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This paper aims to determine the reliability of a complex system using a Bayesian 

network. A Bayesian network (BN) is a probabilistic graphical model that represents 

knowledge about an uncertain domain where each component corresponds to a random 

variable and each edge represents the corresponding conditional probability. Bayesian 

network is used to estimate the multistate consecutive k-out-of-n: F system reliability. 

This paper presents the Bayesian network construction and the reliability of the 

proposed system. The reliability of linear and circular multistate consecutive k-out-of-

n: F systems based on the Bayesian network are compared. Furthermore, the reliability 

of proposed system is shown to be significantly greater than the exact reliability 

obtained by Amirian, Khodadadi, and Chatrabgoun. 
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1. INTRODUCTION

“Both the system and its components are permitted to take 

one of two states in classic reliability theory: functioning or 

failed. In a multistate system, the system and its components 

might be in more than one state, such as fully functional, 

partially functional, or entirely failed. The modelling of 

equipment situations is more flexible using a multi-state 

system reliability model. 

The concept of the successive k-out-of-n: F system was first 

proposed by Chiang and Niu [1] and has been greatly 

considered in the idea of reliability. If a system with n 

components fails whenever k successive components fail, it is 

called a successive k-out-of-n: F system. The system is linear 

if the n components are arranged in a line. The system is 

circular if the n components are arranged in a circle. 

The essential ideas of multistate system dependability were 

largely defined in these studies. The multistate system (MSS) 

qualities were first explored when the system structure 

function, minimal cut set and minimal path set, coherency, and 

element relevance were specified. Ross [2] developed and 

proved the analogue of the closure theorem for a rising failure 

rate average stochastic process, and later did the same for new 

better than used stochastic processes. The idea of binary 

coherent systems, proposed by Barlow and Wu [3], has been 

expanded for multistate components. With the binary structure 

and reliability function principles, many of the conclusions for 

the binary case can be obtained for multistate systems. El-

Neveihi et al. [4] introduced the first MSS reliability 

optimization issue, which included distributing multistate 

elements into k-series systems with the goal of increasing the 

predicted number of systems operating at that level or above. 

The reliability evaluation of monotone multistate systems with 

s-independent multistate components, Aven [5] presented two

efficient methods employing minimum pathways and minimal 

cuts. Levitin [6] utilized the universal generating function 

approach to determine that the dependability of multistate 

systems had two failure mechanisms.  

Zaitseva et al. [7] and Zaitseva and Levashenko [8] used the 

theory of multi-valued logic to analyse the reliability of 

multistate parallel systems, series systems, series-parallel 

systems, and k/n systems, as well as the consequence of 

component state variations on system reliability, in order to 

avoid the tedious calculation of minimal path set and cut set. 

Hudson and Kapur [9, 10] discuss simulations and their uses 

in reliability investigation for scenarios where the structure 

can have a wide range of states and all of its modules can have 

a wide range of many states. They also discuss inclusion-

exclusion constraints and how they compare to disjoint subset 

bounds. The later bounds are based on Abraham's recursive 

disjoint products, which have been generalized. Since 1996, 

Lisnianski and Levitin [11] have used the universal generating 

function approach and genetic algorithm to solve the 

redundancy optimization problem of a series-parallel power 

system and a bridge structure. For computing the 

dependability of a multistate system, Hwang and Yao [12] 

presented an O (Kn) approach, where K (K<n) is the maximum 

number of states for a component. Aggarwal et al. [13] 

developed utilizing minimal path vectors an effective heuristic 

solution to addressing the restricted redundancy optimization 

issue in multistate systems. Zhai and Lin [14] discussed how 

to set up and build a Bayesian network-based multi-state 

system model, as well as how to use prior and posterior 

likelihood to perform bidirectional implication investigation 

and directly estimate the system's dependability measures 

using prior probability and Conditional Probability Tables 

(CPT). 

Langseth and Portinale [15] emphasized the characteristics 
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of the modelling framework that make BNs particularly 

suitable for reliability applications, as well as on-going 

research important to reliability practitioners. Wilson and 

Huzurbazar [16] discussed how to conduct joint inference 

about all of the nodes in a network using multilevel discrete 

data. When system architectures are too complicated to be 

represented using fault trees, several approaches can be used. 

According to Khakzad et al. [17], BN is a superior safety 

analysis model because of its flexible structure, which allows 

it to match a wide range of accident situations. The 

dependability of subsea Blowout Preventer control systems is 

assessed at any given moment using Cai et al. [18] suggested 

Bayesian network models, and the difference between 

posterior and prior probability of any single component given 

system failure is calculated. Martins and Maturana [19] 

present a BN-based technique for assessing human 

dependability and applies it to the operation of an oil tanker, 

with an emphasis on collision risk. The model was used to 

estimate the most likely sequence of hazardous occurrences 

and therefore isolate essential activities in the ship's operation 

in order to investigate Internal Factors, Organizational Factors, 

Management and Skills that should be given greater attention 

in order to reduce risk. 

Mi et al. [20] research centered on the dependability of 

complex multistate systems with epistemic uncertainty and 

common cause failures. The Dempster Shafer (DS) evidence 

theory is utilized to describe epistemic uncertainty in system 

through the state space reconstruction of MSS, and an 

uncertain state is obtained in the new state space based on the 

Bayesian network approach for reliability analysis of MSS. Li 

et al. [21] presented a way for embedding fuzzy probability 

and Bayesian networks into multistate systems using common 

cause failures. Amiran et al. [22] developed a novel technique 

that provides exact reliability for a large number of successive 

k-out-of-r-from-n: F systems. This work is completed in

particular for equal and unequal component probabilities.

Byun and Song [23] introduced the notion of composite state

to extend the Matrix based Bayesian network (MBN) to

multistate systems. The MBN definitions and inference

methods are updated to accommodate the composite state, and

parameter sensitivity formulas are also constructed for the

MBN. In a complex multistate system, Jia et al. [24] focused

on mixed uncertainty of state information in each unit caused

by a lack of data, complicated structures, and inadequate

comprehension, as well as common-cause failure between

units.

Madhumitha and Vijayalakshmi [25] calculated the mean 

time to failure and confidence interval using Bayesian 

methods for the Cons.k/n:F systems. Bibartiu et al. [26] 

defined the memory growth for the k/n voting gate was 

lowered from exponential to polynomial in the range of input 

events due to a scalable Bayesian network model. Nashwan 

[27] provided formula to calculate the precise reliability and

failure likelihood functions for the linear and circular r-gap

successive k-out-of-m-from-n: F systems. Amirian and

Khodadadi [28] developed a new algorithm, that can

determine the exact reliability for a large class of sequential

linear and circular systems. Jegatheesan and Gundala [29]

produced an evaluation of the linear (circular) Cons.k/n:F

system’s fuzzy Bayesian reliability using the squared error

loss function. Yin et al. [30] proposed a method for describing

F systems with common components that combines the

theoretical study of linear and circular k-out-of-n with the

finite Markov chain imbedding approach. In addition, there are

MATLAB programs that provide accurate reliability for 

sequential linear and circular systems. Our contribution is 

obtaining the Bayesian network reliability estimate of the 

multistate consecutive k-out-of-n: F system and comparing it 

with the exact reliability given by Amirian, Khodadadi, and 

Chatrabgoun. 

In this paper, the reliability of the proposed system is 

derived by the Bayesian network. The remaining paper is 

organized as follows: Section 2 gives the background details 

and the brief introduction of multistate system and Bayesian 

network is explained in section 3. In section 4 the system 

reliability evaluation using BN is given. Section 5 gives the 

results and comparison and section 6 concludes the paper. 

2. BRIEF INTRODUCTION OF MULTISTATE 

SYSTEM AND BAYESIAN NETWORK

2.1 Multistate system 

In a particular context, all systems are designed to perform 

their intended functions. Some systems are capable of doing 

tasks at varied levels of efficiency, which are referred to as 

performance rates. A MSS is a system with a finite number of 

possible performance rates. A MSS is usually made up of 

components that can be multistate itself. In fact, the simplest 

example of an MSS with two unique states is a binary system 

(perfect functioning and complete failure). 

A MSS is any system made up of various binary state units 

that have a cumulative influence on the overall system 

performance. Indeed, the availability of a system's units 

determines its performance rate, since various numbers of 

accessible units might give different levels of task 

performance. The well-known k-out-of-n systems are a basic 

illustration of such a situation. These systems are made up of 

n identical binary units, and depending on the number of units 

available, they can have an n+1 state. The performance rate of 

the system is expected to be proportional to the number of 

units available. Performance rates corresponding to greater 

than k-1 available units are assumed to be acceptable. Because 

different combinations of k available units might give different 

performance rates for the entire system when their 

contributions to the cumulative system performance rate differ, 

the number of potential MSS states increases significantly. 

In general, every element's performance rate can range from 

flawless to utter failure. Partial failures are failures that result 

in a reduction in element performance. Elements continue to 

operate at decreased performance rates after partial failure, and 

after complete failure, they are completely incapable of 

performing their functions. Consider a transmission station-

based wireless communication system. The number of 

consecutive stations covered in a station's range determines its 

status. This quantity is dependent not only on the availability 

of station amplifiers, but also on signal propagation 

circumstances, which are affected by weather, solar activity, 

and other factors. 

2.2 Multi state Bayesian network 

A Bayesian network is a directed acyclic graph that consists 

of variables and directed edges that are all connected by a table 

of conditional probabilities for each variable on all of its 

parents. As a result, it’s a graphical depiction of unknown 

quantities that shows the model’s information flow as well as 
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the probabilistic causal dependency between variables. 

Professor Pearl of the University of California proposed the 

BN in 1986, which is a directed acyclic graph (DAG) with 

nodes and directed acyclic arcs. Nodes represent components, 

while arcs connecting pairs of nodes reflect the connections 

between the components. Root nodes are nodes that have no 

parents and have prior probability. Conditional probability 

tables (CPTs) are present in all other nodes, with leaf nodes 

being those without descendants. A node's conditional 

probability table provides the likelihood of each state of the 

node based on all possible combinations of its parents' states. 

The BN is built on the well-known Baye’s Rule. Assume 

that M and N are random components. The conditional 

probability of M given N can be written as: 

𝑃(𝑀
𝑁⁄ ) =

𝑃(𝑀)𝑃(𝑁 𝑀⁄ )

𝑃(𝑁)
(1) 

Here P(M) is prior likelihood, P(M|N) is posterior 

likelihood, and P(N|M) is likelihood ratio. 

P(N) = ∑ 𝑃(𝑁 𝑀 = 𝑎𝑖⁄ )𝑃(𝑀 = 𝑎𝑖)
𝑙
𝑖=1 (2) 

Suppose a Bayesian network possesses numerous 

components which are stated as U={X1,X2,… Xn}, Xi 

(i=1,2,….,n) is a failure occurrence of a specific component or 

system that has to be investigated. The conditioned 

independency theory is an important concept for simplifying 

the joint probability distribution. Assume that Par(Xi) is Xi’s 

the parent set and Nd(Xi) is Xi’s non-descendant set. Xi is 

independent of Nd(Xi) when conditioned on Par(Xi). 

Therefore, 

𝑃(𝑋𝑖 𝑃𝑎𝑟(𝑋𝑖)⁄ , 𝑁𝑑(𝑋𝑖)) = 𝑃(𝑋𝑖 𝑃𝑎𝑟(𝑋𝑖)⁄ ) (3) 

The joint probability distribution may be calculated using 

the conditioned independency assumption as follows: 

P(U) = 𝑃(𝑋1, 𝑋2, … 𝑋𝑛) = ∏ 𝑃(𝑋𝑖 𝑃𝑎𝑟(𝑋𝑖)⁄ )𝑛
𝑖=1  (4) 

Xi 's probability distribution may be estimated as follows: 

𝑃(𝑋𝑖) = ∑ 𝑃(𝑈)𝑒𝑥𝑐𝑒𝑝𝑡 𝑋𝑖
(5) 

The posterior probability distribution of nodes may be 

determined given the evidence E.” 

𝑃(𝑈
𝐸⁄ ) =

𝑃(𝑈,𝐸)

𝑃(𝐸)
=

𝑃(𝑈,𝐸)

∑ 𝑃(𝑈,𝐸)𝑈
(6) 

3. SYSTEM RELIABILITY EVALUATION BY BN

3.1 Linear multistate consecutive k-out-of-n: F system 

All the basic components (nodes) N1,N2,… Nn are placed in 

linear arrangement, and all components have multiple states 

i.e., more than two states. The purpose of intermediate

components M1,M2,...,Mn-k+1 is to find system reliability (𝑆𝑅)
component. In the beginning LMC (k\n:F) system will

function normally but it will fail only when consecutive k

components fail. The intermediate component M1 connects the

first k parent components with temporal link in the linear

arrangement, and this will fail after all k parent components

have failed. Similarly, k consecutive parent components are

connected with temporal link to corresponding intermediate 

components M2,M3,...,Mn-k+1 respectively. All the intermediate 

components depend on the respective parent component. This 

arrangement of components is shown in Figure 1. If any one 

of the intermediate components fail, then LMC (k\n:F) system 

will fail.  

Assumption of System reliability functions are as follows: 

• Basic components N1,N2,… Nn contains three states

namely Working State (WS), Partial Working State

(PWS), Failed State (FS).

• Intermediate components M1,M2,...,Mn-k+1 contains two

states namely Working State (WS), Failed State (FS).

• System reliability component SR contains two states

namely Working State (WS), Failed State (FS).

Figure 1. BN for linear multistate consecutive k-out-of-n: 

F system 

LMC(k\n:F) system reliability calculation are given below. 

Joint Probability function is: 

𝑃(𝑍) = 𝑃(𝑁1, … 𝑁𝑛, 𝑀1, … 𝑀𝑛−𝑘+1, 𝑆𝑅) =

𝑃(𝑆𝑅 𝑃𝑎𝑟(𝑆𝑅)⁄ ) ∏ 𝑃(𝑀𝑖 𝑃𝑎𝑟(𝑀𝑖)⁄ )𝑛−𝑘+1
𝑖=1  ∏ 𝑃(𝑁𝑖)𝑛

𝑖=1  
(7) 

𝑃(𝑍) = 𝑃(𝑆𝑅 𝑀1, … , 𝑀𝑛−𝑘+1⁄ )
𝑃(𝑀1 𝑁1, . . 𝑁𝑘⁄  )

𝑃(𝑀2 𝑁2, … , 𝑁𝑘+1⁄ ) … … 
𝑃(𝑀𝑛−𝐾−1 𝑁𝑛−𝑘, … , 𝑁𝑛−1⁄ ) 𝑃(𝑀𝑛−𝑘+1 𝑁𝑛−𝑘 , … , 𝑁𝑛⁄ )

𝑃(𝑁1)𝑃(𝑁2) … …  𝑃(𝑁𝑛)

(8) 

Marginal Probability function is: 

𝑃(𝑆𝑅) =

∑
𝑃(𝑆𝑅 𝑃𝑎𝑟(𝑆𝑅)⁄ )

∏ 𝑃(𝑀𝑖 𝑃𝑎𝑟(𝑀𝑖)⁄ )𝑛−𝑘+1
𝑖=1  ∏ 𝑃(𝑁𝑖)𝑛

𝑖=1  
𝑊𝑆

𝑁1=𝐹𝑆,…𝑁𝑛=𝐹𝑆,
𝑀1=𝐹𝑆,… 𝑀𝑛−𝑘+1=𝐹𝑆

(9) 

𝑃(𝑆𝑅)

= ∑

𝑃(𝑆𝑅 𝑀1, … , 𝑀𝑛−𝑘+1⁄ )𝑃(𝑀1 𝑁1, … , 𝑁𝑘⁄  )

𝑃(𝑀2 𝑁2, … , 𝑁𝑘+1⁄ ) … …

𝑃(𝑀𝑛−𝐾−1 𝑁𝑛−𝑘 , … , 𝑁𝑛−1⁄ ) 

𝑃(𝑀𝑛−𝑘+1 𝑁𝑛−𝑘 , … , 𝑁𝑛⁄ ) 𝑃(𝑁1)

𝑃(𝑁2) … …  𝑃(𝑁𝑛)

𝑊𝑆

𝑁1=𝐹𝑆,…𝑁𝑛=𝐹𝑆,
𝑀1=𝐹𝑆,… 𝑀𝑛−𝑘+1=𝐹𝑆

(10) 

Reliability for Final node (SR) is: 

𝑅(𝑆𝑅) = 𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝑊𝑆, … , 𝑀𝑛−𝑘+1⁄ =
𝑊𝑆) 𝑃 (𝑀1 = 𝐹𝑆) 𝑃 (𝑀2 = 𝑊𝑆) … … 𝑃(𝑀𝑛−𝑘+1 =
𝑊𝑆) + 𝑃(𝑆𝑅 𝑀1 = 𝑊𝑆, 𝑀2 = 𝐹𝑆, … , 𝑀𝑛−𝑘+1⁄ =
𝑊𝑆)𝑃(𝑀1 = 𝑊𝑆)𝑃(𝑀2 = 𝐹𝑆) … … 𝑃(𝑀𝑛−𝑘+1 =
𝑊𝑆) +  

⋮ 
𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝐹𝑆, 𝑀3 = 𝑊𝑆, … , 𝑀𝑛−𝑘+1⁄ =
𝑊𝑆)𝑃(𝑀1 = 𝐹𝑆)𝑃(𝑀2 = 𝐹𝑆)𝑃(𝑀3 =
𝑊𝑆) … … 𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆) +
⋮ 

(11) 
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𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝐹𝑆, 𝑀3 = 𝐹𝑆, … , 𝑀𝑛−𝑘+1⁄ =
𝑊𝑆) 𝑃 (𝑀1 = 𝐹𝑆) 𝑃 (𝑀2 = 𝐹𝑆) 𝑃 (𝑀3 =
𝐹𝑆) … … 𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆) +
⋮ 
𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝐹𝑆, 𝑀3 = 𝐹𝑆, … , 𝑀𝑛−𝑘+1⁄ =
𝐹𝑆)𝑃(𝑀1 = 𝐹𝑆)𝑃(𝑀2 = 𝐹𝑆)𝑃(𝑀3 =
𝐹𝑆) … … 𝑃(𝑀𝑛−𝑘+1 = 𝐹𝑆) +
⋮ 
𝑅(𝑆𝑅)
= 𝑃(𝑆𝑅 𝑀1 = 𝑊𝑆, 𝑀2 = 𝑊𝑆, 𝑀3 = 𝑊𝑆, … , 𝑀𝑛−𝑘+1⁄
= 𝑊𝑆)𝑃(𝑀1 = 𝑊𝑆)𝑃(𝑀2 = 𝑊𝑆)𝑃(𝑀3

= 𝑊𝑆) … … 𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆)

Probability Calculation for Intermediate nodes, 

𝑃(𝑀1 = 𝑊𝑆) = 𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝑊𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘⁄ =
𝑊𝑆)𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 = 𝑊𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  𝑃(𝑁1 =
𝑃𝑊𝑆)𝑃(𝑁2 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  𝑃(𝑁1 = 𝐹𝑆)𝑃(𝑁2 =
𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  𝑃(𝑁1 =
𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝐹𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 =
𝐹𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1" = 𝐹𝑆, 𝑁2 = 𝐹𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  𝑃(𝑁1 =
𝐹𝑆)𝑃(𝑁2 = 𝐹𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆)" + 

⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, 𝑁3 = 𝑃𝐹, … , 𝑁𝑘 = 𝑊𝑆)⁄  

𝑃(𝑁1 = 𝑃𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆)𝑃(𝑁3 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝐹𝑆, 𝑁3 = 𝐹𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝐹𝑆)𝑃(𝑁2 = 𝐹𝑆)𝑃(𝑁3 = 𝐹𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝐹𝑆, … , 𝑁𝑘−1 = 𝐹𝑆, 𝑁𝑘 = 𝑊𝑆)⁄  

𝑃 (𝑁1 = 𝐹𝑆) 𝑃 (𝑁2 = 𝐹𝑆) 𝑃 (𝑁3 = 𝐹𝑆) … … 𝑃(𝑁𝑘−1 = 𝐹𝑆)𝑃(𝑁𝑘

= 𝑊𝑆) 

(12) 

𝑃(𝑀1 = 𝐹𝑆) = 𝑃(𝑀1 = 𝐹𝑆 𝑁1 = 𝐹𝑆, … , 𝑁𝑘−1 = 𝐹𝑆, 𝑁𝑘 = 𝐹𝑆)⁄   
𝑃(𝑁1 = 𝐹𝑆) … … 𝑃(𝑁 𝑘−1 = 𝐹𝑆) 𝑃(𝑁 𝑘 = 𝐹𝑆) (13) 

𝑃(𝑀𝑛−𝑘+1" = 𝑊𝑆) =
𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆 𝑁𝑛−𝑘 = 𝑊𝑆, … , 𝑁𝑛 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛−𝑘 = 𝑊𝑆) … … 𝑃(𝑁𝑛 = 𝑊𝑆) +
𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆 𝑁𝑛−𝑘 = 𝑃𝑊𝑆, 𝑁𝑛−𝑘+1 = 𝑊𝑆, … , 𝑁𝑛 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛−𝑘 = 𝑃𝑊𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝑊𝑆) … …  𝑃(𝑁𝑛 = 𝑊𝑆) +
𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆 𝑁𝑛−𝑘 = 𝐹𝑆, 𝑁𝑛−𝑘+1 = 𝑊𝑆, … , 𝑁𝑛 = 𝑊𝑆⁄ )  
𝑃(𝑁𝑛−𝑘 = 𝐹𝑆)𝑃(𝑁𝑛−𝑘+1 = 𝑊𝑆) … … 𝑃(𝑁𝑛 = 𝑊𝑆) +
𝑃(𝑀𝑛−𝑘+1 = 𝑊𝑆 𝑁𝑛−𝑘 = 𝑊𝑆, 𝑁𝑛−𝑘+1 = 𝑃𝑊𝑆, … , 𝑁𝑛 = 𝑊𝑆⁄ ) 

𝑃(𝑁𝑛−𝑘 = 𝑊𝑆)𝑃(𝑁𝑛−𝑘+1 = 𝑃𝑊𝑆) … …  𝑃(𝑁𝑛 = 𝑊𝑆) +
𝑃(𝑀 𝑛−𝑘+1 = 𝑊𝑆 𝑁 𝑛−𝑘 = 𝑊𝑆, 𝑁 𝑛−𝑘+1 = 𝐹𝑆, … , 𝑁𝑛 = 𝑊𝑆⁄ ) 

𝑃(𝑁 𝑛−𝑘 = 𝑊𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝐹𝑆) … … 𝑃(𝑁𝑛 = 𝑊𝑆)" +
⋮  
𝑃(𝑀 𝑛−𝑘+1 = 𝑊𝑆 𝑁 𝑛−𝑘 = 𝐹𝑆, 𝑁 𝑛−𝑘+1 = 𝑃𝑊𝑆, … , 𝑁 𝑛 = 𝑊𝑆⁄ )
𝑃(𝑁 𝑛−𝑘 = 𝐹𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝑃𝑊𝑆) … … 𝑃(𝑁 𝑛 = 𝑊𝑆) +
⋮ 
𝑃(𝑀 𝑛−𝑘+1 = 𝑊𝑆 𝑁 𝑛−𝑘 = 𝐹𝑆, … , 𝑁𝑛−1 = 𝐹𝑆, 𝑁𝑛 = 𝑊𝑆⁄ ) 

𝑃(𝑁𝑛−𝑘 = 𝐹𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝐹𝑆) … … 𝑃(𝑁 𝑛−1

= 𝐹𝑆)𝑃(𝑁 𝑛 = 𝑊𝑆) 

(14) 

𝑃(𝑀𝑛−𝑘+1 = 𝐹𝑆)
𝑃(𝑀𝑛−𝑘+1 = 𝐹𝑆 𝑁𝑛−𝑘 = 𝐹𝑆, … , 𝑁𝑛−1 = 𝐹𝑆, 𝑁 𝑛 = 𝐹𝑆⁄ )

𝑃(𝑁𝑛−𝑘 = 𝐹𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝐹𝑆) … … 𝑃(𝑁 𝑛−1

= 𝐹𝑆)𝑃(𝑁 𝑛 = 𝐹𝑆) 

(15) 

Failure of system reliability (SR) is: 

𝑅(𝑆𝑅 = 𝐹𝑆)

= ∑ 𝑃(𝑆𝑅 = 𝐹𝑆 𝑃𝑎𝑟(𝑆𝑅)⁄ ) 𝑃(𝑃𝑎𝑟(𝑆𝑅))
𝑁𝑜.  𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑃𝑎𝑟(𝑆𝑅)≥1  

 (16) 

where, 

𝑃𝑎𝑟(𝑆𝑅) =  𝑀1, 𝑀2, 𝑀3 … . , 𝑀𝑛−𝑘+1

𝑃(𝑀𝑖 = 𝐹𝑆) =  𝑃(𝑀𝑖 = 𝐹𝑆 𝑃𝑎𝑟(𝑀𝑖 = 𝐹𝑆)⁄ ) 𝑃(𝑃𝑎𝑟(𝑀𝑖

= 𝐹𝑆)) 

𝑃𝑎𝑟(𝑀𝑖) = 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑘 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚
𝑁1, 𝑁2, 𝑁3 … . , 𝑁𝑛 (𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑖

= 1,2,3, … . , 𝑛) 

3.2 Circular multistate consecutive k-out-of-n: F system 

All the basic components (nodes) N1,N2,… Nn are placed in 

circular arrangement, and all components have multiple states 

i.e., more than two states. The purpose of intermediate

components M1,M2, …,Mn is to find system reliability (SR)

component. In the beginning CMC(k\n:F) system will function

normally but it will fail only when consecutive k components

fail. The intermediate component M1 connects the first k parent

components with temporal link in the linear arrangement, and

this will fail after all k parent components have failed.

Similarly, k consecutive parent components are connected

with temporal link to corresponding intermediate components

M2,M3,...,Mn-k+1 respectively. All the intermediate components

depend on the respective parent component. This arrangement

of components is shown in Figure 2. If any one of the

intermediate components fail, then CMC(k\n:F) system will

fail.

Assumption of System reliability functions are as follows: 

• Basic components N1,N2,… Nn contains three states

namely Working State (WS), Partial Working State

(PWS), Failed State (FS).

• Intermediate components M1,M2,...,Mn-k+1 contains two

states namely Working State (WS), Failed State (FS).

• System reliability component SR contains two states

namely Working State (WS), Failed State (FS).

CMC (k\n:F) system reliability calculation are given below, 

Figure 2. BN for circular multistate consecutive k-out-of-n: 

F system 

Joint Probability function is: 

𝑃(𝑍) = 𝑃(𝑁1, … 𝑁𝑛 , 𝑀1, … 𝑀𝑛, 𝑆𝑅) =
𝑃(𝑆𝑅 𝑃𝑎𝑟(𝑆𝑅)⁄ ) ∏ 𝑃(𝑀𝑖 𝑃𝑎𝑟(𝑀𝑖)⁄ )𝑛

𝑖=1  ∏ 𝑃(𝑁𝑖)
𝑛
𝑖=1

(17) 

𝑃(𝑍) = 𝑃(𝑆𝑅 𝑀1, … , 𝑀 𝑛−𝑘+1⁄ )𝑃(𝑀1 𝑁1, . . 𝑁 𝑘⁄  )
𝑃(𝑀2 𝑁2, … , 𝑁𝑘+1⁄ ) … …  𝑃(𝑀 𝑛−𝑘 𝑁 𝑛−𝑘, … , 𝑁𝑛⁄ ) 

𝑃(𝑀 𝑛 𝑁𝑛 , 𝑁1 … , 𝑁 𝑘−1⁄ ) 𝑃(𝑁𝑛)𝑃(𝑁1) … …   𝑃(𝑁 𝑘−1)
(18) 

Marginal Probability function is: 

𝑃(𝑆𝑅) =

∑
𝑃(𝑆𝑅 𝑃𝑎𝑟(𝑆𝑅)⁄ )

∏ 𝑃(𝑀𝑖 𝑃𝑎𝑟(𝑀𝑖)⁄ )𝑛
𝑖=1  ∏ 𝑃(𝑁𝑖)

𝑛
𝑖=1  

𝑊𝑆
𝑁1=𝐹𝑆,…𝑁𝑛=𝐹𝑆,
𝑀1=𝐹𝑆,… 𝑀𝑛=𝐹𝑆

(19) 
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𝑃(𝑆𝑅) =

∑

𝑃(𝑆𝑅 𝑀1, … , 𝑀 𝑛−𝑘+1⁄ )

𝑃(𝑀1 𝑁1, … , 𝑁𝑘⁄  )𝑃(𝑀2 𝑁2, … , 𝑁 𝑘+1⁄ ) …

𝑃(𝑀 𝑛 𝑁𝑛 , 𝑁1 … , 𝑁 𝑘−1 ⁄ ) 

𝑃(𝑁1) … …   𝑃(𝑁 𝑘−1) 𝑃(𝑁 𝑛)

𝑊𝑆
𝑁1=𝐹𝑆,…𝑁𝑛=𝐹𝑆,
𝑀1=𝐹𝑆,… 𝑀𝑛=𝐹𝑆

(20) 

Reliability for Final node (SR) is: 

𝑅(𝑆𝑅) = 𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝑊𝑆, … , 𝑀𝑛⁄ = 𝑊𝑆)
𝑃(𝑀1 = 𝐹𝑆)𝑃(𝑀2 = 𝑊𝑆) … … 𝑃(𝑀𝑛 = 𝑊𝑆) +
𝑃(𝑆𝑅 𝑀1 = 𝑊𝑆, 𝑀2 = 𝐹𝑆, … , 𝑀𝑛⁄ = 𝑊𝑆)
𝑃(𝑀1" = 𝑊𝑆)  𝑃(𝑀2 = 𝐹𝑆) … … 𝑃(𝑀𝑛 = 𝑊𝑆) +
⋮ 
𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝐹𝑆, 𝑀3 = 𝑊𝑆, … , 𝑀𝑛−𝑘+1⁄ = 𝑊𝑆)
𝑃(𝑀 1 = 𝐹𝑆)𝑃(𝑀2 = 𝐹𝑆)𝑃(𝑀3 = 𝑊𝑆) … … 𝑃(𝑀𝑛 =
𝑊𝑆) +  

⋮ 
𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀 2 = 𝐹𝑆, 𝑀 3 = 𝐹𝑆, … , 𝑀 𝑛⁄ = 𝑊𝑆)
𝑃(𝑀 1 = 𝐹𝑆)𝑃(𝑀 2 = 𝐹𝑆)𝑃(𝑀 3 = 𝐹𝑆) … … 𝑃(𝑀𝑛 =
𝑊𝑆) +  

⋮ 
𝑃(𝑆𝑅 𝑀1 = 𝐹𝑆, 𝑀2 = 𝐹𝑆, 𝑀3 = 𝐹𝑆, … , 𝑀𝑛⁄ = 𝐹𝑆)
𝑃(𝑀 1 = 𝐹𝑆)𝑃(𝑀 2 = 𝐹𝑆)𝑃(𝑀 3 = 𝐹𝑆) … … 𝑃(𝑀 𝑛 = 𝐹𝑆)

+ 

⋮ 
𝑅(𝑆𝑅) =
𝑃(𝑆𝑅 = 𝑊𝑆 𝑀1 = 𝑊𝑆, 𝑀2 = 𝑊𝑆, 𝑀3 = 𝑊𝑆, … , 𝑀𝑛⁄ =
𝑊𝑆)  

𝑃(𝑀1 = 𝑊𝑆)𝑃(𝑀2 = 𝑊𝑆)𝑃(𝑀3 = 𝑊𝑆) … … 𝑃(𝑀𝑛

= 𝑊𝑆) 

(21) 

Probability Calculation for Intermediate nodes: 

𝑃(𝑀1 = 𝑊𝑆) =
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝑊𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘⁄ = 𝑊𝑆) 

𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 = 𝑊𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄
𝑃(𝑁1 = 𝑃𝑊𝑆)𝑃(𝑁2 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)"⁄  
𝑃(𝑁1" = 𝐹𝑆)𝑃(𝑁2 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑊𝑆, 𝑁2 = 𝐹𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝑊𝑆)𝑃(𝑁2 = 𝐹𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) + 
⋮  
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄
𝑃(𝑁1 = 𝑃𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝐹𝑆, 𝑁3 = 𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝐹𝑆)𝑃(𝑁2 = 𝐹𝑆)𝑃(𝑁3 = 𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝑃𝑊𝑆, 𝑁2 = 𝑃𝑊𝑆, 𝑁3 = 𝑃𝑊𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝑃𝑊𝑆)𝑃(𝑁2 = 𝑃𝑊𝑆)𝑃(𝑁3 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆) +
⋮ 
𝑃(𝑀1" = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝐹𝑆, 𝑁3 = 𝐹𝑆, … , 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁1 = 𝐹𝑆)𝑃(𝑁2 = 𝐹𝑆)𝑃(𝑁3 = 𝐹𝑆) … … 𝑃(𝑁𝑘 = 𝑊𝑆") +
⋮ 
𝑃(𝑀1 = 𝑊𝑆 𝑁1 = 𝐹𝑆, 𝑁2 = 𝐹𝑆, … , 𝑁 𝑘−1 = 𝐹𝑆, 𝑁𝑘 = 𝑊𝑆)⁄  
𝑃(𝑁 1 = 𝐹𝑆) 𝑃(𝑁 2 = 𝐹𝑆) … … 𝑃(𝑁 𝑘−1 = 𝐹𝑆)𝑃(𝑁 𝑘 = 𝑊𝑆) 

(22) 

𝑃(𝑀1 = 𝐹𝑆) = 𝑃(𝑀1 = 𝐹𝑆 𝑁1 = 𝐹𝑆, … , 𝑁 𝑘−1 = 𝐹𝑆, 𝑁 𝑘 = 𝐹𝑆)⁄   
𝑃(𝑁1 = 𝐹𝑆)𝑃(𝑁2 = 𝐹𝑆) … 𝑃(𝑁 𝑘−1 = 𝐹𝑆)𝑃(𝑁 𝑘 = 𝐹𝑆) (23) 

𝑃(𝑀 𝑛 = 𝑊𝑆) = 𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝑊𝑆, 𝑁1 = 𝑊𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛 = 𝑊𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝑃𝑊𝑆, 𝑁1 = 𝑊𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 

𝑃(𝑁𝑛 = 𝑃𝑊𝑆)𝑃(𝑁1 = 𝑊𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

𝑃(𝑀 𝑛 = 𝑊𝑆 𝑁𝑛 = 𝐹𝑆, 𝑁1 = 𝑊𝑆, … , 𝑁 𝑘−1 = 𝑊𝑆⁄ ) 

𝑃(𝑁 𝑛−𝑘 = 𝐹𝑆)𝑃(𝑁 𝑛−𝑘+1 = 𝑊𝑆) … … 𝑃(𝑁𝑛 = 𝑊𝑆) + 

𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝑊𝑆, 𝑁1 = 𝑃𝑊𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛 = 𝑊𝑆)𝑃(𝑁1 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝑊𝑆, 𝑁1 = 𝐹𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛 = 𝑊𝑆)𝑃(𝑁1 = 𝐹𝑆) … … 𝑃(𝑁 𝑘−1 = 𝑊𝑆) + 

(24) 

⋮ 
𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝑃𝑊𝑆, 𝑁1 = 𝑃𝑊𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 

𝑃(𝑁𝑛 = 𝑃𝑊𝑆)𝑃(𝑁1 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝐹𝑆, 𝑁1 = 𝐹𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 
𝑃(𝑁𝑛 = 𝐹𝑆)𝑃(𝑁1 = 𝐹𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝐹𝑆, 𝑁1 = 𝑃𝑊𝑆, … , 𝑁𝑘−1 = 𝑊𝑆⁄ ) 

𝑃(𝑁𝑛 = 𝐹𝑆)𝑃(𝑁1 = 𝑃𝑊𝑆) … … 𝑃(𝑁𝑘−1 = 𝑊𝑆) + 

⋮ 
𝑃(𝑀𝑛 = 𝑊𝑆 𝑁𝑛 = 𝐹𝑆, 𝑁1 = 𝐹𝑆, … , 𝑁𝑘−2 = 𝐹𝑆, 𝑁𝑘−1 = 𝑊𝑆⁄ )  𝑃(𝑁𝑛

= 𝐹𝑆)𝑃(𝑁1 = 𝐹𝑆) … … 𝑃(𝑁𝑘−2

= 𝐹𝑆)𝑃(𝑁𝑘−1 = 𝑊𝑆) 

𝑃(𝑀𝑛 = 𝐹𝑆)
=  𝑃(𝑀𝑛 = 𝐹𝑆 𝑁𝑛 = 𝐹𝑆, 𝑁1 = 𝐹𝑆, … , 𝑁𝑘−2 = 𝐹𝑆, 𝑁 𝑘−1 = 𝐹𝑆⁄ ) 𝑃(𝑁𝑛

= 𝐹𝑆)𝑃(𝑁 1 = 𝐹𝑆) …  𝑃(𝑁𝑘−2 = 𝐹𝑆)𝑃(𝑁𝑘−1 = 𝐹𝑆) 
(25) 

Failure of system reliability (SR) is: 

𝑅(𝑆𝑅 = 𝐹𝑆) =
∑ 𝑃(𝑆𝑅 = 𝐹𝑆 𝑃𝑎𝑟(𝑆𝑅)⁄ ) 𝑃(𝑃𝑎𝑟(𝑆𝑅))𝑁𝑜.𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑖𝑛 𝑃𝑎𝑟(𝑆𝑅)≥1

 (26) 

where, 

𝑃𝑎𝑟(𝑆𝑅) =  𝑀1, 𝑀2, 𝑀3 … . , 𝑀𝑛

𝑃(𝑀𝑖 = 𝐹𝑆) =  𝑃(𝑀𝑖 = 𝐹𝑆 𝑃𝑎𝑟(𝑀𝑖 = 𝐹𝑆)⁄ ) 𝑃(𝑃𝑎𝑟(𝑀𝑖

= 𝐹𝑆)) 

𝑃𝑎𝑟(𝑀𝑖) = 𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒 𝑘 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑓𝑟𝑜𝑚
𝑁1, 𝑁2, 𝑁3 … . , 𝑁𝑛 (𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑖

= 1,2,3, … . , 𝑛) 

3.3 Particular cases 

Case (i) 

When k=1, the system behaves like a series system, if any 

one of system component fails the entire system fails. In other 

words, if all of the components are operational, the system will 

function; otherwise, it will fail. Each component has failure 

probability P(Xi), and then reliability formula is: 

𝑅𝑠(𝑆) = ∏ 𝑃(𝑋𝑖)

𝑛

𝑖

Case (ii) 

When k=n, the system requires all components to failure; so 

the system behaves like a parallel system. Each component has 

failure probability P(Xi), and then reliability formula is: 

𝑅𝑃(𝑆) = 1 − ∏(1 − 𝑃(𝑋𝑖))

𝑛

𝑖

4. RESULTS AND COMPARISON

The BN reliability graph of the linear consecutive k-out-of-

7: F system and circular consecutive k-out-of-7:F systems are 

shown in Figure 3 and Figure 4 respectively for the values 

given in Tables 1 and 2. The BN reliability of the system has 

been plotted for various probability values. It is observed that 

when the failure probability of component increases, 

reliability of the system decreases in both linear and circular 

systems. Table 3 shows the comparison of reliability Amirian 

et al. (2019) and BN reliability for both linear and circular 

systems. Figure 5 shows that the reliability evaluation for the 

proposed system using BN is approximately 10% and 8% 
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higher than the reliability (R) by Amirian, Khodadadi, and 

Chatrabgoun (2019). Since BN is a robust model giving 

accurate results. The reliability value for the various k values 

is shown in Table 4. Figure 6 reveals that the LMC(k\7:F) 

system structure has nearly 0.8% higher reliability in 

comparison to CMC(k\7:F) system structure. This is because 

circular system has more failures compared to linear system. 

The Figures 3-6 are drawn using MATLAB. 

Table 1. BN reliability for linear consecutive k-out-of-7:F system 

Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

BN R 

k=3 0.995 0.966 0.898 0.785 0.633 0.457 0.281 0.131 0.033 

k=4 0.999 0.995 0.975 0.928 0.844 0.715 0.544 0.345 0.147 

k=5 0.999 0.998 0.994 0.977 0.938 0.86 0.731 0.541 0.291 

Table 2. BN reliability for circular consecutive k-out-of-7:F system 

Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

BN R 

k=3 0.994 0.955 0.867 0.73 0.555 0.367 0.197 0.073 0.012 

k=4 0.999 0.991 0.96 0.891 0.773 0.609 0.413 0.217 0.062 

k=5 0.999 0.998 0.988 0.955 0.883 0.754 0.565 0.332 0.108 

Table 3. Reliability versus BN Reliability for linear and circular at n=11 and k=2 

P 0.25 0.5 0.75 0.8 0.9 0.95 0.99 

R 0.00006 0.0166 0.29721 0.43621 0.77915 0.93128 0.99673 

BN LR 0.00026 0.0563 0.524 0.665 0.904 0.975 0.999 

BN CR 0.00011 0.0422 0.492 0.638 0.895 0.973 0.998 

Table 4. Reliability of linear and circular system for various k values 

k 1 2 3 4 5 6 

BN LR 0.21 0.807 0.966 0.995 0.999 0.999 

BN CR 0.21 0.783 0.955 0.991 0.998 0.999 

Figure 3. BN reliability for linear system 

Figure 4. BN Reliability for circular system 

Figure 5. Reliability versus BN Reliability for linear and 

circular 

Figure 6. Reliability comparison for linear and circular 

system 
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5. CONCLUSION

We derived the reliability formula for the linear and circular 

multistate consecutive k-out-of-n: F system using Bayesian 

network. We derived particular cases series and parallel from 

the consecutive k-out-of-n: F using Bayesian network. The 

reliability of proposed system is shown to be 10% and 8% 

greater than the exact reliability obtained by Amirian, 

Khodadadi, and Chatrabgoun. LMC(k\n:F) system is shown to 

be 0.8% higher in comparison to the CMC(k\n:F) system. In 

future, the reliability analysis of LMC(k\n:F) and CMC(k\n:F) 

systems can be performed by constructing a continuous time 

Bayesian network and Dynamic Bayesian network. We can 

derive reliability formula for the linear and circular multistate 

consecutive k-out-of-n: F system using Bayesian network with 

non-identical components. 
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NOMENCLATURE 

LMC(k\n:F) Linear Multistate Consecutive k-out-

of-n: F system 

CMC(k\n:F) Circular Multistate Consecutive k-out-

of-n: F system 

N1,N2,… Nn Independent and identically 

distributed components (Nodes) of the 

LMC(k\n:F) system 

M1,M2,...,Mn-k+1 Intermediate Nodes of the LMC(k\n: 

F) system

Par(Xi) Parents of node Xi

R Reliability

𝑆𝑅 System Reliability

P Success Probability

Q Failure Probability

K Number of Consecutive Failure

BN Bayesian Network

BN R Bayesian Network Reliability

BN LR Bayesian Network Linear system

Reliability

BN CR Bayesian Network Circular system

Reliability

MSS Multistate System

DAG Directed Acyclic Graph

CPTs Conditional Probability Tables

CCFs Common Cause Failures
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