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ABSTRACT
Falling particle curtains are important in many engineering applications, including receivers for con-
centrating solar power facilities. During the formation of such a curtain, we observe a multiphase 
analog of Rayleigh–Taylor instability (RTI). It was originally described in 2011 for a situation when air 
sparsely seeded with glycol droplets was placed above a volume of unseeded air, producing an unstably 
stratified average density distribution that was characterized by an effective Atwood number 0.03. In 
that case, the evolution of the instability was indistinguishable from single-phase RTI with the same 
Atwood number, as the presence of the droplets largely acted as an additional contribution to the mean 
density of the gaseous medium. Here, we present experiments where the volume (and mass) fraction 
of the seeding particles in gas is considerably higher, and the gravity-driven flow is dominated by the 
particle movement. In this case, the evolution of the observed instability appears significantly different.
Keywords: experiment, hydrodynamic instabilities, multiphase flow, Rayleigh–Taylor instability.

1 INTRODUCTION
In classical hydrodynamics, several important instabilities can be described using the same 
idealized formulation [1]. Consider an inviscid, incompressible two-dimensional flow with a 
density interface in the x – y plane near y = 0 separating fluids characterized by densities ρ1 
in the lower and ρ2 in the upper half-plane. If the y-velocity is initially uniformly zero, and 
the uniform x-velocities U1 (lower half-plane) and U2 (upper half-plane) are not equal, the 
case of ρ1 = ρ2 will produce pure Kelvin–Kelmholtz instability (KHI). If both fluids are ini-
tially at rest, with ρ2 > ρ1, and are subject to constant acceleration g directed down the y axis, 
Rayleigh–Taylor instability (RTI) will develop, amplifying any interfacial perturbations. 
Finally, in the case when sustained acceleration is replaced with an impulsive acceleration 
(either in the positive or in the negative y-direction), Richtmyer–Meshkov instability (RMI) 
will manifest [2], [3]. KHI, RTI, and RMI play an important role in a wide variety of liquid, 
gas, and plasma flows and have been extensively studied. For RTI and RMI, the necessary 
condition for the instability is ρ1 ≠ ρ2 on the interface. The dimensionless parameter essential 
for the characterization of both RMI and RTI is the Atwood number
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Now consider multiphase flow where the embedding phase (gas or liquid) has a constant 
density, but the embedded phase (particles, droplets, etc.) is distributed non-uniformly, 
leading to the existence of gradients of average density. Recently, it was demonstrated 
[4]–[6] that analogues of RMI and RTI exist in such flows subjected either to gravity or to 
impulsive (shock) acceleration. The analogue of RMI [4] is known as shock-driven mul-
tiphase instability (SDMI) [6], [7]. As in the case of classical RMI, a dimensionless number 
similar to the Atwood number (eqn (1)) plays a key role in SDMI: the multiphase Atwood 
number [8]
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Here, the subscript s characterizes the volume-averaged properties of the seeded flow 
(embedding phase together with embedded phase), and the subscript u the properties of the 
unseeded embedding phase.

Two limit cases can be considered: Am→0 and Am→1. Presently, the former case is some-
what better studied [4], [8]–[10], with investigations mostly focusing on SDMI. For Am→0, 
gaseous embedding phase, and liquid or solid embedded phase (small micron or submi-
cron-sized droplets or particles), it was shown that the SDMI growth can be (at least in first 
order) approximated with expressions originally derived for RMI, replacing A (eqn (1)) with 
Am (eqn. (2)) [4]. Likewise, in this case shock-accelerated multiphase flow can be modeled 
(credibly but not perfectly) with models developed for the single-phase variable-density case 
(RMI) [11]. Differences between SDMI and RMI are nevertheless considerable: while 
shock-induced RMI is baroclinically driven (vortex formation is precipitated by misalign-
ment between density and pressure gradients), in SDMI, vortex formation is driven by shear 
(similar to KHI), while shear is produced by massive particles or droplets interacting with the 
surrounding shock-accelerated gas and slowing it down.

One earlier study was also conducted for the multiphase analogue of RTI [5] for Am ~ 0.03. 
For the flow under investigation (air with a small volume fraction of micron-sized glycol 
droplets), it was concluded that morphologically and in terms of instability growth, the results 
were indistinguishable from classical single-phase RTI, with droplet seeding effectively 
 contributing only to local average density.

But what happens for the other limit case (Am→1)? For the studies summarized in the 
preceding paragraphs, the flow was dominated by hydrodynamic effects. As Am increases, 
particle interactions, particle inertia, etc. begin to play a more prominent role. In the following 
sections, we describe an experiment where a falling particle curtain forms with particle seed-
ing density leading to Am ≈ 0.98. During the formation of this curtain, perturbations on its 
leading edge grow, similarly to what happens with an RTI-unstable interface. However, the 
growth rate appears very different from what is observed for classical RTI, and this can be 
explained by profound differences in the physics of the corresponding flows.

2 EXPERIMENTAL SETUP
The motivation for particle-curtain studies described here was twofold. First, we wanted to 
produce an average density interface characterized by a sufficiently high Am for studies of its 
evolution under shock acceleration. Second, we were conducting a study on a related subject, 
operation of a falling particle curtain receiver used to store heat produced by a concentrating 
solar power facility [12]. Both the formation and the steady-state condition of the curtain 
proved much more interesting than anticipated.

Figure 1 shows the schematic (top) and the actual view of the experimental arrangement. 
In the top view, the particle–curtain setup is shown mounted on the UNM shock tube, which 
is described in detail elsewhere [8]. The arrangement is comprised of a modular extrud-
ed-metal frame used to mount the components, the horizontal element of which is the hopper 
rail. To the hopper rail, we attach the particle hopper. At the bottom of the hopper, a sliding 
plate is placed to keep the particles in prior to the beginning of the experiment. The same 
element serves to mount an electric motor that provides a small-amplitude vibration to the 
hopper. These components are vibration-isolated from the rest of the setup, the latter 
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including the particle curtain-forming nozzle attached directly to the test section of the shock 
tube. In the experiments described here, the horizontal dimensions of the nozzle opening 
were 72 × 2 mm.

In the experiments described below, a typical run proceeded as follows. The hopper (slid-
ing plate closed) was loaded with soda lime particles. The nominal particle diameter ranged 
between 30 and 50 µm, and the particle density was 1.44 g/cc. Then the vibration motor was 
turned on, and the sliding plate removed from the bottom of the hopper, releasing the parti-
cles into the nozzle below, then into the test section, then into the particle flow channel, and 
into the particle collector, from which the particles could be extracted for reuse. For experi-
ments with shocked curtain, the location of the camera visualizing the curtain must be chosen 
outside the shock tube, as shown in Fig. 1, top, however, in the data presented here, the runoff 

Figure 1: Top: schematic of the side view of the experimental 
arrangement, including the UNM shock tube and the particle-
curtain setup. Bottom: close-up photo of the test section of 
the shock tube, the hopper rail, and the particle-curtain setup.
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section of the setup connecting the test section of the shock tube with the baffle box was 
removed, making it possible to visualize the falling curtain so that the optical axis of the 
camera lens was at 90° to the plane of the curtain.

A Sony RX IV camera was used to capture images at 960 frames per second in full HD 
resolution. The camera was turned on shortly prior to the opening of the sliding plate, with 
data acquisition runs limited to 2 s by hardware. The curtain was illuminated through the 
transparent sides of the test section with two LED panels.

3 OBSERVATIONS AND ANALYSIS
Figure 2 shows (in false color) a sequence of four cropped images tracking the leading edge 
of the falling curtain. It takes about 60 ms for the edge of the curtain to reach the bottom of 
the test section and disappear into the particle flow channel. It is important to note that the 
distance between the bottom of the hopper with the sliding plate and the point where the 
particle curtain becomes visible is about 12 cm, so the particles are entering the field of view 
of the camera some time (about 200 ms) after the sliding plate is opened, giving any interfa-
cial perturbations some time to develop. Another important aspect of the observed flow 
evolution that must be mentioned is that the centerline of the curtain edge in the vertical 
direction moves downward and accelerates. This necessitates a deviation from the way inter-
facial perturbations are usually measured in classical RTI studies, where after gravity-driven 
instability growth commences, bubbles of lighter gas or fluid go up, and spikes of heavier gas 
or fluid go down, and local instability amplitude can be measured in a stationary reference 
frame, from top of bubble to bottom of adjacent spike. Here, we have to track the leading 

Figure 2: Four images (false-color) tracking the leading edge of the 
falling particle curtain. Time t = 0 corresponds to the moment 
the leading edge of the curtain clears the nozzle and becomes 
fully visible in the test section. The width of the field of view 
is 76 mm. Arrows in the first image show two examples of 
perturbation amplitude measurements.
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edge of the curtain, and make the same measurements (perturbation amplitude bubble-to-
spike) in a moving reference frame.

With these caveats, it is still apparent that the leading edge of the curtain is perturbed, and 
the perturbation is growing.

Three data sequences with identical initial conditions were acquired and analyzed to meas-
ure peak-to-peak amplitudes at seven timings, from 0 to 50 ms after the falling curtain enters 
the field of view of the camera. From each sequence, a single frame at seven timings (0, 8.3, 
16.6, 24.9, 33.3, 41.6, and 50 ms) was analyzed, yielding up to 12 bubble-to-spike amplitude 
measurements. Figure 3 shows the analysis results. Both the images and the plot show con-
siderable variance in the perturbation amplitude, but the overall trend in perturbation growth 
with time is quite close to linear: the coefficient of determination r2 = 0.97 for the fit shown 
in the plot.

Additional characterization of the curtain in terms of velocity field and mass flow rate 
was also undertaken [13]. The mass flow rate was measured directly, by monitoring the 
initial and transient weight of the particle collector (44.16, 0.12 g/s). Velocity-field meas-
urements of a curtain that reached steady-state [14] reveal that the average vertical velocity 
grows linearly with downstream distance (and thus with time). With the known average 
velocity and mass flow rate, the volume fraction of the particles can also be found from 
simple conservation-of-mass considerations. For the steady-state curtain, it varied from 
8.4% at the top of the test section to 2.5% at the bottom. In terms of the multiphase 
Atwood number (eqn (2)), this translates to 0.98 > Am > 0.95. The curtain is indeed in the 
Am→1 regime.

Figure 3: Time history of the perturbation amplitude on the leading edge of 
the falling curtain. Error bars show the standard deviation at each 
timing. Straight line: linear fit.
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What can account for the stark difference between the interfacial perturbation evolution in 
classical RTI (quadratic) and what we observe for the falling particle curtain? Two explana-
tions are possible. One possibility is that the observation window used in our experiment is 
insufficient to track the quadratic growth. The other possibility is that the growth is both 
dominated by physics somewhat different from the classical RTI and observed in a different 
(accelerating) reference frame. Based on both mass-conservation considerations and direct 
measurements [13], as the curtain accelerates downward, its local particle seeding concentra-
tion decreases, leading to a small but noticeable and highly repeatable decrease in Am. Now 
consider the classical quadratic-growth instability amplitude h growth formula for RTI

Figure 4: Top: front and side images of the falling curtain showing the 
entire field of view, top to bottom. Bottom: Multiphase Atwood 
number in the curtain as a function of time. Time t = 0 corresponds 
to the moment when the flow enters the field of view at the top of 
the test section. The line is the best fit to the data using eqn (3) 
with parameters described in the text.
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h = αAgt2

where α is a constant (on the order of 0.05). Now let us replace A with Am slowly (at a rate ε) 
decreasing in time to an equilibrium terminal-velocity value Am,t.v., with a time offset te (time 
to account for curtain development as it leaves the nozzle)
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Then let us transition into a reference frame accelerating at a rate

hm,t.v. = αAm,t.v.gt2

This reference frame to first order will correspond to the frame following the falling-cur-
tain edge, and the perturbation growth in that frame will be
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For sufficiently late t, t >>  te, and δh ~ t, manifesting linear growth.
For a more realistic consideration, local particle seeding density variability, leading to 

local fluctuations of Am, should be taken into account, as it likely produces the velocity dif-
ferences along the edge of the falling curtain. The relevant physics at Am→1 are dominated 
by particle inertia, unlike Am→0 or classical RTI. For Am→1, the baroclinic vorticity produc-
tion mechanism in fluid (vorticity generation proportional to the cross-product of density and 
pressure gradients) is less relevant, and the most likely key hydrodynamic characteristic is the 
local terminal velocity of a particle-seeded volume, which would vary with Am.

Figure 4 shows front and side snapshots of the curtain over the entire 7.6 cm vertical extent 
of the test section, and the plot of the time evolution of Am based on the data collected earlier 
[13], [14] for the average velocity and mass-discharge rate of a curtain that achieved a steady 
state. The fit to the data uses eqn (3), with the parameters as follows: ε = 4.9 × 10−4, te = 0.011, 
Am,t.v. = 0.939, time in s. The coefficient of determination for this best fit is r2 = 0.991. Note 
that these values are largely consistent with the assumptions we made above regarding the 
order of magnitude of the parameters: ε <<1 , te << t, and Am,t.v. ~ 1.

4 CONCLUSIONS
Similar to SDMI, a multiphase gravity-driven instability (MGDI) also appears to exist. As 
SDMI can be regarded as a multiphase analogue of RMI, so the MGDI corresponds to RTI. 
Two limit cases exist for MGDI. In terms of multiphase Atwood number Am, the first limit 
case is Am << 1. For this case, behavior similar to RTI was observed, with flow dominated by 
hydrodynamic effects, and the embedded phase following the flow. We show the second case, 
Am→1, to manifest behaviors distinct from RTI. The Am→1 flow is likely to be dominated by 
particle effects, although fluid mechanics still must play a role. We observe linear growth of 
perturbations along the leading edge of the curtain and offer a simple explanation based on 
the flow phenomenology and theory for the linear trend, which is distinct from quadratic 
growth for classical RTI and consistent with earlier experiment.

Future studies are required to elucidate some features observed in the Am→1 falling- curtain 
flow. Flow visualization shows persistent formation of perturbations with features at similar 
wavelengths (Fig. 2). The wavelength selection mechanism is presently unclear. A longer 
observation interval will help determine how long the linear perturbation amplitude growth 
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persists. It would also be very instructive to study the same falling-curtain formation in vac-
uum, to determine the actual contribution of hydrodynamic effects. The parameter range for 
Am should also be extended through the entirety of the possible values (0 < Am < 1): now we 
know something about the limit cases (very high and very low values), but a very important 
special case remains to be studied: flow with both gaseous density gradients (A ≠ 0) and seed-
ing (Am ≠ 0) where neither feature is clearly dominant.

We also seek to understand growth rates by conducting numerical analysis using an 
approach similar to the Eulerian–Lagrangian study of the particle-laden RMI [6].
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