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In this paper, we investigated a two-phase model of incompressible fluid filtration. 

We apply the irregular grid method and the variable direction scheme. This 

approach gives the effect of solution accuracy near discontinuities (wells) due to 

the use of an irregular grid. The model is built taking into account the influence of 

capillary pressure and gravitational forces. The results confirm that the amount of 

oil that came out of the layer in a certain time is equal to the volume of water 

injected, except for the amount of water in the outlet stream in the same time. The 

proposed solutions of the new approach are intended to improve the methods and 

schemes of numerical investigation of this model. A balanced monotonic finite-

difference scheme was developed and an efficient algorithm for its implementation 

was proposed. From a practical point of view, numerical modeling allows early 

prediction of performance. Thus, the applied aspect of the use of the obtained 

scientific result is the possibility of improving the process by taking into account 

the distribution of water saturation in the layer. 
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1. INTRODUCTION

The goal of this work is to consider the process of water and 

oil filtration through the reservoir of an oil deposit. The 

adjacent formations of the reservoir, being the third phase, 

have constant characteristics, that is, they are a constant. The 

purpose of mathematical modeling, as a rule, is to determine 

such optimal parameters of oil production, which would help 

to develop control decisions. This is primarily due to the high 

cost of conducting full-scale experiments, and it is also due to 

the large number of different parameters affecting the final 

results. With the development of computational tools, a certain 

scheme of calculation of multiphase fluid filtration problems 

has developed, that is, from a mathematical model to a 

numerical algorithm, and to the analysis of the results and 

further to the prediction. 

The monograph by Konovalov [1] is the main scientific 

work considering the spectrum of problems related to the 

mathematical modeling of multiphase filtration. Emphasis is 

placed on an inseparable triad: a model - an algorithm - 

computer code. The monograph pays more attention to the 

splitting method in terms of the physical processes, the method 

of fictitious domains, and the method of front separation in a 

grid solution.  

The Buckley-Leverett model is the most used model. It 

assumes equality of phase pressures. In this model, 

generalized Darcy laws, equations of state, and mass 

conservation laws are written for each phase. 

This model has been well studied in the works of such 

scholars as Konovalov et al. [2]. In this case, the equation for 

saturation in this model is a nonlinear hyperbolic partial 

derivative equation. It is characterized by gaps in the solution 

[2]. We can say that the only way to get a prediction is with 

numerical methods. And difference schemes are often used. In 

this case, the problem arises of selecting schemes that are good 

at conveying the qualities of the solution. In the research of 

Baikov et al. [3], the Buckley-Leverett model for a one-

dimensional model of two-phase filtration in porous medium 

was considered. 

This level was reached in the study of the model, which 

takes into account capillary forces. 

The problem of oil displacement with water was originally 

posed in the works by Leibenzon [4], and it assumed complete 

displacement of oil. This "piston" model is also used at present. 

However, numerous later studies have shown that water does 

not displace oil completely and a large zone is formed where 

both phases move together.  

The second well-known filtering model is the Masket-

Leverett model. Capillary forces are taken into account in this 

model. Laplace’s law is added to the system of equations. The 

model was investigated by Meirmanov et al. [5]. 

The equation for saturation in this model is a quasi-linear 

partial derivative equation of the parabolic type. According to 

the studies of Antontsev et al. [6], the conversion of relative 

phase permeabilities to zero, leads to the fact that the system 

becomes degenerate. 

The main problem is described by Henry [7], an application 

of the IMPES method. Reservoir modeling is performed using 

numerical models that use digital machines to solve 

mathematical equations governing the behavior of fluids in 

porous media using a gridded format, which can accommodate 

the reservoir. It leads to getting an insight into the behavior of 

physical processes. 

Mathematical Modelling of Engineering Problems 
Vol. 10, No. 2, April, 2023, pp. 463-468 

Journal homepage: http://iieta.org/journals/mmep 

463

https://orcid.org/0000-0002-7841-1753
https://orcid.org/0000-0003-4179-4241
https://orcid.org/0000-0002-0643-2280
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.100211&domain=pdf


 

In 1986, Zhou [8] proposed a new method called the 

differential transformation method (DTM), which is 

considered to be one of the best numerical methods used to 

solve both ordinary and partial differential equations. 

At present, the methods for the numerical solution of 

moving boundary problems can be conditionally divided into 

two groups: shock-capturing methods and explicit edge 

detection methods. It should be noted that shock-capturing 

methods provide a means of solving problems of a multiphase 

and multidimensional problem of thermal conductivity, but 

they are not suitable for solving practical problems and have 

low accuracy in determining the position of free boundaries. 

Edge detection schemes usually have good accuracy, but are 

algorithmically cumbersome and unsuitable for solving free 

(indeterminate) boundary problems. 

One of the most accurate shock-capturing schemes is built 

using the finite element method (FEM). It is known that such 

a scheme has a low order of approximation near free 

(indeterminate) boundaries.  

On the other hand, not only the gradient and the solution 

itself have discontinuities at the phase boundaries in 

multiphase diffusion problems. A simple change of variables 

often makes it possible to remove the solution gaps and use 

some of the shock-capturing methods. In the study of 

Escandon-Panchana et al. [9], methods of petroleum 

engineering were investigated together with information 

provided by geology and geophysics to quantify the reserves 

and identify production mechanisms that predict a reservoir's 

behavior.  

However, for problems of non-isothermal diffusion, none of 

the known methods of this type is applicable [10-12]. 

The present study considers a two-phase incompressible 

fluid filtration model that accounts for capillary pressure. The 

model takes into account the influence of capillary pressure 

and gravitational force. Under certain conditions, capillary 

forces in the model play a significant role, and in some cases, 

the role of capillary effects is decisive.  

In this paper, the research scheme includes the derivation of 

the mathematical model, the problem statement, and the 

algorithm of the numerical method for solving the problem. A 

balanced monotonic finite difference scheme is developed. 

 

 

2. PROBLEM SETTING 

 

The present study considers the problem in a two-

dimensional formulation. The formation is considered to be 

homogeneous and thin. Approximation of equations Masket-

Leverett is solved in two stages. In the first step, the hyperbolic 

equation for water saturation is solved. This equation describes 

the movement of the displacement fluid. Here, an explicit 

finite difference scheme of the 4th order of accuracy is used. 

In the second stage, a parabolic equation for water saturation 

is solved. This equation describes the action of capillary forces. 

The proposed approach is known as the physical splitting 

method process. 

The oil displacement by water is a physical process. An 

increase in pressure, and water saturation increment are also 

caused by water injection in wells. It can be pointed out that 

the main problems are associated, first, with the nonlinearity 

of the obtained systems of equations. 

In that case, we will denote porosity by m, densities of water 

and oil phases by ρ
i
, dynamic viscosities will be designated as 

μ
i
 (i = 1 is for oil, i = 2 is for the water phase). They do not 

depend on the variables t, x, z.  

Let the solution to the two-phase filtration problem be 

sought in a two-dimensional XZ region Ω = [0,Rx]x[0,Rz] 

with a boundary γ. One of the most common methods for the 

numerical solution of problems related to the two-phase 

filtration of incompressible fluid is the grid method.  

Simultaneously, there is a transition from the areas of 

determining the solution to the original problem to the areas of 

the discrete grid. Accordingly, the functions of the discrete 

argument with the domains of definition replace the functions 

of the continuous argument. 

The difference equations are replaced by differential 

equations of the original problem, and the same is applied to 

the limiting conditions of the original problem. As a result, for 

each problem, a closed system of linear (or nonlinear) 

algebraic equations is obtained, the solution to which is taken 

as an approximate solution to the original differential problem. 

The outer boundary of the area is 

γ = ∂Ω = γ
0
 ⋃ γ

1
∪ γ

2
 (γ

1
 ∩ γ

2
 = ∅). On one of the boundaries 

γ1, which has a length R1, let us set the input flow Q [m2/s], the 

output flow on the other boundary γ2 with a length R2 is defined 

by Q. At the boundary γ0 let us put a no-leak condition (Figure 

1). 

 

 
 

Figure 1. Computational domain 

 

Next, we will use the following ratios: 

1) the continuity equation of our i -th phase will be written 

in the form: 

 

m
∂Si

∂t
+div (Wi)⃗⃗ ⃗⃗ ⃗⃗ =0  (1) 

 

2) generalized Darcy’s law: 

 

Wi
⃗⃗ ⃗⃗ = - k0

fi(S)

μi

∇(ϕ
i
)=-ki(S)(∇Pi)+ρ

i
ge2⃗⃗  ⃗,  

where, 

 

Phase potentials if the z-axis is directed against gravity, can 

be written as: 

 

ϕ
i
=Pi+ρ

i
gz 

 

Let the porous medium initially be filled with any one fluid. 

Let us bring another fluid to the surface of such a medium. The 

supplied fluid as if spreading over the surface of the pores, will 

tend to penetrate the porous medium, which is filled with the 

first fluid. It will displace the first fluid. 

Therefore, a static equilibrium in a porous medium filled 

with two different immiscible fluids is possible precisely due 
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to the presence of a capillary jump. The magnitude of this jump 

depends on the degree of insertion of the second fluid into the 

porous medium filled with the first fluid. Therefore, capillary 

pressure can be considered a function of the nano-saturation of 

the displacement phase: 
 

P1-P2=Pk(S) 

 

Capillary pressure, and also relative phase permeabilities 

are experimental values. Si is the saturation of the i-th phase, 

from the determination of water saturation, we obtain S1+S2 

=1, Wi
⃗⃗ ⃗⃗  is the filtration rate of some i-th phase, m is the porosity 

of the layer. Let S = S2, S1=1-S; index 1 will be attributed to 

oil, index 2 will be attributed to water, then k0 is the 

permeability coefficient, let fi(S) be the relative phase 

permeabilities, which characterize the dependence of fluid 

filtration rate on water saturation, let μi be the coefficient of 

dynamic viscosity, e2⃗⃗  ⃗=(0,1)
T

; Pk(S) is capillary pressure. 

Capillary pressure and relative phase permeability are 

experimentally measured functions of water saturation. 

Phase potentials if the z-axis is directed against gravity, can 

be written as: 
 

ϕ
i
=Pi+ρ

i
gz 

 

Then 

 

W⃗⃗⃗ i=-k0

f
i
(S)

μ
i

∇(ϕ
i
)=-ki(S)(∇(Pi)+ρ

i
ge 2) 

 

Let us determine that 0<Sн<Sb<1. 

In this case, f1(S)=0 given that Sb<S<1, and f2(S)=0, when 

0≤S≤SH, we get: 

 

k(S) = k1(S) + k2(S) ≥ kH > 0, 0 ≤ S ≤ 1 

W2
⃗⃗ ⃗⃗  ⃗ = -k2(S)∇(P) - k2(S)ρ

2
ge2⃗⃗  ⃗ 

W1
⃗⃗ ⃗⃗  ⃗ = -k1(S)(∇(P) - Ps(S)∇S + ρ

1
ge2⃗⃗  ⃗) 

 

W⃗⃗⃗  = W1
⃗⃗ ⃗⃗ ⃗⃗   + W2

⃗⃗ ⃗⃗  ⃗ =  

- k(S)∇(P) + k1(S)Ps(S)∇S - g(k1(S)ρ1
 + k2(S)ρ2

)e2⃗⃗  ⃗ 
(2) 

 

Let k(S) = k1(S)+k2(S). Then we can add (1) and (2). And in 

this case, we get an elliptic equation, which defines the 

pressure: 

 

-div(k(S))∇P  

= -div(k1(S)Ps|∇S) + g(ρ
1

∂k1(S)

∂z
 + ρ

2

∂k2(S)

∂z
) 

(3) 

 

To determine water saturation, we derive a parabolic 

equation: 

 

m
∂S

∂t
 - div(k2(S)∇P) - gρ

2

∂k2(S)

∂z
 = 0 (4) 

 

The fluid flow at the inlet and outlet is Q. At the inlet we 

have only water phase: Q2in = Q, the oil phase is Q1in = 0. 

The outlet will be both water and oil. At the outlet the water 

flow in the mixture is Q2out = Qk2(s)/k(s), the oil flow is Q1out 

= Qk1(s)/k(s). 

Let us define boundary conditions of the second kind for Eq. 

(3): 

 

-W⃗⃗⃗ n⃗  = 
Q

L1 

 z⊂γ
1
:-W⃗⃗⃗ n⃗  = -

Q

L2,

z⊂γ
2
: -W⃗⃗⃗ n⃗  = 0  z⊂γ

0
 (5) 

 

For the parabolic Eq. (4) we define the following boundary 

conditions: 

 

W2
⃗⃗ ⃗⃗  ⃗n⃗  =

 Q

L1

  z⊂γ
1
; 

 -W2
⃗⃗ ⃗⃗  ⃗n⃗  = -

Qk2(s)

L2k(s)
; z⊂γ

2
; -W2
⃗⃗ ⃗⃗  ⃗n⃗  = 0; z⊂γ

0
 

(6) 

 

Initial data P(0,x,z) = 0, S(0,x,z) = S0(x,z). 

To determine the pressure P, the elliptic Eq. (3) with 

boundary conditions of the second kind (5), and for 

determination of water saturation S - parabolic Eq. (4) with 

boundary conditions (6) and initial data 
 

P(0,x,z)=0, S(0,x,z)= S0(x,z) 
 

Eq. (3) has a nonunique solution, and Eq. (4) turns out to be 

an equation with a degenerate diffusion coefficient. 

The problem (3), (4) with boundary conditions (5) and (6) 

had to be solved.  

Limit saturation values of the displacement phase are SH and 

SB such that at S≤SH and S≥SB the corresponding phase 

permeability fi(S) tends to zero. It follows from Darcy's 

generalized law that if S≤SH, then the displacing phase is 

stationary, if S≥SB, then the displaceable phase is stationary. 

Here, SH is called residual water saturation, 1- SB residual oil 

saturation.  
 

 

3. SOLUTION ALGORITHM AND NUMERICAL 

RESULTS 
 

We divided the calculation area into cells. On the x-axis, we 

divide the area by lines ihx, i=0...p, on the y-axis, divide the 

area by lines jhz  j=0...d, then hx=Rx/p, hz=Rz/d. Nodes to 

calculate xi=(i-1/2)hx, I =1..p, zj=(j-1/2)hz, j=1..d. The volume 

of the calculation cell is equal to Vh = hxhz, S
0(x,z) = 0.2. 

By integrating Eqns. (4) and (6), we built a difference 

scheme. 

 

1

Vh

∫ dV

Vh

  

 

Let R1 = R2 = hz, j1 is the number for the input cell, j2 is the 

output cell. The implicit system of equations is iterated: 
 

sn,0 = sn-1, pn,0 = pn-1 
 

Then at some step n we could switch to some system of 

equations, which later by iterations we reduced to the form: 

 

A(sn,k)pn,k+1 = B(sn,k)sn,k + Q/Vh|
j1

 - Q/Vh|
j2

 (7) 

 

sn,k+1 = sn-1 - λT(sn,k)pn,k+1 + λ(Q/Vh)|j1 - 
k2(s

n,k)

k(sn,k)
Q/Vh|

j2
 (8) 
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Matrices A, B, and C are symmetric and positively semi-

defined. Eq. (7) at each iteration step according to s, is solved 

iteratively using the peremptory method of core gradients.  

A symmetric positional fully semi-defined matrix R, 

corresponding to a five-point approximation, is taken as a re-

conditioner of the Laplace operator in a rectangle with 

boundary conditions of the second kind. As ker A=ker R, the 

solution to the problem (7) lies in the im A subspace. After 

graduation iterations to highlight a single solution are 

renormalized.  

To solve this problem, we used the split-variable method 

using the Fourier transform. The split-step (Fourier) method 

provides an excellent methodology to solve time-dependent 

partial differential equations. This method is ubiquitously used 

in engineering and physics applications [13]. Splitting 

methods are frequently recommended for the integration of 

(nonlinear) equations due to their fast computability and high 

accuracy. Furthermore, they preserve the geometric features of 

the exact solution. The exponential Fourier transform method 

has been used in the research of Ike [14]. 

The theoretical justification of the split-variable method by 

physical processes for real nonlinear problems remains open. 

Konovalov provides a justification for the split-variable 

method by physical processes using a computational 

experiment [1]. In a rectangle with sides Rx, Rz, a solution to 

the system of equations is sought that satisfies the initial and 

edge conditions. The solution of the two problems was 

described. In the first problem, the phase pressure is set on the 

boundary. In the second task, the filtration area is enclosed in 

an impermeable formation, and inside the filtration area, there 

are injection and production wells with specified flow rates. It 

was determined R=100. The number of calculated points in the 

tasks was 100. A comparison of the difference schemes was 

made and recommendations were prepared for using the split-

variable method to calculate the filtration tasks of the two-

phase non-compressible fluid taking into account capillary 

forces. 

The following values of the physical parameters were used 

in numerical calculations: calculations were performed in a 

rectangle with sides Rx, Rz, -Rx=100 m, Rz=25 m, water entry 

was made in the cell x=0.0, z=0.0, or x=0.0, z=Rz, and oil 

recovery - in the cell x=Rx, z=Rz. 

Calculations were performed at hx, hz=1 m, R1, R2=hz, the 

water flow rate varied from 1E-01 to 1E-04, m=0,5. Water 

consumption varied from 1E-1 to 1E-4. Total volume of oil in 

the layer Vf=1E-3m2. 

The following characteristics will be used for the model: 
 

K0 = 3.06E-12 m2, μ
1
 = 9.28E-04

kg

m
*s, μ

2
 = 1.15E-04

kg

m
*s 

 

The following formulas were used for the relative phase 

permeabilities: 
 

f
1
(S)={

1           if (0<S≤Sн)

(
Sв-S

Sв-Sн
) if (S≤S≤Sв) 

0           if (Sв≤S<1)

  

f
2
(S)=

{
 

 
0          if (0<S≤Sн)

(
S-Sн

Sв-Sн

) if (Sн≤S≤Sв) 

1           if (Sв≤S<1)

 

Sв=0.8 

Sн=0.2 

 

From these relations, from (4), the boundary condition (5), 

and the initial conditions, we obtain the relation: 

 

m∫ (S(t,x,y)-S0

Ω

(0,x,y))∂Ω 

=Qt-
Q

L2

∫ ∫
k2(S(t'))

k(S(t'))
∂γ

2
∂t'

γ2

t

0

 

(9) 

 

The amount of oil that came out of the layer in some time t 

is equal to Vp(t). It is equal to the volume of water that was 

pumped and minus the water that was formed in the outlet 

stream during the same time.  

Figure 2 shows the distribution of water and oil. The X-axis 

shows the fraction of injected water Qt/Vf, the Y-axis shows 

the fraction of released oil Vp(t)/Vf relative to the total oil 

reserve in the layer. 

 

 
 

Figure 2. The proportion of injected water (line X) and 

released oil (line O) 

 

The resulting graph shows that at first the shares of water 

and oil in the flow coincide. Furthermore, we can see that the 

share of oil becomes constant. Water breakthrough occurs 

when it approaches the 0.4 mark. 

As a result, it turned out that the time distribution of water 

saturation in the layer is practically independent of whether 

water input occurs in the cell (x=0.0, z=0.0) or in the cell (x=0, 

z=Rz) (water output is always in the cell (x=Rx, z=Rz). First 

there is the filling of the layer near the line x=0, and only then 

the water moves along the bottom (z=0). And then the water 

breaks through to the exit point (Figure 3). 

 

 
 

Figure 3. Distribution of water saturation in the layer 
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One of the methods to increase oil recovery is waterflooding 

of oil objects. Water pumped into the reservoir performs two 

functions: maintaining reservoir pressure and displacing oil to 

the bottoms of producing wells.  

The distribution of water saturation and oil saturation in this 

case, due to the heterogeneity of the reservoir, is significantly 

different in different areas of the development site. This leads 

to residual unexploited oil reserves. Some models allow us to 

estimate the distribution of these residual stocks. Models are 

based on quantifying such saturation coefficients. 

The peculiarity of this studied problem is that the 

computational algorithms were built based on the known 

results of works of Kaliev and Sabitova [15], and after that the 

time derivatives of water saturation were added. In the study 

of this mathematical model, qualitative properties of solutions 

were also investigated: asymptotic behavior with unlimited 

time increase, periodicity in time, and automodelicity in the 

two-dimensional case. These properties play an important role 

in the construction of computational algorithms and numerical 

implementation of specific tasks using computers. 

 

 

4. DISCUSSION 

 

Scientific novelty: possible variants of model solvability are 

shown, numerical model of Masket-Leverett supplemented 

with consideration of water and oil sources is implemented and 

experimentally substantiated. The results were tested with real 

technological indicators of the oil and gas field in the Atyrau 

region of the Republic of Kazakhstan.  

For analysis, control and forecast calculations it is quite 

possible to use the results.  

In the present work, we determined the pressure from 

elliptic Eq. (3) with boundary conditions of the second kind (5) 

and water saturation S from parabolic Eq. (4) with boundary 

conditions (6) and initial data. An elliptic equation with 

boundary conditions of the second kind has a nonunique 

solution. The parabolic equation is an equation with a 

degenerate diffusion coefficient. The main results were well 

illustrated with an example. Our results in this paper have been 

extended and improved on some well-known results. 

The proposed Masket-Leverett model is applied at large and 

small-scale levels, depending on the distance between the 

wells. This is a feature and advantage of the proposed model 

compared with traditional models. 

Three wells were validated: North Kotyrtas, East Moldabek 

in the Atyrau region, and East Zhetybay (Mangistau). The 

proposed method was adapted to the 14th zone, located at a 

depth of 2700 - 3000 meters. 

In the Western region of Kazakhstan, three methods of 

influencing the formation were used: well flow, the 

mechanical method of displacing oil with water, and the use of 

surfactants (20 kg per ton). The model can be used in 

secondary recovery enhancement methods to optimally 

control oil production. Built on the basis of physical 

representations, the model qualitatively and quantitatively 

describes the properties of the simulated process. 

The uniqueness of this work consists in the application of 

the presented model for the well system. It was determined in 

the work whether there was a mutual influence between the 

wells. The study was conducted on an oil reservoir with a 

multi-well system. Reservoir modeling was used to estimate 

recovery for this production pattern and to assess the impact 

of changing operating conditions on recovery. Recovery will 

be affected by well layout and spacing. An equation for 

pressure in potentials was introduced. The study was 

supplemented, and a well system was used. 

 

 

5. CONCLUSIONS 

 

Thus, the possibilities of constructing a two-phase filtration 

model of the incompressible fluid have been studied in this 

paper. 

The studies have shown that the use of an irregular grid 

makes it possible to increase the accuracy of the solution near 

the wells with a simultaneous increase in the volume of oil 

production without losing the calculation speed. This proves 

the necessity of using an irregular grid for this kind of problem 

and a stable variable direction scheme for such a grid. 

The practical value of the study lies in the possibility of 

using the obtained results to increase reservoir development 

productivity, as well as to improve methods for predicting 

various oil production indicators.  

The use of modified difference schemes makes it possible 

to improve the quality of the obtained numerical solutions. 

In conclusion, should be pointed out that the basis of the 

study of constructing a two-phase filtration model of the 

incompressible fluid has been laid. However, this is only the 

beginning of the great research that lies ahead. The subject of 

further research is the non-isothermal filtration process. 
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