the period 2003-2017 was 

recorded in July and the highest was found in November of 

73.1 and 321.8, respectively. The lowest TSP 2008-2017 data 

was recorded in February of 123 and the highest in December 

of 300.7. While for the 2013-2017 TSP the highest was 

recorded in December and the lowest in March were 304.2 and 

18.5, respectively. Similar research results for rainfall 

prediction with analysis using the SARIMA model have been 

carried out [20]. That the use of the proposed method can the 

last iteration, comparable to actual observations.  

3.3.3 Evaluate the best results and predictions 

The results shown in Table 5 are the results of rainfall 

predictions from all-time series tested for 15 years, 10 years 

and 5 years. Then the results are evaluated using the Nash-

Sutcliffe Efficiency (NSE) statistical method, RMSE-

Observation Standard Deviation Ratio (OSDR) and PBIAS. 

This test each data group using one model. Rainfall data for 

the last five years shows better results than rainfall data for 10 

and 15 years. Increasing the value displayed on the NSE will 

further reduce PBIAS so that the results obtained are more 

accurate. Research for rainfall prediction using the SARIMA 

model has also been carried out in China recently [28]. The 

results in their study that the SARIMA model (0.0.1)(2.0.0)12 

can produce minimum average square root errors and the 

percentage of absolute errors finally selected for simulation in 

the sample. 

The best accuracy model shows with highest NSE, Lowest 

RSR, and Highest PBIAS result Where the results displayed 

indicate that predictions using the 2003-2017 and 2008-2017 

time series produce predictive values in the "good" category 

for all evaluation models tested. While the prediction results 

when using 2013-2017 time series data the prediction results 

shown are better in the "very good" category for all evaluation 

models tested. Based on the results of predictions obtained 

from this study, it can be said the results of predictions by 

using the number of time series data more cannot guarantee to 

produce more accurate data. Instead of testing using time 
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series, data can produce more accurate and more reliable 

prediction results. The best prediction results displayed from 

the study were obtained from the use of time-series data for 

more recent monthly rainfall, namely during the last five years 

period of 2013-2017. Rainfall is very appropriate for 

modelling and estimating the time series of monthly rainfall 

data. The comparative results of the actual rainfall and 

prediction results as shown in Figure 4. 

Similar research results for predicting rainfall trends using 

the SARIMA model have also been reported [23] Where the 

results are reported that the addition of long data cannot 

produce a better prediction level. In their research predictions 

were made to optimize annual and monthly rainfall data. 

Research by the ARIMA method for prediction of the 

influence of historical data length has also been carried out by 

the study [21]. 

 

Table 2. The significant value of Ljung-Box in each time 

series 

 

Time Series Model 

P-value 

Lag 

12 

Lag 

24 
Lag 36 

Lag 

48 

2003-2017 

(0.1.1)(0.1.1)12 0.217 0.479 0.396 0.399 

(0.0.0)(0.1.1)12 0.307 0.532 0.429 0.390 

(0.0.0)(0.2.2)12 0.169 0.389 0.194 0.165 

(0.1.1)(0.2.2)12 0.145 0.369 0.164 0.118 

(0.0.0)(1.2.3)12 0.065 0.127 0.120 0.085 

(0.0.0)(1.2.2)12 0.295 0.220 0.095 0.161 

 

2008-2017 

(0.1.1)(0.1.1)12 0.118 0.320 0.168 0.109 

(0.0.0)(0.1.1)12 0.161 0.343 0.181 0.093 

(0.0.0)(0.1.2)12 0.111 0.231 0.091 0.135 

(0.1.1)(0.2.2)12 0.113 0.215 0.081 0.072 

(0.0.0)(1.1.1)12 0.204 0.255 0.151 0.183 

2013-2017 

(0.1.1)(0.1.1)12 0.713 0.950 0.951 - 

(0.0.0)(0.1.1)12 0.728 0.945 0.903 - 

(1.1.0)(0.1.1)12 0.128 0.496 0.590 - 

(0.1.1)(1.1.0)12 0.527 0.518 0.926 - 

(0.0.0)(0.1.2)12 0.164 0.600 0.781 - 

(0.2.1)(0.2.2)12 0.486 0.406 - - 

(0.0.0)(1.1.0)12 0.581 0.434 0.880 - 

(0.0.0)(1.1.1)12 0.220 0.123 0.280 - 

 

Table 3. MSE Value of Each Model Based on Time series 

 
Time Series Model MSE 

2003-2017 

(0.1.1)(0.1.1)12 4531.98 

(0.0.0)(0.1.1)12 4343.86 

(0.0.0)(0.2.2)12 5109.30 

(0.1.1)(0.2.2)12 6072.01 

(0.0.0)(1.2.3)12 4973.76 

(0.0.0)(1.2.2)12 4934.28 

2008-2017 

(0.1.1)(0.1.1)12 5067.50 

(0.0.0)(0.1.1)12 4840.87 

(0.0.0)(0.1.2)12 4603.71 

(0.1.1)(0.2.2)12 8394.76 

(0.0.0)(1.1.1)12 4605.52 

2013-2017 

(0.1.1)(0.1.1)12 6592.51 

(0.0.0)(0.1.1)12 6584.57 

(1.1.0)(0.1.1)12 9282.25 

(0.1.1)(1.1.0)12 8770.77 

(0.2.1)(0.2.2)12 29424.6 

(0.0.0)(1.1.0)12 8725.24 

(0.0.0)(1.1.1)12 5539.53 

(0.0.0)(1.1.1)12 5539.53 

 

 

Table 4. Prediction results from the selected models in each time 

series 

 

Month  
Rainfall 

Actual 

Time 

series 

prediction  

(TSP) 

2003-2017 

Time 

series 

prediction 

(TSP) 

2008-2017 

Time 

series 

prediction 

 (TSP) 

2013-2017 

January 143 225.3 197.2 105.4 

February 49 127.6 123.0 72.3 

March 83 156.7 127.0 18.5 

April 227 211.4 211.9 211.1 

May 164 171.6 198.2 202.5 

June 49 86.1 90.7 56.0 

July 52 73.1 94.3 69.2 

August 41 90.0 94.4 46.7 

September 92 146.6 126.6 95.5 

October 196 180.0 189.3 213.2 

November 323 321.8 309.0 298.3 

December 227 273.4 300.7 304.2 

 

Table 5. Comparison of prediction results table for each 

model and time series 

 

Model 
Time 

Series 
NSE RSR PBIAS Information 

(0,0,0) 

(0,1,1)12 

(0,0,0) 

(0,1,2)12 

(0,0,0) 

(0,1,2)12 

2003-

2017 

0.69 

(good) 

0.55 

(good) 

-25.4 

(good) 
Good 

2008-

2017 

0.73 

(good) 

0.52 

(good) 

-25.3 

(good) 
Good 

2013-

2017 

0.84 

(very 

good) 

0.41 

(very 

good) 

-2.8 

(very 

good) 

Very good 

 

For stationary data, seasonal factors can be determined by 

identifying the autocorrelation coefficients at two or three 

time-lags that are significantly different from zero. 

Autocorrelation which is significantly different from zero 

indicates the presence of a pattern in the data. To recognize the 

presence of seasonal factors, must look at the high 

autocorrelation. Therefore, the challenge for researchers is 

how to find the long time-series data or the historical data 

length that is closest to the pattern to be predicted. So to be 

able to find the long time-series data or the nearest historical 

data length through the predicted pattern, it must make a 

comparison or comparison of predictions from several 

historical data lengths. 

 

 
 

Figure 4. Comparison of actual rainfall and best prediction 

results 
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4. CONCLUSION 

 

The results of predictions using time series data on rainfall 

for 15 years (2003-2017) fall into the "good" category for 10 

years (2008-2017) fall into the "good" category and for 5 years 

(2013-2017) fall into the "Very good" category. The results of 

the best model evaluation (0.0.0) (0.1.2)12 for NSE were 0.84, 

RSR 0.41 and PBIAS -2.8. Prediction results that are closest 

to the actual value are obtained from the use of time series 

rainfall data for 5 years with a prediction model (0.0.0) 

(0.1.2)12 and equation (1-B12) Xt=-2.81 (1+ 1,296 B12 - 0.575 

B24) ɑt. To produce more accurate rainfall predictions in the 

future, further research can be done with the use of more 

diverse time series data. The model used for rainfall data 

analysis uses SARIMA. This analysis is carried out to estimate 

yearly rainfall data that can be used for predictions for the 

future. This is important to do so that future agricultural 

planting can be more accurate and not affected by the dry 

season. The accuracy of the prediction of rainfall will produce 

a better predictive discharge to be the basis for water resource 

management. 
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