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This article develops a new two-step hybrid block method for the numerical solution of
second order initial value problems with better accuracy. Two off-step points are
introduced in generalized form and the resulting block method is developed using
interpolation approach with interpolation points at one on-step point and one off-step
point. The hybrid points are given in a generalized form to give room for flexibility of
the choice of hybrid points which will give more information on which points produces
the best solutions. The resultant order seven block method obtained satisfied all basic

properties such as order, zero stability, consistency and convergence and produces
better accuracy than existing numerical methods for solving second-order initial value
problems. Thus, justifying the adoptability of the new block method for solving second-
order initial value problems.

1. INTRODUCTION

This article focuses on solving second order initial value
problems (IVPs) in the form:

y'=T(xy,y) y@ =y (@=m ey
using hybrid block methods with generalized off-step points.

IVPs are a class of ordinary differential equations (ODEs)
where a dependent variable and one independent variable are
related, and the order being second order results from the value
of the highest derivative in the differential equation [1-3].
Numerical approaches are adopted to solve differential
equations generally when the exact solution does not exist or
is difficult to obtain [4], and for IVPs in the form of Eq. (1),
the conventional implementation procedure to solve using a
numerical approach was its reduction from a second order I[VP
to a system of two first order [VPs. This reduction approach is
discussed by Awoyemi [5] and said to be saddled with the
disadvantage of high computational time and low accuracy.
This led to another implementation procedure using predictor-
corrector procedure to directly solve IVPs. Studies [6-10]
utilised the predictor-corrector procedure. Shokri [6]
developed a two-step block method, Panopoulos et al. [7]
developed an eight-step symmetric embedded predictor-
corrector method, Ndanusa and Tafida [8] introduced
predictor-corrector methods of high order, Biasa et al. [9]
obtained a predictor-corrector block iteration method, and a
predictor-corrector linear multistep method was developed in
Kayode and Adegboro [10]. Although, the predictor-corrector
procedure was a direct procedure instead of using the concept
of reduction, further studies discovered that block methods
gave better solutions that predictor-corrector because the order
of the predictors are less than the correctors and this impacts
the accuracy negatively [11, 12].
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Block methods were first proposed by Milne [13] and
Sarafyan [14] to obtain starting values for predictor-corrector
methods. Adesanya [15] described the formulation of block
methods as evaluation of a multistep method at different grid
and/or off-points to generate a system of numerical schemes
that can be applied to produce approximate solutions at the
grid and/or off-grid points simultaneously.

Block methods developed using only grid points are seen in
studies [16-21] but the consideration of off-grid points in
addition have been seen to result in better accuracy. The use
of both grid and off-points in block methods led to the name
hybrid block methods. Some studies that have developed
hybrid block methods to obtain solutions for models in the
form of Eq. (1) include Olukunle and Felix [22] where a one-
step hybrid scheme was developed, Shokri et al. [23] which
proposed a symmetric two-step semi-hybrid scheme, Ehigie et
al. [24] with a generalised two-Step continuous linear
multistep method of hybrid type, Fasasi et al. [25] developing
a one-step continuous hybrid block method, and Gebremedhin
and Jena [26] where the approximate solution of certain ODEs
were obtained using a hybrid block approach.

Specifically, this article considers an extension of the
previous study by Mansor et al. [27] where a two-step hybrid
block method with one generalized off-step point was
proposed. In their work, the authors considered one off-step
point within each step to find the direct solution of the second
order IVPs. Although, the results obtained had good accuracy,
there is still room for improvement as only one off-step point
between two-step intervals was considered in deriving the
method. Therefore, an improvement is introduced in this
article by introducing two off-step points within each step for
a two-step block method (See Figure 1). The aim of
introducing more off-step points is to increase the order of the
method, thus, improving the accuracy of the solution. The off-
step points are also introduced in a generalised form, such that
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various suitable values within each interval can be selected as
off-step points.

Therefore, this article derives a new block method using
interpolation and collocation approach as discussed in the next
section. Section 3 tests the basic properties of a numerical
method for the developed method, Section 4 shows the results
obtained from selected numerical examples, and Section 5
concludes the article.

2. DEVELOPMENT OF THE TWO-STEP HYBRID
BLOCK METHOD WITH GENERALIZED TWO OFF-
STEP POINTS WITHIN EACH STEP

The following power series polynomial:

i+c-1 X=X, ]
z ai h
j=0
is used as an approximate solution of Eq. (1) where x €
(%p) Xpao] forn=0,2,4, ..., N-2 with h=xs+;-x;and 6=0, 1, 2, ...,
N in the interval [a, b]. i and ¢ denote the number of
interpolation and collocation points respectively.

The interpolation-collocation strategy is illustrated in

Figure 1 below where two off-step points within each step are
denoted by p, g, r, and s for 0<p<q<l<r<s<2.
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Figure 1. Interpolation and collocation points for two-step
hybrid block method with generalized two off-step points
within each step

Referring to Figure 1, i=2 and ¢=7. Substituting these values
in Eq. (2) gives:

8 X — X j
y(x)=Za,( j 3)
i=0 h
whose second derivative is:
8 il i-2
" . 1) x=x,
y(X):f(x,y,y)=Zaj%( - j @)
=2
Interpolating Eq. (2) at x4+ (6=1, r) yields:
8 X — X j
Yoo =Zaj( j 6)
i=0 h

and collocating Eq. (4) at all points x,+, (6=0, p, q, 1, 7, 5, 2)
produces:
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(6)

which form nine simultaneous equations involving the
unknown coefficients a;'s. The values of @/'s are obtained using
Gaussian elimination method and then substituted back in Eq.
(2) to produce a continuous implicit hybrid two-step scheme
with generalised two off-step points as below:

y) = D (XY,

j=0,p

X (7)
+Zﬂj (X) fn+j +
j=0

Z ﬂj (X) fn+j'

j=p.ar

which is then evaluated at the non-interpolating points, X+,

w=0,p, q, s, 2).
Differentiating Eq. (7) once, we get:

o
Y(X)= D> —a; (XY,

5 ®)
Z &ﬁ] (X) fn+j'

j=p.a.r

3
0
+ _ﬁ'(x)fn+'+
J_Zoax ] J

Evaluating Eq. (8) at x, leads to the formation of a discrete
implicit hybrid two-step scheme which can be represented in
matrix form as:

A2[2]2Y 2[2], — Blz[z]z Rlz[z]z + 822[2]2 R22[2]2

9)
R [thzlz RA%% | EA%kR2%): ]
Multiplying Eq. (9) by the inverse of A%*2 yields:
22, _ RA2, p2?] R2[2], p22]
oY 7% =B R + B 2R a0

1+ h? [52[212 R22: 4 EAZ: QA2 ]
which is equivalent to:

Yoip = Yo +H0Y' + h?[D,, f, +Ey frop + Ep friq
+ E:L3 fn+1 + E:L4 fn+r + ElS fn+s + EiG fn+2]

Yoig = Yo HHay' + hz[[_)21 fo+ E21 foep + Ezz foig
+Egg foua + Eoa for + Egs frus + g oo

Yo = Yo Hhy' + h2[|531 fo+ E3.1 foip + E32 forg
+ Ega fra + Eag Four + Bas frs + Egg o]

Your = Yo +hry’,+h*[Dy f +E, frep + E friq
+Ega foia + Ega for + Egs frus + Egg 2]

Yoes = Yo +hsy'y+ 0’ [Dg, i+ Eg o, +Eep g
+ g fo1 + Esg Four + Bss fovs + Esg frio]



+ E62 fn+q

yn+2 = yn +2hy'n+ hz[[_)Gl fn + E f

61 "n+p
+E.f

65 Tnis T Ego fri2]-

+ E63 fn+1 + E64 fn+r

Combining Eq. (8) at x,+. (4=p, ¢, 1, r, 5, 2) and Eq. (10)
produces the following first derivative of the main block:
y|n+p = yln+ h[Dlrl fn + Eirl fn+p + E{Z fn+q

+ E1'3 fn+1 + E1,4 fn+r + E1’5 fn+s + E1’6 fn+2]
yln+q = yln+ h[Dél fn + Eél fn+p + E£2f

n+q
+Egs i + Eog fror + B fris + B foial
y|n+1 = y'n+ h[Dsl’l fn + Esl’l fn+p + E3’2 fn+q

+ ESI’S fn+1 + E:;4 fn+r
yln+r = yln+ h[Dzlll fn + Ele fn+p
+Egfrg +Euf
y|n+s = y‘n+ h[Dél 1:n + Eél fn+p

+Egs frs + Egg 2l
+Ep g

+Ejs fris +Ess fri2]
+E5, f
+Egs frs + Egg o2l
+Eg foig

+Egs for2 -

n+r

n+q
+Ega s + B frur
y|n+2 = yln+ h[Dél fn + Eél fn+p
+ Eé?, 1:n+l + EE,S4 fn+r + Eés fn+s
The coefficients {Dy1,Dpq,..., D1} {E11,E12)---, Eee} s
{D11,D;1,...,Dg1}, and {E;1,E;,, ..., Ege} are obtained with
respect to the value of the off-step selected (See Appendix).
The next section discusses the properties of the block
method in its generalized form, while in Section 4, comparison
will be made with the methods in previous studies for some
numerical examples. This is to show the advantage of the

improvement introduced in this article over the existing
studies.

3. PROPERTIES OF THE METHOD
Order of the Method

The linear difference operator L associated with Eq. (10) is
defined as:

L[y(x);h] = I,.Y 2% — BX2ER22%k 4 B2k Q22

_h? [52[2]2 R2Z: 4 E4%: 22 } an

where, y(x) is an arbitrary test function continuously
differentiable on a. Expanding the components of Y2[?l2 and
R:[Z]Z in Taylors series about x=x, and collecting the terms in

powers of / gives:

LLy(x); h] = C{™PLy(x) + C*=hy (x)

~ (12)
222y

+CPn2y"(x) +...

Definition 3.1 Hybrid block method (10) and associated

linear operator in (11) are said to be of order dif C_'g[z]z =

CHPle = 2Pk = | = €22 = and €222 2 0 with error

vector constants C ;521]2 [28].
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Definition 3.2 A linear multistep method is consistent if it
has order d>1 [28].

Expanding all terms in Eq. (11) using Taylor series about x,
the order of method is found to be [7, 7, 7, 7, 7, 7]" which
implies that the new two-step hybrid block method (10) is
consistent since its order is greater than 1.

Zero Stability

The new two-step hybrid block method in (10) is zero-stable
if no root of the first characteristic polynomial m(w) =

wlgxe — Blz (2l2| i having a modulus greater than one and
every root of modulus one is simple, where /¢x¢ is the identity
matrix and Blz [2)2 i the coefficients matrix of va function.

By setting determinant #(w)=0, then n(w)=w’(w-1)=0
which implies w=0, 0, 0, 0, 0, 1. Hence, the newly developed
method is zero-stable.

Consistency and Convergence

Theorem 3.1 Consistency and zero stability are sufficient
conditions for a linear multistep method to be convergent as
seen in study [28].

Based on the above theorem, the developed method satisfies
the properties for consistency and zero-stability as shown
above, and thus is convergent.

4. NUMERICAL EXAMPLES

Problem 1
v+ () +(5)y=0yM =1y =1 with h=

1
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Exact Solution: y(x) = T
Source: Studies [29] and [30].

Problem 2

=0, W(0)=1, '(0)=-1 with h =
Exact Solution: y(x)=1-¢".
Source: Studies [31] and [32]

1

10’

Problem 3

¥"'-21°=0, y(1)=1, y'(1)=-1 with h =
Exact Solution: y(x) = i

Source: Study [33]

1

10°

Tables 1, 2, and 3 have shown the results obtained for
solving Problems 1, 2, and 3 respectively, which include linear
and nonlinear examples, and the comparison of these results
with existing studies. For Problem 1, the solution using the
newly developed two-step hybrid block was compared with
the one-step hybrid block method developed in Abdelrahim
[29] and the continuous implicit hybrid one-step method from
Anake [30]. The results in Table 1 show the new method
having distinctly better accuracy than Abdelrahim [29] and
Anake [30]. For Problems 2 and 3, the existing approaches [27,
31-33] whose solutions were compared with the new hybrid
block method compared closely to the new hybrid block
method, however there was still a clear improvement in the
solutions obtained by the new hybrid block method.



Table 1. Comparison of absolute errors obtained by new
method with the previous studies for solving Problem 1

Absolute Error New

Absolute Absolute Method
X Error Error p= y , Q= % ,
[29] [30] _10 1
r=10%0, d="%,.

1.0031 2.66121e-12  0.77010e-12 1.55431e-15
1.0063  3.04912e-11  0.71780e-09 4.44089¢e-15
1.0094 9.77780e-11  0.19177¢-08 6.66134e-15
1.0125 1.97586e-10  0.35709¢-08 1.59872e-14
1.0156 3.28364e-10 0.56571e-08 3.70815e-14
1.0188 4.88623e-10  0.81569¢-08 5.46230e-14
1.0219  6.76930e-10  0.11051e-07 8.81517¢-14
1.0250 8.91909e-10  0.14323e-07 1.18794e-13
1.0281 1.13224e-09  0.17953e-07 1.62093e-13
1.0313  1.39664e-09 0.21925e-07 2.03837e-13

Table 2. Comparison of absolute errors obtained by new
method with the previous studies for solving Problem 2

Absolute Error

Absolute Error  Absolute Error New Method

31] 32] P=%.d=%.

r=>%.9=7%:
0.1 2.508826e-13 5.7260e-06 2.498002¢-16
0.2 6.493175e-11 6.6391e-06 2.903233e-14
0.3 1.683146¢-09 7.0283e-06 6.858236¢-12
0.4 1.700635¢-08 7.4539¢-06 1.444056e-11
0.5 1.025454e-07 7.8935e-06 3.112266e-11
0.6 2.558711e-06 8.1942e-06 4.960188e-11
0.7 5.273300e-06 8.1810e-06 8.016476e-11
0.8 8.275935e-06 8.1810e-06 1.139946¢-10
0.9 1.161667e-16 8.1730e-06 1.637674e-10
1.0 1.542187e-05 8.1650e-06 2.188389¢-10

Table 3. Comparison of absolute errors obtained by new
method with the previous studies for solving Problem 3

Absolute Error

Absolute Absolute New Method
Error Error = =
) 27] 33] P=Ja: G=%.
r=>%.9=7%.
1.1 8.076931¢-08 1.37360e-06 2.810252¢-11
1.2 2.966144e-07 1.55450e-06 4.390854¢-11
1.3 6.900244¢-07 2.25690e-06 2.088394¢-08
1.4 1.141509¢-06 2.38050e-06 4.254005e-08
1.5 1.670007e-06 2.63360e-06 6.852856e-08
1.6 2.253526¢-06 2.90400e-06 9.633702e-08
1.7 2.903171e-06 2.95520e-06 1.269875e-07
1.8 3.616883e-06 3.07970e-06 1.602706e-07
1.9 4.402479¢-06 3.25070e-06 1.966604¢-07
2.0 5.262784¢-06 3.28141e-06 2.363168e-07

5. CONCLUSIONS

This study has successfully developed a new two-step
hybrid block method with two off-step points within each step
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for directly solving second order initial value problems of
ODEs. The effect of introducing additional off-step points was
considered to justify the property that the introduction of more
off-step points increases order and thus improves accuracy.
The new method was tested on some existing second initial
value problems available in literature. These problems
included both linear and nonlinear IVPs which covers both
types of second order [IVPs. The numerical results indicate that
the new method produces better accuracy than the previous
methods when solving the same linear and nonlinear second
order IVPs as considered by existing studies.

ACKNOWLEDGMENT
This research was supported by Ministry of Higher

Education (MOHE) of Malaysia through Fundamental
Research Grant Scheme (FRGS/1/2017/STG06/UUM/01/1).

REFERENCES

[1] Jikantoro, D.Y. (2014). Numerical solution of special
second order initial value problems by hybrid type

methods. Doctoral dissertation, Universiti Putra
Malaysia.

[2] Shampine, L.F. (2018). Numerical solution of ordinary
differential equations. Routledge.

https://doi.org/10.1201/9780203745328

[3] Borzi, A. (2020). Modelling with ordinary differential
equations: A comprehensive approach. Chapman and
Hall/CRC. https://doi.org/10.1201/9781351190398

[4] Ming, C.Y. (2017). Solution of differential equations
with applications to engineering problems. Dynamical
Systems-Analytical and Computational Techniques, 15:
233-264. https://doi.org/10.5772/67539

[5] Awoyemi, D.O. (2003). A p-stable linear multistep
method for solving general third order ordinary
differential equations. International Journal of Computer
Mathematics, 80(8): 985-991.
https://doi.org/10.1080/0020716031000079572

[6] Shokri, A. (2015). The symmetric two-step P-stable
nonlinear predictor-corrector methods for the numerical
solution of second order initial value problems. Bulletin
of the Iranian Mathematical Society, 41(1): 201-215.

[7] Panopoulos, G.A., Anastassi, Z.A., Simos, T.E. (2013).
A new ecight-step symmetric embedded predictor-
corrector method (EPCM) for orbital problems and
related IVPs with oscillatory solutions. The
Astronomical Journal, 145(3): 1-9.
https://doi.org/10.1088/0004-6256/145/3/75

[8] Ndanusa, A., Tafida, F.U. (2016). Predictor—corrector
methods of high order for numerical integration of initial
value problems. International Journal of Scientific and
Innovative Mathematical Research (IJSIMR), 4(2): 47-
55.
http://repository.futminna.edu.ng:8080/jspui/handle/123
456789/727

[9] Biasa, P.T., Majid, Z.A., Suleiman, M. (2011). Predictor-
corrector block iteration method for solving ordinary
differential equations. Sains Malaysiana, 40(6): 659-664.

[10] Kayode, S.J., Adegboro, J.O. (2018). Predictor-corrector
linear multistep method for direct solution of initial value
problems of second order ordinary differential equations.
Asian Journal of Physical and Chemical Sciences, 6(1):



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

[22]

(23]

(24]

1-9. https://doi.org/10.9734/AJOPACS/2018/41034
Tam, H.W. (1992). Two-stage parallel methods for the
numerical solution of ordinary differential equations.
SIAM Journal on Scientific and Statistical Computing,
13(5): 1062-1084. https://doi.org/10.1137/0913062
Olabode, B.T. (2009). An accurate scheme by block
method for the third order ordinary differential equation.
Pacific Journal of Science and Technology, 10(1): 136-
142. https://shorturl.at/movRX

Milne, W.E. (1953). Numerical solution of ordinary
differential equations. New York: Wiley.

Sarafyan, D. (1965). Multistep methods for the numerical
solution of ordinary differential equations made self-
starting. Mathematics Research Center, MRC-TSR-495.
Adesanya, A.O. (2011). Block methods for direct
solutions of general higher order initial value problems
of ordinary differential equations. Doctoral dissertation,
Federal University of Technology, Akure.

Kamoh, N.M., Abada, A.A., Soomiyol, M.C. (2018). A
Block procedure with continuous coefficients for the
direct solution of general second order initial value
problems of (ODESs) using shifted legendre polynomials
as basis function. International Journal of
Multidisciplinary Research and Development, 5(4): 236-
241.

Kuboye, J.O., Omar, Z. (2014). Numerical solution of
third order ordinary differential equations using a seven-
step block method. International Journal of Mathematical
Analysis, 9(15): 743-754. http://www.m-
hikari.com/ijma/ijma-2015/ijma-13-16-
2015/kuboyelJIMA13-16-2015.pdf

Jena, S.R., Gebremedhin, G.S. (2020). Approximate
solution of a fifth order ordinary differential equations
with block method. International Journal of Computing
Science and  Mathematics, 12(4):  413-426.
https://doi.org/10.1504/IJCSM.2020.112652

Adeyeye, O., Omar, Z. (2016). A new algorithm for
developing block methods for solving fourth order
ordinary differential equations. Global Journal of Pure
and Applied Mathematics, 12(2): 1465-1471.
https://www.ripublication.com/gjpam16/gjpamv12n2 2
3.pdf

Ogunware, B.G., Omole, E.O. (2020). A class of
irrational linear multistep block method for the direct
numerical solution of third order ordinary differential
equations. Turkish Journal of Analysis and Number
Theory, 8(2): 21-27. https://doi.org/10.12691/tjant-8-2-1
Sagir, A.M. (2014). Numerical treatment of block

method for the solution of ordinary differential equations.

International Journal of Bioengineering and Life
Sciences, 8(2): 259-263.

Olukunle, O.E., Felix, M.O. (2020). Bernstein induced
one step hybrid scheme for general solution of second
order initial value problems. Malaya Journal of
Matematik, 8(2): 350-355.
https://doi.org/10.26637/MIM0802/0006

Shokri, A., Mehdizadeh K.M., Mohammad-Sedighi, H
Atashyar, A. (2021). Numerical simulation of second-
order initial-value problems using a new class of variable
coefficients and two-step semi-hybrid methods.
Simulation, 97(5): 347-364.
https://doi.org/10.1177/0037549720980824

Ehigie, J.O., Okunuga, S.A., Sofoluwe, A.B., Akanbi,
M.A. (2010). On generalized 2-step continuous linear

437

[25]

(28]

[29]

[30]

[31]

[32]

[33]

multistep method of hybrid type for the integration of
second order ordinary differential equation. Archives of
Applied Science Research, 2(6): 362-372.

Fasasi, K.M., Adesanya, A.O., Adee, S.O. (2014). One
step continuous hybrid block method for the solution of.
Journal of Natural science Research, 4(10): 55-62.
https://core.ac.uk/reader/234654680

Gebremedhin, G.S., Jena, S.R. (2019). Approximate
solution of ordinary differential equation via hybrid
block approach. International Journal on Emerging
Technologies, 10(4): 201-211.

Mansor, K.H, Omar, Z, Rohni, M.A. (2018). Generalized
two-step hybrid block method with one off-step point for
solving second order ordinary differential equations
directly. Journal of Advanced Research in Dynamical
and Control Systems, 13: 1-17.
https://repo.uum.edu.my/id/eprint/27942

Henrici, P. (1962). Discrete variable methods in ordinary
differential equations. New York: Wiley.

Abdelrahim, R. (2016). One step hybrid block methods
with generalized off-step points for solving higher order
ordinary differential equations directly. PhD Thesis,
Universiti Utara Malaysia, Malaysia.

Anake, T.A. (2011). Continuous implicit hybrid one-step
methods for the solution of initial value problems of
general second-order ordinary differential equations.
PhD Thesis, Covenant University, Nigeria.

Kuboye, J. (2015). Block methods for direct solution of
higher order ordinary differential equations using
interpolation and collocation approach. PhD Thesis,
Universiti Utara Malaysia, Malaysia.

Mohammed, U., Jiya, M., Mohammed, A.A. (2010). A
class of six step block method for solution of general
second order ordinary differential equations. Pacific
Journal of Science and Technology, 11(2): 273-277.
Yahaya, Y.A., Sagir, A.M. (2013). An order five implicit
3-step block method for solving ordinary differential
equations. Pacific Journal of Science and Technology,
14(1): 176-181.

APPENDIX

Dy =

———(5p° —560qrs — 8p*(3 +q+71 +s5)+

1680qrs

14p3 (2 +3s+r(3+s)+qB+r+
$)—28p? (2s+r(2+3s)+q(2+3s+r(3+5)))+
70p (2rs + q(2s + r(2 + 35)))),

Dys =

144>

1680pr5 ——— (2p(4q* + 280rs — 7¢3 (3+7r +s) +
(24+3s+r(3+s))—35q(2s +

r(2+3s)) +q(=5q¢*—140rs +8q3 (3 +r +5s) —

144>

(2+3s+r(3+s)) +28q(2s +

r(2 + 35)))),

ZZ%

—(11 —20r— 20s+ 42rs+ q(42r —
1680pqrs

20 +42s — 112rs) + 2p(21r — 10 +
21s — 56rs + 7q(3 — 8r — 8s + 35r%))),

Dys =

1680pgs (—2p(r (70s —4r3> + 7r* 3 +s) —

14r (2+3s)) + 7q (r® — 40s — 2r?(3 +



s) + 57 (2+3s))) +r(r(=5r3+ 565 +8r2 (3+5) —
147 (2 4 3s)) + 2q(4r3 — 70s — 7r2(3 +s) + 14r(2 +
3s5)))),

Dsg = Tesomar (2p (7q (r (40 — 155 + 2s%) — s (10 —

65 + s%)) + s(—7r(10 — 65 + s%) +

s(28 — 21s + 45%))) + s (—2q(s (21s — 28 — 4s?) +
7r (10 — 65 + s2)) + s(s(24s — 28 —

55%) + r(56 — 42s + 8s2)))),

Dge = 1OSWS( (r+s—2)+q(4—7rs)+p(4—T7rs +
7q(5rs —r —5))),

— pz .
= — 280 -
En = s e - 0o-ne-9 (15p qrs

20p*(3+ q+r+ s)+28p32 +
35s+7r(3+s)+q(3+ r+5)) — 42p*(2s +7r(2+
3s) + q(2+3s +r (3+5s))) +
70p(2rs + q(2s + r(2 + 35)))),

_ " ) i
Biz = 840 (p—q)q(2-3q+q?)(q-1)(q-s) (5p” + 140rs
8p3(3+r+s)+14p2 (2+3s+r(3 +

s)) — 28p(2s +r(2 + 3s))),

T p* 4 _ 3
Ei3 = S0 DE-DT-D6-D (5p* + 140qrs — 8p° (2 +
q+7r+ s)+14p?QRs+r(2+s) +

q2+r+5))—28p(2rs + q(2s +r(2 + 5)))),

o Lyt ) i
EFie = 8407 (r—p)(r—q)(2-3r+12)(r—s) (5p* + 140¢gs
8p* (3+q+s) +14p> 2 +3s+q(3 +

s)) — 28p(2s + q(2 + 35))),

= p* 4 _
E15 " 840 (q-5) s(s—p) (s—1)(2—3s+s2) ( 5p + 140q7‘
8p3 (3+q+71)+14p*(2+3r+qB +

r)) — 28p(2r + q(2 + 3r))),

T p* 4 _ 3
Ei¢ = 1680P-2)@a-D—D6-D) (5p* +70qrs —8p° (1 +
q+r+s)+14p? (r+s+rs+

q(l+7r+5))—28p(rs + q(r + s +1s))),

= q* 3 _
Ear = 840p(2-3p+p3)(p-q) (p-7)(p-5) @ (3+7+s)
5q* — 140rs — 14¢* (2+3s+r (3 +

s)) + 28q(2s + r(2 + 35))),

= q° 4

Bz = St aG e 2P (1047 + 140rs =
14¢3(3+71 +5)+21¢* (2 +3s +
r(3+5)—35g(2s+7r(2+3s))+q(20¢3B+r+
s) — 15q* — 140rs — 28q?(2 + 3s +

r(3+5s)) +42q(2s +r(2 + 3s)))),

— _ q4, 5 B ~ ,
F2s = 0 (p-1)(g-1(r-1)(s—1) (q (5¢° —56rs — 8q°(2 +
r +s) +14q (2s +r(2 +5s))) —

2p(4q® — 70rs — 7q*(2 + v + 5) + 14q(2s + (2 + 5)))),

— _ q4 _ 3
E24' - 8401 (—p+1)(r—q)(2-3r+r2)(r-s) (q(565 Sq +

8g% (3+s)—14q (2 + 3s)) + 2p(4q3 —

438

70s — 7q%(3 + s) + 14q(2 + 35))),

Bas = 840 (r—s)s(s-p)(s—q)(2-3s+s%) (q (59 56r
8q2(3+71) +14q (2 + 31)) — 2p(4q® —
70T — 7q*(3 + ) + 14q(2 + 31))),

q4

5o _ .3 2
Eye = 6800226 (q(28rs —5g°+ 8q- (1+
r+s)— 14q (r+ s +rs)) +

2p(4q® — 35rs — 7q*(1 + 7 + 5) + 14q(r + s + 15))),

— 1

Esi = 840p (2 —3p + p2) (p-q@) @-71)(P-5)
r(42s — 20) +q(42s — 20 —
14r(8s — 3))),

(11 —20s +

= 1

Es2 = S —ara 2 —sa raa = =9 ¢ (20 —

425) —11 +20s +2p (10 — 21s +

7r(8s — 3))),

By = : (25 — 36r — 365 + 56rs +

840(p-1)(q-1)(r-1)(s-1)
q(56r—36+ 565 —98rs) +

p(—36 + 56r 4+ 565 —98rs + 14q(4 — 7r — 7s + 15rs))),
= 1
E34’ ~ saor (r-p) (r—-q)(2-37r+12)(r-s) (11 —20s + CI(425 -
20) + p(42s — 20 — 14q(8s — 3))),

= 1
Ess = 840(r—s)s(s—p)(s—q)(2—3s+s2) (q(ZO - 421‘) —-11+

20r + 2p(10 — 21r + 7q(8r — 3))),

= 1
Ese = DD 6D (8r—5+8s—14rs +

2q(4—7r —7s + 14rs) = 2p(7r — 4 +
7s — 14rs + 7q(1 — 2r — 2s + 5r5))),

_— ” L
En = 840p(2—3p+p?)(1—0) (P—1)(P—3) (r(56s —5r° +
8r2(3 + s) — 14r (2 + 3s)) + 2q(4r3 —

70s — 7r?(3 + 5) + 1471 (2 + 35))),

_ " . )
E,p = 840(p—q)q(2-39+q2)(q—-1)(q—S) (r(5r 56s
8r2(3 + s) +14r (2 +3s)) — 2p(4r3 —

70s — 7r?(3 + 5) + 14r(2 + 35))),

_ r*

Eis = s ona-ne-neop (P (74 (r® +10s —
2r(2+s)+r(7r(2+ s)— 4r? —

28s)) + r(r(5r% + 285 — 8r(2 + s)) + q(—8r? — 565 +
147r(2 + 5)))),

— r2

E44 = 840 (p—1)(q—1)(2— 31 +r2)(r—>5) (2 p (T (70 s—10 T3 +
14712 (3+s)—21r(2+3s)) +

7q (2r3—20s— 3r2(3+ s)+5r(2+3s))) +
r(—2q(10r3 — 70s — 147r? (3+s) +

217 (2 + 3s)) + r(1573 — 84s — 20r%(3 + 5) + 28r(2 +
3s)))),

Ess = s s eonaisies) 2p(r(21r — 4r
28) +7q(10 — 61 + %)) + r(q(42r —

56 — 8r%) + (28 — 24r + 512))),




r4

Eis = Tesoo-na-ve 6= (2P (74 (r®+5s -
2r(1+s)+r(7r(1+s)—4r? -

145)) + r(2q(4r? + 14s — 7r(1 + 5)) + r(=5r% — 14s +
8r(1+5)))),

s%

_— 3 2y _
Es1 = 840p(2-3p+p2)(-q) (p—1)(P-5) (7r(10 = 65 + 57)
2q(s(21s — 4s% — 28)) + s(s(24s —

28 — 55%) + (56 — 425 + 8s2))),

— s%

Es2 = G0 maae-sar ra-na-
28) + 7r (10 — 65 + %)) + s(r(—
56 + 42s — 8s?) + s(28 — 24s + 552))),

(2p (s (21s — 4s? —

— s

Ess = S0 na- oo (2P (74 (2r(s=5) =
(s—=4)s)+s(=7r(s—4) + 2s(2s —

7)) +s2q(7r(—4+s) + 2(7 — 2s)s) + s(r(28 — 8s) +
s(—16 + 55)))),

— _ s _ _ 2
E54' - 840r(r—p)(—q+r)(2—3r+r2)(r—s)( Zp (S( 21s —4s
28) +7q(10 — 65 + s2)) + s(s(—

28 + 245 — 55%) + q(56 — 425 + 852))),

_ s2
Ess = 840 (r—s)(s— p)(s—q)(2— 35+ 52)
56) + 4r (21— 21s + 5s?)) —
2q(7r(10 — 9s + 2s?) — 2s(21 — 21s + 5s2))) +
2p(7q(s(9s — 10 — 2s%) + r (20 — 155 +

35%)) + s(=7r(10 — 9s + 2s2) + 2s(21 — 21s + 552)))),

(s (s(s(60s —155% —

Ese = 1680(—2+p)(—2+q)(—2+7)(~2+5) (s (=2q(7r(s —=2) +
(7 — 4s)s) +s((8 — 5s)s + 2r(4s —

7)) +2p(=7q(r(5—=2s) + (=2 +5s)s) + s(=7r(—2 +
s) + s(=7 + 4s)))),

E _ 4
61 ™ 105p(2—-3p+p2)(P—q)(P—-1)(P—5)
4(=2+71r+5)),

(q(—4 + 7rs) —

Po= 4h?
62 7 105(p-q)q(2-3q+q2)(q-1)(a—5)
r+5)),

(p(—4+7rs) —4(-2+

= 4
Ees = 105(-1(g-D—D(s-1) (—4B8r—10+q B+ 7r(s —

1) —7s)+8s—7rs) + p(—4(8 +
7r(—1+5)—7s5) +7q(4 — 45 + r(—4 + 55)))),

E _ 4h?
64 ™ 1057 (—p+7)(—q+71)(2-37+12)(r-5)
4(-2+q +5s)),

(p(—4+7gs) —

F_o— 4h?
65 — 105(r—s)s(—p+s)(—q+s)(2—3s+s2)

4(=2+q+ 1)),

(p(—4+7qr) —

= -2
Ees = I p@ae-ae2 G4 T
2) —14s) + 24s — 14rs + p(24 +
7r(=2+4+5)—14s+ 7q(—=2 +r +5))),

404+ q( 24+ 7r(s —

Dig = 840qrs(420qrs —10p°+ 14p* (3 +q+ r +

439

s)—21p3(2+ 3s+r(3+ s)+
qB+7r +5s)) +35p2(2s +7(2 +3s)+q (2 +3s+
r(3 +5s)) —70p (2rs+ q(2s +

r(2 + 35)))),

Dy = 840pr5 (7p(2q* +60rs —3q3(3 +7 +5) +

5¢° (2 + 3s+ r (3 +5)) — 10q(2s +

r(2 +3s))) + q(14q¢® B+ 1+ s) — 10q* — 140rs —
21¢%(2 +3s +r(3 + 5)) + 35q(2s +

r(2 + 35)))),

Dse = 840pqrs (18 —28r —28s +49rs —7q (4 —7r —

7s +15rs)+7p (7r — 4+ 7s —
15rs + q(7 — 15r — 155 + 50r5s))),

z

Dy = 5307 (r(705 —10r3 + 14723 +s) — 21r(2 +

3s)) + 7q(2r —20s —9r% — 3ris+

50 (2+3s))) —7p (r(20s —2r3® + 3r2(3+ s) —
5r(2 +3s))+q (3r® —60s —5r2(3 +

s) 4+ 107 (2 + 3s)))),

Dsg = s1opar —— (7p (q (s (15s — 20 — 3s%) +5r (12 —

65 + 5%)) + s(r(=20 + 15s — 3s2) +

s(10 —9s +25%))) +s(=7q (s(—=10 +9s — 2s%) +
(20 — 155 + 352)) + s(7r(10 — 9s +

25%) — 25(21 — 21s + 552)))),

Dgs = Tora rs( qr+s—-2)—2R24+7r(s —2) —
14s) + 7p(q(5rs — 2) — 2(r + s — 2))),

14 5
60p5 — 420 grs —
20a—3 -0 m—s) 0P ars

70p* (3 +q + 1+ s)+84p3Q2+

3s+7 (34+4s) + q(3+r+s)—105p* (2s+r(2+
3s)+ q(2+ 3s+r(3+5s))) +
140p(2rs + q(2s + r(2 + 3s)))),

Ell =

3

. D
E, = 420 (p- q) q 2- 3q+q?) (q— 1) (q- 5)
14p3(3 +7r +s)+21p* (2 +

3s+r(@B+s)) —35p(2s +r(2+ 3s))),

(10p* + 140rs —

p3

4 _
120G~ D@~ Dr-DG-1 (0P T 140q7s
14p3(2 +q +r+ s) +21p?(2s +r(2 +
)+ q2+r+s))—35p2rs +q2s +r(2 +9)))),

E13 =

. p® 3 _
E14 T 420r(r-p)(r—q)(2-3r+72)(r-s) (14p (3 ta+ S)
10p* — 140qs — 21p?(2+3s+q(3 +

s)) +35p(2s + q(2 + 3s))),

3

- _ P 4 _
Els T 420(r-s)s(s—p)(s—q)(2-3s+s2) (10p + 14qu

14p3B+q+1r)+21p2 2+3r+q(3 +
1)) — 35p(2r + q(2 + 3r))),

p3

3 —
50— D@-0—26-p AP (1+ q+ 7+ 5)
10p* — 70qrs — 21p*(r+s+rs +
q(1 +7r+5))+35p(rs + q(r + s +15))),

Elé =



~ _ q3 3 _
Ea 420p(2-3p+p2)(p—q) (P—7)(P—S5) (14q°G +7+5)

10q* — 140rs — 21¢q*(2+3s+r(3 +
5)) +35q(2s + r(2 + 3s))),

. _ q 4 _
b = oo oe—serada-na—s /P (104" + 60rs

123 3 + r+5) + 15¢*(2 +3s +

r(3+ s))— 20q 2s +1r (2 + 3s))) + q (—60g* —
2807s + 70q3 3+ 1 +5) — 84q%(2 +
3s+r(3+5s))+105q(2s + r(2 + 3s)))),

— q3 _ - _
- 420(p—1)(q_1)(7«_1)(5_1)( 7P (Zq 20rs

3¢°Q+1r+ s)+5q¢ (2s +r(2+5))) +
q(10q3® — 70rs — 14q%*(2 + r + 5) + 21q(2s + r(2 + 5)))),

E23

7 q3
Bz = 4207 (r-p)(r-q)(2-3r+1r2)(r-s)
14q*> 3 +s) —21q(2+ 3s)) +

7p(2q® — 20s — 3q*(3 + s) + 5q(2 + 3s))),

(q (70s — 103 +

q3

EZS = 420(r—s)s(s—p)(s—q)(2—3s+s2)
14q*> 3 + 1)+ 21q(2 + 3r)) —
7p(2q® — 20r — 3q*(3 + 1) + 5q(2 + 31))),

(q (10g3 — 70r —

. - o
Eze = 840(p—2)(q—2)(r—2)(s-2) (q(357s 10q° +

14¢% (1 + r+5s) = 21q(r + s+

rs)) +7p(2q° — 10rs = 3¢* (1 +7 +5) +5q(r +s +

7s))),

2

E. = 9—-14
4‘:1 420p @ —3177+p2)(p—q)(p—r)(p—5) ( s+
—(s=>) = S (4=T7s+

r(15s = 7)),

2
T 420 (p-q) q (2-3q+ 42) (q- 1) (a-5)

Es, (14s — 9 —

49r

4 7P
T(S—;)+7(4—7S+
r(15s = 7))),
. 1
Es; = 120~ G- D - D 6o 1)(80 — 98r — 98s +

126rs — 7q (14 — 18r —
18s + 25rs) + 7p(—14 + 18r + 18s — 25rs + 18q —
25qs — 25qr + 40qrs)),

2

E34— = 4207 (r-p) (r—q) 2-3r+r2)(r-s) (9 — 14s +
72_q(75 - 4) —7719(4 —7s+

q(15s = 7))),

» 2

Ess (14r — 9 —

- 420 (r-s) s (s—p) (s—q)(2—3s+s2)
D(7r-4)+22(4—-7r+
q(15r =7))),

E', _ 1

36 7 840(p-2)(q-2)(r-2)(s-2)
79 (2 —3r —3s+ 5rs) —
7p(=2+ 3r 4+ 3s — 5rs + q(3 — 5r — 55 + 10rs))),

(14r — 10 + 14s — 21rs +

r3

= r(70s — 1073
420p(2—3p+p2)(p—q)(p—r)(p—s)( ( +

E4-1

440

1412 3 +s)—21r (2+3s)) +
7q(2r3 — 20s — 3r2(3 + 5) + 51 (2 + 35))),

r3

~ 1200-0)a@-3a+a)(@7) (@-5)
3r2(3 +5) +5r (2 +3s)) +
r(10r3 — 70s — 141r%(3 + s) + 21r(2 + 35))),

(=7p(2r3 — 20s —

E4—2

A 213

Eu = DD - G-D (r(2r(5r%+21s —

7r (2+45s))—7q (2r? + 10s —

3r(2 +5))) + 7p(q(3r? + 20s — 5r(2 + 5)) + r(—2r% —
10s + 3r(2 + 5)))),

- T
Ean = 420(p-1)(q—1)(2-37r+12)(r-s)
12r2 (3 + s) — 157 (2 +
3s)+q(12r3 — 60s — 157 (3+s) +20r (2 +
3s))) + 7 (=7q (1013 — 40s —

12r2(3 + 5) + 157(2 + 3s)) + 2r(30r® — 105s —
3572(3 + 5) + 42r(2 + 35)))),

(7p (r (40s — 1073 +

r3

E45 = 420(r—s)s(s—p)(s—q)(2—3s+s2)
2r%) 4+ q (20 — 157 + 31%)) +
r(=7q(10 — 9r + 2r%) 4+ 2r(21 — 21r + 5r2))),

(7p r (=10 +9r —

.~ 7'3

Ess = smpna-oooes (/P @Gt +10s -
Sr(1+s)+r(3r(1+s)—

2r2 = 55)) +r(7q(2r? + 55 — 3r(1 + 5)) + r(—107% —
21s + 14r(1 + 5)))),

s3

Es, = 420 p (2-3p+p?) (p—q) (p-7) (p-5)
2s2)+ r(20 —15s+
352)) + s(7r(10 — 9s + 2s52) — 25(21 — 215 + 552))),

(-7q(s(9s—10—

. s3

Es2 = otmaaasarada—na—
25%) 4+ 1 (20— 155 +3s%)) +
s(=7r(10 — 9s + 25%) + 2s(21 — 21s + 55?))),

(7p (s (9s — 10 —

Ess = 420(p-1)(q-D(r—1)(s-1)
3s)s) +s(r(10—3s) +
2(s —3)s)) +s(7q(—2(s —3)s + r(—10 + 35)) +
2s(=7r(s — 3) + s(—14 + 55)))),

(=7p (q(57(s —4) + (10 —

s3

E54 = 420r(r-p)(r—q)(2-3r+12)(r-s)
10) + q(20 — 15s + 3s%)) +
s(7q(10 — 9s + 2s%) — 2s(21 — 21s + 55?))),

(=7p (s (9s — 252 —

rd N

ESS = 420(q-5s)(s—p)(s—1)(2—3s+52)
s (—40 + 455 — 125%)) +

s (r(—40 + 455 — 125?) + 25 (15 — 185 +5s%))) +
s(2s (7r (15 — 18s + 5s2) —

35(28 — 355 + 10s2)) — 7q(—2s(15 — 18s + 552%) +
r(40 — 455 + 12s52)))),

(7p (q (157 (s — 2)2 +

Ese = 840(=2+p)(=2+q) (—2+7)(—2+5)
7r (25 —3)) + 7q(r(5 —3s) +
s(=3+25))+7p(q(57(=2+5s)+ (5—35)s) +s(r(5—
3s) + s(—3 + 25)))),

(s(s(2(7 = 5s)s +



E’, _ 4
61 7 105p2-3p+pD)(P-@) (P-1)(P~-5)
14s +7q(—=2 +r +5)),

24+ 7r(=2+5s) —

E _ 4
62 7 105(p-q)q(2-3q+q?)(q-1)(q5)
14s + 7p(=2 + r +5)),

24+ 7r(=2+5s) —

4
= s D@Do—Dep (80 — 56r— 56s +

42rs + 7p(6r— 8+q (6 +
5r(s —1) — 5s) + 65 — 5rs) — 7q(8 — 6r — 65 + 515)),

E63

441

E', _ 4
64 — 1057 (=p+7)(—q+7)(2=3r+12)(r=5)
14s + 7p(=2 + q + 35)),

(24+7q(=2+s) —

E _ 4
65 T 105(r—s)s(~p+s)(—q+s)(2—35+52)
14r + 7p(—2 + q + 1)),

4+7q(=2+1)—

E _ 1

66 7 105(p-2)(q-2)(r-2) (s—2)
10s) +2(r(9 —5s) — 16 +
9s)) + 2(200 — 112s + 7r(9s — 16) — 7q(16 — 9s +
r(55 = 9))))

(7p (q (18 +5r(s—2) —





