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ABSTRACT
As a fi rst step towards a new approach for the simulation of two-phase fl ows, the objective of this 
work is to check out the prediction of a model dedicated to large and distorted bubbles on two-
bubble coalescence cases. The multifi eld hybrid approach for two-phase fl ow modelling consists 
in dealing separately with the small and spherical bubbles, treated with a dispersed approach, and 
with the large and distorted ones, whose interface is located. The overall method relies also on 
an existing building block, consisting in a set of averaged models dedicated to dispersed bubbles, 
which has already been validated and has given a reasonable agreement with experimental data in 
cases where the spherical shape assumption is still valid for the dispersed phase. This paper aims 
to assess a conservative interface locating method based on level set adapted to two-fl uid model 
for two-phase fl ows. The interface locating method is a part of a model dedicated to the simulation 
of large and distorted bubbles. At different liquid viscosities and densities, the model provides 
reasonable predictions of terminal velocities and shapes for rising bubble experiments.
The main outcome is the simulation of bubble coalescence where the distortion of the interface during 
the coalescence phenomenon is followed. The ability to simulate coalescence phenomena correctly is 
an important issue in the modelling of slug fl ows with interface locating methods.
Keywords: Bubble rising, coalescence, interface sharpening, multifi eld model, surface tension.

1 INTRODUCTION
Two-phase fl ows are featuring many industrial applications such as nuclear safety, heat 
exchangers and chemical reactors. Based on the interface structures, several fl ow regimes can 
be identifi ed and commonly separated into three main groups; separated fl ows, dispersed 
fl ows and the last group would contain the fl ows such as bubbly annular, churn turbulent or 
slug fl ow. Although this classifi cation has been experimentally confi rmed since a few decades 
[1], the numerical simulation of complex two-phase fl ow regimes is still challenging and an 
universal model remains to be established.

The computation of two-phase fl ow simulation is a matter of choice, such as Eulerian or 
Lagrangian point of view, the number of fi elds, the use of space or time averages, the fi ltering 
of some space scales, the way the interfaces are dealt with, etc. It results into the following 
arborescence proposed by Bestion [2]:

• Phase or fi eld averaging:

 • Homogeneous for two-phase fl ow mixture.

 • Two-fl uid model.

 • Multifi eld model.

 • Filtering turbulent and two-phase intermittency scales:

 • RANS (all turbulent scales are fi ltered).

 • Two-phase LES (fi ltered under a characteristic size).

 • DNS (all turbulent scales are simulated).
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 • Treatment of interfaces:

 • Interface tracking/capturing.

 • Statistical treatment of interfaces.

 • Identifi cation of local interfaces.

 • Characterization of the interface (colour function).
Depending on the studied phenomena, an approach may be more accurate than the other. 

In our case, the ability to simulate several regimes from bubbly to slug or churn fl ows induces 
some precise knowledge of the interfacial quantities. Dispersed fi eld approaches require 
complex correlations to model interfacial area, especially for coalescence modelling. There-
fore, having to resort to an interface locating method seems a wise choice. As our goal is to 
deal with several bubble scales, locating every interfaces with a good precision would require 
large mesh sizes and a great amount of CPU time. We developed an hybrid method, aiming 
at dealing with small and spherical bubbles with dispersed fi eld modelling and simulating the 
interface of large and distorted ones (Eötvos number >4). Here, the idea is to couple the dis-
persed and the located approach to take advantage of their respective capabilities: the accuracy 
and the low CPU consuming of the dispersed approach, and the simulation of the distortion 
of the larger bubbles with a located interface model that avoids the use of a priori correlations 
on the bubble shapes. This naturally leads to a spatial fi lter scale depending on the fl ow prop-
erties. The dispersed approach for small interfaces that can be considered as spherical has 
already been validated [3] and has given reasonable agreement with experimental data, using 
the Eulerian multifi eld CFD code NEPTUNE _CFD.

As a consequence, we concentrate here our work on the simulation of large and 
deformed bubbles. A fi rst step towards the hybrid method is to build a set of equations to 
model the large interface fi eld. Numerical model and its application to bubble rising are 
summarized here and can be found in [4] for more details. After proving the effi ciency of 
the method on the well-known bubble rising cases, we will test the model on two-bubble 
coalescence experimental cases. The predictions of the model on local coalescence cases 
have a key role in the validity of the extension of the interface locating model towards 
studying slug fl ows.

2 STATE OF THE ART FOR INTERFACE TREATMENT AND COALESCENCE 
The rise of bubbles in viscous liquids/fl uids remains a fundamental problem in fl uid physics. 
Despite several theoretical [5], experimental [6] and over these recent years numerical [7, 8] 
studies, this paradigm is still a topic of major interest.

Most of the current techniques applied to interface fl ows such as large bubble rising have 
been developed taking into account two major aspects: capturing/tracking the interface and 
stabilizing the fl ow solver to handle discontinuous fl uid properties at the interface.

Several categories of interface locating exist. The fi rst one is Lagrangian methods. They 
can consist in Lagrangian grid methods [9] where the background grid is following the 
interface. The main limitation is that this method cannot track surfaces that break apart or 
intersect. Another kind of Lagrangian methods is the meshless approach like the smoothed 
particles hydrodynamics [10] but here the limit usually comes from the number of parti-
cles. The second category is the front tracking method [11]. The motion equation for the 
fl ow fi eld is solved on a fi xed grid, and the interface position is tracked explicitly by mark-
ers distributed evenly on the interface. Diffi culty generally comes from the repartition of 
the markers, which should ideally be kept equidistant, especially for coalescence of inter-
faces’ applications. The third category of these methods consists in capturing the interface 
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using various volume functions defi ned on the fi xed grid used to solve the governing equa-
tions of the fl ow. The volume of fl uid (VOF) [12] method and level-set [13] approaches are 
part of this group. VOF methods are conservative, but interface properties such as normal 
and curvature are diffi cult to calculate accurately. Level-set methods automatically deal 
with topological changes but are not conservative. Several techniques have been developed 
to ensure volume conservation and improve the locating method, such as a combination of 
level-set and VOF method [14], or the augmented Lagrangian method coupled to VOF 
techniques [15].

Olsson and Kreiss [16] introduced a level-set method with an artifi cial compression step 
performed after the advection of the level-set function to ensure that the thickness of the 
transition layer is preserved.

In our work, the Eulerian approach is used. This approach of the two-fl uid model allows 
the direct use of the volume fraction as an interface function. Thus, the equivalent to the 
 level-set function is self-transported by the resolution of the momentum balance equation. To 
keep a good location of the interface over time, the same artifi cial compression step as Olsson 
and Kreiss is used.

Concerning coalescence, only few experiments provide results on local bubble coales-
cence such as the experiment of Chen et al., described in [17] and of Brereton and Korotney 
[18]. Numerical works on this phenomenon usually follow interface treatment methods and 
can be found with marker approach [19] and VOF approach [17, 20].

3 MATHEMATICAL FORMULATION AND NUMERICAL METHOD

3.1 Governing equations

The two-fl uid model is based on Eulerian multifi eld balance equations. The so-called six 
equations model (three per fi eld: mass, momentum and energy) is computed in NEP-
TUNE_CFD code, assuming that there is only one pressure in the system. The solver 
SIMPLE [21] is based on a fi nite volume discretization, together with a collocated 
arrangement for all variables. An iterative coupling of equations is used to ensure mass 
and energy conservation. The data structure is totally face-based, which allows the use of 
arbitrary-shaped cells including nonconforming meshes. In the cases presented in this 
paper, 2D axisymmetric and 3D square meshes are used. The notation Δx in the paper 
represents the characteristic space dimension of these 2D and 3D square meshes. The 
discretization scheme is centred with a slope test to avoid over or under-shots on the vol-
ume fractions.

A full description of the model balance equations can be found in Ishii and Hibiki [22]. In 
the simplifi ed case of isothermal two-fl uid model, the system of equations can be written as 
mass and momentum balances:

 
 

(1)

  (2)

where rk, Uk, ak, Gk and tk,ij, P and Ik,i denote, respectively, the density, the mean velocity, the 
volumetric fraction, the mass transfer and the total stress tensor including laminar and 
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 turbulent contribution, the mean pressure and the interfacial momentum exchange between 
phases. In our cases, the Reynolds number is lower than 100, so we suppose the cell sizes 
small enough to simulate every space scale of the fl ow. Therefore, no turbulence model is 
used. The interfacial momentum exchange is constituted here by two interfacial forces: sur-
face tension force and drag force. This later appears in momentum balance equations due to 
averaging. Its local sum over phases is equal to 0 and depends on the relative velocity between 
the phases

  (3)

As we consider in this paper a local separated fl ow in the two-fl uid model, the role of the 
drag force is to enforce a no slip condition and so equality of the phase velocities at the bub-
ble interface. The closure law, eqn (3), is applied with a very short relaxation time t to achieve 
this internal wall condition at the interface (t = Δt/100).

3.2 Surface tension

Large bubbles are no longer considered as a dispersed, but as a continuous fi eld; therefore, 
the surface tension, eqn (4), has to be taken into account in the model. From an Eulerian point 
of view, a surface force has to be implemented in volume:

  (4)

where s, k and  denote, respectively, the surface tension, the curvature and the normal vector. 
The curvature k is defi ned as the divergence of the unit normal vector at the interface. A colour 
function c locating the interface, such as a level-set function, is a descriptor of this normal vec-
tor. The unit normal vector and the curvature can be calculated with the colour function, obtained 
by diffusion of the volume fraction. Here it becomes important that the thickness of the inter-
face is kept constant so that the colour function gives a good approximation of the local 
curvature. The continuum surface force method described by Brackbill et al. [23] allows the 
reformulation of the surface tension into an equivalent volume force, eqn (5), that can be added 
to the momentum balance equation. In the two-fl uid model, this force is split between the two 
phases occupying the cell, since two momentum equations are solved. The average model is 
here the volume one

 
 (5)

3.3 Interface sharpening

As already discussed in the previous section, the curvature calculation requires to pay some 
attention to the interface thickness. An artifi cial compression method coupled to a level-set 
method [16] improves the volume conservation. This interface sharpening method consists in 
resolving the following equation on a nonphysical time step between two physical steps to 
ensure the interface thickness to be kept constant. In our case, the volume conservation is 
verifi ed in the resolution of the mass balance equation. Therefore, the main role of this 
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 artifi cial step is not to provide a good volume conservation but to keep the accuracy of inter-
face quantities calculation constant over time

 
 (6)

The parameter e controls the fi nal interface width at convergence and is here chosen so that 
the interface thickness is two cells. The nonphysical time Δt is chosen to ensure CFL and 
Fourier numbers under 0.5 and to minimize the number of iteration leading to a steady inter-
face width: e = Δx/2 and Δt = Δx/32.

4 APPLICATION TO BUBBLE RISING: RAYMOND 
AND ROSANT’S EXPERIMENT

4.1 Experimental description 

The capturing interface process described in the previous section is validated against the 
bubble rising experiments of Raymond and Rosant [6]. Bubbles are released in a stationary 
blend of water and glycerol at time t = 0 s in a rectangular Plexiglas tank of 0.3 × 0.2 m2 
inside cross-section and 0.5 m height. The reference pressure is the atmospheric pressure 
(1013 hPa). The liquid physical properties (viscosity and density) are given in Table 1.

Table 1: Fluid properties for the Raymond and Rosant’s experiment [6].

Series Viscosity (Pa s) Density (kg m–3) Surface tension (N m–1)

S1 • 0.687 1250 0.063
S3 � 0.242 1230 0.063
S5 + 0.0733 1205 0.064
S6 � 0.0422 1190 0.064

The fi nal bubble velocity and shape (ratio of height h to width w of the bubble) are studied as functions of 
the bubble initial diameter dbubble, ranging from 1 to 12 mm. An axisymmetric geometry is used, repro-
ducing the experiment situation of bubbles rising in pipe with a large section compared with the bubble 
diameters. The air density and viscosity are, respectively, 1.29 kg m–3 and 1.84 10–5 Pa s. A Dirichlet’s 
condition on the pressure fi eld is imposed at the top boundary.

4.2 Sensitivity analysis

Sensitivity analysis, both on the size of the computational domain and the mesh refi nement, 
has been carried out. Experimental data show that the wall effects on the bubbles can be con-
sidered as negligible. To optimize the CPU cost of the simulation, a sensitivity analysis on the 
computational domain is done to fi nd the smallest possible computational domain in which 
walls have negligible effect on the terminal velocity and shape of the simulated bubbles.

Radius from two to six times the diameter of the initial bubble was tested for the simulation 
of the experimental case S5 (see Table 1) with a 8-mm diameter bubble. Figure 1 displays the 
terminal bubble shape for the tested computational domain size. The terminal velocity can be 
considered as independent from the domain size D when D > 4dbubble. A grid-independent 
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test was carried out on the axisymmetric rise of a single bubble in a liquid on six different 
meshes. The six grids are M2 (d = dbubble/Δx = 15), M3 (d = 20), M4 (d = 25), M5 (d = 30), 
M6 (d = 35) and M7 (d = 40). According to the previous sensitivity analysis on the domain 
size, the domain is chosen to have a 4-bubble diameter radius and 12-bubble diameter height. 
Figure 1 shows that the mesh M5 provides a nearly grid-independent solution. This grid will 
be used in the following.

4.3 Model validation with experiments

Figure 2 presents the comparison between numerical predictions and experimental meas-
urements for the terminal velocities and shapes for the four experiments S1, S3, S5 and S6. 

Figure 1: Sensitivity analysis on the computational domain size (on the left) and on the mesh 
refi nement (on the right). D is the computational domain radius, here expressed in 
bubble diameters. The different meshes are axisymmetric and square in the plane of 
the axis: M2 (d = dbubble  /Δx = 15), M3 (d = 20), M4 (d = 25), M5 (d = 30), 
M6 (d = 35) and M7 (d = 40).

Figure 2: Comparison between the numerical predictions and the experimental measurements 
for the bubble terminal velocity (on the left) and aspect ratio (on the right) for 
various liquid properties (see Table 1). The dashed and dotted lines represent, 
respectively, 10% and 25% of discrepancy between calculations and measurements.
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The predicted velocities are found to be in a good agreement with the experimental data, 
the deviation being lower than 10%. Concerning the bubble aspect ratio, as shown in 
Fig. 2, the deviation is lower than 10% for experiments S1 and S3, and lower than 23% for 
experiment S5. Only the three fastest bubbles are found to be not accurately predicted for 
the experiment S6, which is the less viscous case.

For these most distorted cases (experiment case S6 and bubble diameters >6 mm), a part 
of the gap between measurements and numerical predictions could be explained by a discrep-
ancy between the initial conditions in the experiment and the simulation. These bubbles being 
the fastest, we can doubt that their initial shape is a perfect sphere in the experiment. As it has 
been shown in [7], an initial deformation of the bubble can impact the terminal shape and 
velocity of the bubble for small viscosities that may explain here part of the difference 
observed in the experiment S6 (red markers in Fig. 2).

5 BUBBLE COALESCENCE
The numerical predictions of the model for the terminal velocities and shapes prove to be in 
reasonable agreement with the experimental observations for bubble rising cases. Aiming at 
simulating slug fl ow regimes, the accuracy of local coalescence phenomenon prediction is of 
high concern. Two different experiments of local bubble coalescence are modelled here. The 
fi rst one is described by Chen et al. [17]. The experiments of Brereton and Korotney [18] 
provide a good qualitative description of the coalescence of two bubbles rising in a quiescent 
liquid.

5.1 Experiment of Chen et al.

The experiment of Chen et al. [17] consists in the coalescence of two identical bubbles, 
shown in Fig. 3. The injection is a cylindrical nozzle of diameter 6 mm. The liquid 
 physical properties are rl = 1220 kg m–3, µl = 0.11 kg·m–1·s–1 with a surface tension coef-
fi cient  σ = 0.066 N·m–1 between the water–glycerin blend and the air. These properties 
give the  following Eötvos and Morton numbers: Eö = 5, Mo = 4.1 × 10–3 and a density 
ratio rl /rg ≈ 1000. The experimental data consist in four pictures with a delay of 15 ms 
between each captures.

A fi rst attempt is a numerical calculation with spherical shapes for bubble initialization. To 
respect the geometry of the experiment, the computational domain is 2D axisymmetric with 
a square grid. The results of the calculation are presented in Fig. 4. The time scale of the 
coalescence phenomenon seems shorter than in the experiment (30 ± 15 ms in experiment vs. 
20 ± 10 ms in the simulation). Grid dependency on the numerical results has been tested on 
three meshes; the differences between the coarse (d = dbubble/Δx = 10), the medium (d = 20) 
and the fi ne (d = 30) grids are presented in Fig. 5. It shows that the medium and the fi ne grids 
predict nearly the same bubble shape. Therefore, the observed discrepancy between the 
numerical and the experimental results is not due to a lack of grid refi nement. The reason may 
be the differences between initial conditions (gas inlet in the experiment compared with sta-
tionary spherical bubbles in the simulation).

A second simulation is conducted this time with an initialization of the bubble shapes 
derived from the fi rst experimental picture at time t = 45 ms (time t = 0 s for the simulation). 
The same capture timing as in the experiment is presented in Fig. 6 and they are superposed 
on the experimental pictures.
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We can observe that with such initialization, the time scale of the phenomenon is better 
than with the initial spherical shapes. There is still differences between the bubble shapes and 
velocities, but this was expected since the experimental bubbles in Fig. 6 at time t = 45 ms 
already have a velocity, whereas the initial velocities are set to zero in the simulation. The 
velocity difference can be observed in Fig. 6, as the yellow line materializing the bottom of 
the calculation domain is rising over time and its velocity being directly linked to the delay 
between experimental and numerical bubbles.

Figure 3: Experimental pictures of local coalescence experiment. The capture frequency is 15 ms. 
The black nozzle at the bottom of each picture has a diameter of 6 mm (source [17]).

Figure 4: Numerical modelling of two-bubble in-line coalescence and the gas volume fraction are 
presented. The delay between two pictures is 10 ms.

Figure 5: Void fraction contour αbubble = 0.5 for three different meshes (coarse: green, medium: red, 
fi ne: black).
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5.2 Brereton and Korotney’s experiment

Four cases of two-bubble coalescence are simulated: two cases of coaxial or in-line coales-
cence and two cases of oblique coalescence. Each type of coalescence is being treated in two 
dynamic conditions, described by Reynolds, Morton and Eötvos numbers: case (a) (Re = 1, 
Mo = 30, Eö = 16) and case (b) (Re = 43, Mo = 2 × 10–4, Eö = 16). Both the leading and the 
trailing bubbles have the same volume, with an initial bubble diameter of 1 cm. The compu-
tational domain is a rectangular 3D box of size 0.04 × 0.04 × 0.08 m3 and the origin is placed 
at the centre of the bottom face. The initial bubbles have a diameter of 1 cm and are released 
from positions {(0,0,0.025) (0,0.08,0.125)} and {(0,0,0.025) (0,0,0.125)}, respectively, for 
the oblique and the coaxial coalescence experiments. Regarding the discretization, the space 
scale is Δx = 5 × 10–3 m for case (a) and Δx = 2.5 × 10–3 m for case (b).

A comparison between numerical prediction and the experimental observations of the coa-
lescence phenomena is presented in [4]. Indeed, the most viscous case (a) needs the fi nest 
grid because of the diffi culty in reproducing the sharp tail of the second bubble due to viscous 
effects. The time scale of the coalescence is well predicted by the numerical simulations for 
all cases. According to the time difference between pictures, the duration of the coalescence 
phenomenon can be estimated at 75 ± 15 ms for case (a) and 45 ± 15 ms for case (b). Despite 
the complexity of the phenomenon, the shapes of both leading and trailing bubbles are in 
excellent agreement with the experimental observations [4].

A qualitative comparison of these bubble shapes is given in Fig. 7. The bubble ratio is 
again the ratio of the height to the width of the bubble. Since the bubble shapes are far from 
being always ellipsoidal, two measures are given for each bubble. The fi rst one, represented 
in Fig. 7 by the hollow symbols, is obtained by a square assumption for the bubble ratio cal-
culation, and the second one represented by the solid symbols, is obtained with an ellipsoidal 
assumption. Except for the case of oblique coalescence in the less viscous liquid (b) (Re = 43, 
Mo = 2 × 10–4 and Eo = 16), represented by the red triangle markers in Fig. 7, we mainly have 
a prediction of the bubble shapes during the coalescence phenomenon with an error lower 
than 25%. The differences are mostly due to the difference between experimental and 

Figure 6: Superposition of the numerical simulation with the experimental pictures. The red line 
represents the void fraction contour abubble = 0.5. The yellow line materializes the 
bottom of the calculation domain. The rise of this yellow line expressed the delay of the 
calculated bubbles compared with the experimental observations due to the initial condition 
of stationary bubbles at t = 0 s.

(a) t=45 ms (a) t=60 ms (c) τ=75 ms (d) τ=90 ms
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 numerical initial conditions. Indeed, the simulations are initiated with two spherical station-
ary bubbles, as the trailing bubble is injected in the domain while the leading bubble is 
already rising in the experiments.

6 CONCLUSION
The dynamics of a deformed bubble has been studied using a two-fl uid model adapted to 
cases with located interfaces. Experimental validations have been carried out for single- 
bubble rising and two-bubble coalescence cases. Quantitatively for bubble rising, the 
predicted terminal shape and the velocity of the bubbles are in reasonable agreement with 
the experiments of Raymond and Rosant [6]. Qualitatively for two-bubble coalescence, the 
coalescence time scale and bubble behaviour are found to be quite similar to both Chen et al. 
[17] and Brereton and Korotney’s experiments [18]. The model dedicated to large distorted 
bubbles was successfully applied to coalescence cases in different liquid conditions and 
gives good agreement between the experimental bubble shapes and the numerical predic-
tions. This is comforting us in the way of a hybrid three-fi eld model to address regime 
transitions such as bubbly to slug fl ow, as one of the main incertitude in today’s dispersed 
models is the effi ciency of coalescence correlations when the bubble diameter is increasing 
and the bubble deforming.

Figure 7: Comparison between the experimental bubble ratio from Brereton and Korotney 
[18] and numerical predictions of the four cases of coalescence previously described 
(coaxial and oblique). The hollow symbols represent bubble ratio evaluation with a 
squared approximation and the solid symbols an ellipsoidal approximation of the 
bubble shape. The dashed and dotted lines represent, respectively, 10% and 25% of 
discrepancy between prediction and measurements.
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