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ABSTRACT
The inhomogeneous theory of elasticity considers bodies, the mechanical characteristics of which (the 
modulus of elasticity and Poisson’s ratio) are functions of the coordinates. If indirect problems of the 
inhomogeneous theory of elasticity are identifi ed, and the stress-strain state of the body has well-known 
functions of mechanical characteristics, the essence of inverse problems is to determine the functions 
of the inhomogeneity for a given stress state of the body. One of the fi rst solutions to such an inverse 
problem was published in the work of Lekhnitskii (“Radial distribution of stresses in the wedge and 
half-plane with variable modulus of elasticity”. PMM, XXVI(1), pp. 146–151, 1962). In this article, 
we consider one-dimensional inverse problems for thick-walled cylindrical and spherical shells that are 
subjected to internal and external pressures in a non-varying temperature fi eld. The aim of this work 
is to identify the dependence of the elastic modulus on the radial co-ordinate for which the equivalent 
stress according to a particular theory of strength will be constant at all points of the body (such struc-
tures are called equal stress), or the equivalent stress in all points will be equal to the strength of the 
material (such structures are called equal strength). For example, the author has proven that the limit 
loads on resulting equal-strength inhomogeneous shells can be signifi cantly increased.
Keywords: Equal-strength structure, equal-stress structure, inhomogeneity, inverse problem, modulus 
of elasticity, theory of elasticity, thick-walled shell.

1 INTRODUCTION
According to the basics of solid mechanics, stresses are smaller in the parts of a body where 
the material is softer than in the rest of the body. This fact makes it possible to reduce the 
stress concentration by using a softer material in the areas of concentration. This artifi cial 
modifi cation of the material is to some degree similar to the plastic behavior of materials. At 
the transition to the plastic state, the material itself softens and thus prevents failure in the 
areas of concentration. In thick-walled shells exposed to the infl uence of internal or external 
pressures, maximum stresses occur near the inner surface of the shell and lead to failure in 
this area when the limit state is being reached. The author gives examples of the calculation 
of the change in the modulus of elasticity in the shells, where failure should be simultaneous 
at all points, if considered theoretically. 

2 SOME WORDS ABOUT TERMINOLOGY
If equivalent stresses corresponding to a particular theory of strength at all points of the body 
are constant, we call this an equal-stress structure. For example, according to the fi rst theory 
of strength, the equivalent stress is equal to the maximum normal stress and, in accordance 
with the third theory of strength, it is equal to the maximum shear stress. The constancy of 
the equivalent stress does not mean that the construction is an equal-stress structure. Figure 1 
shows an extended rod; if the features of the rigid support near the point of the force applica-
tion are not taken into account,  s = F/A is assumed constant. Thus, the rod is an equal-stress 
structure. 
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If the rod is homogeneous, this construction is also equal-strength. However, if the rod is 
made of different materials (Fig. 1b demonstrates components that have different strength 
values), this rod will be equal-stress, but not equal-strength.

Another example is given in Fig. 2, which demonstrates a phenomenon that is frequently 
mentioned in books on the strength of materials. According to the above terminology, this 
beam is neither equal-stress nor equal-strength because the normal stresses in the beam 
cross-sections vary with depth.

It is clear enough that only a few structures can be equal-stress, such as, in particular, dif-
ferent types of shells such as membrane shells or thick-walled shells exposed to certain types 
of loading. In this paper, an attempt is made at developing models of equal-stress and equal-
strength thick-walled cylindrical and spherical shells, subjected to internal and external 
pressures within a non-uniform temperature fi eld.

3 IDEAS
Figure 3 shows a cross-section of a thick-walled cylindrical shell, loaded internally by con-
stant pressure  pa (Fig. 3a). For the homogeneous material (shown by the dotted lines in 
Fig. 3b), the stress sq reaches its maximum near the inner boundary of the cylinder (Fig. 3c), 
but for the heterogeneous material (solid line), for which E = E(r) as shown in the diagram, 

Figure 1: Tension of the rod: (a) equal-strength structure and (b) equal-stress structure.

Figure 2: The beam of uniform strength.

Figure 3: Stress state in a thick-walled cylinder under the action of internal pressure: –––, 
non-homogeneous material; - - -, homogeneous material.
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sq remains closer to a constant value. The essence of the method of strength optimization of 
thick-walled shells consists of developing shells made of heterogeneous materials. For this 
purpose, the inverse problem of elasticity of inhomogeneous bodies is solved for the shell in 
question. The inverse problem has the following objective. In accordance with a particular 
theory of strength, the equivalent stress s0 is assumed to be constant at all points of the shell, 
and it is assumed that an appropriate function E(r) can be defi ned. Thus, the shell is called an 
equal-stress shell. The fi rst solutions to inverse problems concerning thick-walled shells can 
be found in the book by Andreev [1], and optimization of such shells was considered in the 
works of Andreev and Potekhin [2, 3].

4 INVERSE PROBLEMS FOR THICK-WALLED CYLINDRICAL SHELLS
Solutions of inverse problems within the maximum shear theory and the maximum strain- 
energy theory are now provided.

4.1 Basic equations

The direct problem of the theory of elasticity of inhomogeneous bodies with an axial symme-
try in cylindrical coordinates is reduced to the differential equation [1]

 
3 1 0.r r r

E E
r E r E

n
s s s

−′ ′⎛ ⎞+ − − ⋅ =′′ ′⎜ ⎟⎝ ⎠
 (1)

Here, the modulus of elasticity E = E(r).The objective of the direct problem is to determine 
the stress state if the function E(r) is available. As mentioned above, the purpose of the solu-
tion to the inverse problem is to determine the function E(r) for which the equivalent stress 
s0 (which is different for each theory of strength) will be constant all over the structure. An 
axisymmetric plane-strain problem is considered involving a thick-walled cylindrical shell 
loaded by constant internal (pa) and external (pb) pressures. The inner radius of the shell is 
equal to a, and the outer one is equal to b. In this case, the boundary conditions may be rep-
resented as

 r = a, σr = −pa; r = b, σr = −pb. (2)

4.2 Maximum shear theory

The order of principal stresses can be different depending on the nature of the stress sq. In the 
case where sq <0 , the principal stresses are defi ned as follows: s1 = sz = ν(sr + sq),  s2 = sr 
and s3 = sq.With this assumption in mind, the equal-stress condition after some algebra takes 
the form [(1 − k)sr − sq]/(2 − k) = sq = const where k = (1 − 2 ν)/(1 − ν). 

By expressing sq on the basis of the above and by substituting this expression into the 
equilibrium equation

 
d

0,
d
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r r
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this leads to
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r k k
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s + = − − ⋅′  (4)
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The solution to this differential equation is represented by the function

 
( ) 02k

r

A r k
k

s
s

−⋅ − −
= . (5)

The constants A and s0 can be found by using the boundary conditions (2):

 0; .
2

k k
a b a b
k k k k

p p p b p akA k
kb a b a

s
− −

− − − −

− −
= ⋅ = ⋅

−− −
 (6)

By substituting the stress (5) into eqn (1), we obtain a homogeneous linear differential 
equation for the distribution of the modulus of elasticity:

 ( )1

0

0.kAE r E
s

− +− ⋅ ⋅ =′  (7)

Integrating eqn (7) subject to the initial condition (r = a; E = E0) leads to the function E(r):

 ( ) ( )0
0

exp .k kAE r E r a
ks

− −⎡ ⎤
= − ⋅ −⎢ ⎥

⎣ ⎦
 (8)

Figure 4 shows the plots of E(r) calculated for the values n1 = 0.1, n2 = 0.25,  n1 = 0.4, 
b/a = 2, pa = 6 MPa, pa = 12 MPa. For the values of the Poisson’s ratio n1 = 0.1 and n2 = 0.25, 
the function E(r) is determined by solving the problem for a cylinder that satisfi es the condi-
tion 

 
sz > sr > sq, but for the value n3 = 0.4 the solution meets the condition sr > sz > sq 

(details not provided here). As follows from Fig. 4, the infl uence of the Poisson’s ratio on the 
distribution function E(r) is signifi cant. Figure 5 demonstrates the distribution of stresses in 
the inhomogeneous (equal-stress) cylinder in the case of n2 = 0.25, as well as in a homoge-
neous cylinder that has the same dimensions and loads. 

Once again, it is pointed out that the equivalent stress s0 is the same at all points of the 
cylinder. Thus, the model of the equal-stress structure has been obtained. However, such a 
cylinder is not an equal-strength one. The procedure of developing a model of an equal-
strength cylinder will be discussed further.

Figure 4: Distribution of the modulus of elasticity in an equal-stress cylinder: 1: ν = 0.1, 2: 
ν = 0.25, 3: ν = 0.4.
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4.3 Some mechanical properties of concrete

In order to build a model of an equal-strength structure, it is necessary that, in the course of 
transformation of the micro-structure of the material, its strength changes at a slower rate 
than its modulus of elasticity. It may be, for example, a modifi ed cement concrete or a poly-
mer concrete fi lled with silica fl our [4] (see Table 1). It is evident that the strength of the 
above materials varies slightly while the values of their modulus of elasticity change signifi -
cantly.

The relation R = f(e) is introduced to ensure the correlation of strength and stiffness proper-
ties of the material. It links the strength and deformation characteristics of the material. This 
function approximates the experimental data for the selected material. By using this relation, 
the inverse problem can be solved with reference to the model of an equal-strength structure. 
Nevertheless, the structure may be not equal-stress, but the condition of equal-strength is 
ensured by the equivalent stress, s0 being constant at each point of the body designated to 
have material strength R.

4.4 The inverse problem of an equal-strength cylinder

This section describes the method of optimization of a cylindrical polymer concrete thick-
walled shell based on the strength criterion developed by Balandin. This condition is confi rmed 

Figure 5: Stress diagrams in an equal-stress cylinder: –––, non-homogeneous material; - - - 
homogeneous material.

Table 1: Mechanical properties of the polymer concrete fi lled with silica fl our.

No.
Level of fi lling with silica 

fl our Prism strength Rb,MPa
Elasticity modulus Eb × 10−4, 

MPa

1 – 142 3.10
2 50 146 4.50

3 100 160 7.10

4 200 148 10.5

5 300 132 13.7
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experimentally by Genijev and Kissuk [5] for the concrete under all-round non-uniform com-
pression. The Balandin strength condition in the coordinate system of s1, s2 and s3 represents 
the surface of a paraboloid of revolution. Given the fact that compressive stresses bear a minus 
sign, this expression is represented as follows:

 ( ) ( )( )2 2 2
1 2 3 1 2 2 3 3 1 1 2 3 ,b bt b btR R R Rs s s s s s s s s s s s+ + − + + + − + + =  (9)

where Rb is the design strength of concrete subjected to axial compression (prism strength) 
and Rbt is the design strength of concrete subjected to axial tension. Since the concrete works 
poorly when in tension, it is possible to put Rb = 0 in (9). The application of this assumption 
substantially simplifi es the optimization problem. Given this simplifi cation, expression (9) 
can be rewritten as

 ( ) ( )2 2 2
1 2 3 1 2 2 3 3 1 1 2 3 0.bRs s s s s s s s s s s s+ + − + + + + + =  (10)

According to Karpenko [6], the Poisson ratio can reach values close to 0.5 with regard to 
the limit state of the concrete subjected to compressive stresses. Therefore, we take ν = 0.5 
for further calculations. Assuming plane-strain conditions in the cylinder, the principal 
stresses can be determined as follows: s1 = sz = ν(sr + sq), s2 = sr and s3 = sq. With this in 
mind, the strength condition (10) reads as

 0.75(sr)
2 − 1.5 srsq + 0.75(sq)

2 + 1.5Rb (sr + sq) = 0. (11)

Equation (10) describes a parabola in implicit form, so solutions need to pass to a para-
metrical expression for stresses sr and sq [7]:

 sr = −Rb(−0.5φ + 0.25φ2), sq = −Rb(−0.5φ + 0.25φ2). (12)

The relationship between the strength and rigidity properties of the material is provided by

 Rb = r + wEb, (13)

where coeffi cients ρ and ω are determined on the basis of the experimental data. When solv-
ing the problem, we use the condition that the Poisson ratio n = 0.5. Therefore, under 
plane-strain conditions

 εr = −εq. (14)

Substituting (14) into the condition of compatibility of strain components, we obtain the 
equation

 
d

2 0.
dr r

q qe e
+ =  (15)

The solution of eqn (15) is represented by the expression

 0
2 ,
rq

e
e =  (16)

where ε0 is unknown.
To obtain the dependence of the modulus of elasticity of concrete Eb on the radial co-

ordinate, the expression of strain 

 [ ]1 (1 ) r
bE

q qe n s ns= ⋅ − −  (17)
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will be used. When substituting the value of the Poisson ratio n = 0.5 into (17), the expres-
sions (16), (12) and (13), after transformation, lead to

 
( ) ( )

( ) ( )
3

3
0

1 2
.

4 1 2b

r
E

r
r

e w

−
=

− − ⋅
f f

f f
 (18)

By substituting (13) and (18) into eqn (12), the stresses are expressed in terms of parameter j:

 
2 2

0 0
3 3

0 0

( 5 12 4 ) (1 4 )
, .

3(4 (1 2 ) ( )) 3(4 (1 2 ) ( ))r r rq

re re
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After substituting (19) into the equilibrium eqn (3), we obtain the nonlinear differential 
equation

 
2 4

0
2 3

0

8 (3 2 ) (1 2 )d 2 ,
d 3 (1 2 )(16 (1 2 ) )
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r
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− − −
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f f
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where ε0 is a constant defi ned by the expression

 
( )

( ) ( )
0

3
0 0 1 2 .

4
e = −b

a
b

R a
E

f  (21)

Here ja, 
( )0
bR  and ( )0

bE  are the initial (at r = a) values of parameter j, the design strength of 
concrete under axial compression and the modulus of elasticity of concrete, respectively. 
Equation (21) is obtained by substituting the following values into (17):

( )00
30.5, , b bv E E
aq

e
e= = = ,

 
( ) ( )0 0

2 2( 5 12 4 ), (1 4 )
12 12
b b

r a a a

R R
qs s= − + − = −f f f . (22)

The fourth-order method of Runge-Kutta was used to solve eqn (20).

4.5 Calculation example

The solution applicable to a thick-walled cylinder and based on the above Paturoyev method 
and experimental data [4] is presented below.

The calculation was performed on the basis of the following data: ( )0 43.1 10bE = ×  MPa, 
( )0 141.0bR =  MPa, pa/pb = 1.5, b/a = 1.6, n = 0.5. To determine the coeffi cients in formula (13), 

standard mathematical functions of MathCAD13 were applied and the following values were 
obtained: ρ = 126.7 MPa and ω = 4.6 × 10−4 for the fi rst three lines of Table 1. Figure 6 shows 
the approximated relationship for polymer concrete as well as the experimental points for 
which it is derived.

The solution of (20) is obtained by the Runge-Kutta fourth-order method for the initial 
value of the argument ja = −3.071. The fi nal value of the argument jb = −2.222. The values 
of the pressures produced on the cylinder are pa = 549.1 MPa and pb = 366.0 MPa, respec-
tively. The value of pressure pa is derived as follows. The values of constants ρ and ω, the 
value of parameter j = ja, and also the value r = a are substituted into the expression of the 
normal radial stress (19). As a result, sr(r = a) = −549.1 MPa. By using the fi rst of relations 
(2), we fi nd the value pa specifi ed above. The pressure pb is equal to 1.5 pa.
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Stresses sr, sq and sz are shown in Fig. 7. The resulting load on the equal-strength cylinder 
can be compared with the load applied to a homogeneous structure. Due to condition (11), the 
greatest equivalent stress is reached on the inner surface of the cylinder. For a homogeneous 
structure, the value of the internal pressure 

hom
ap  can be found according to the formula

 

( ) ( )
( )

0

2

2
,b rhom

a

r

R s s
p

s s
q

q

+
= −

−
 (23)

where sr = −1, ( )0
bR  is the value of the design strength of the polymer concrete at r = a and 

,hom hom
r a r ap s p sq qs s= = . Expression (23) is obtained as follows. The stresses in the homoge-

neous cylinder are expressed as

 ,hom hom
r a r ap s p sq qs s= = , (24)

where functions sr and sq are obtained by solving the Lame problem for a thick-walled cylin-
der under the boundary conditions

 r = a, sr = −1; r = b, sq = −d  (25)

Here d is the ratio of the external pressure to the value of the internal pressure. The design 
strength is assumed to be constant:

 ( )0 .b bR R=  (26)

Figure 6: The relationship between strength and modulus of elasticity of the polymer 
concrete.

Figure 7: Stresses in the equal-strength polymer concrete cylinder.
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After substituting expressions (24) and (25) into eqn (11), the pressure 
hom
ap  can be found. 

The calculation performed according to formula (23) gives the value 213.5 MPahom
ap = . Ear-

lier, the limit load for the inhomogeneous equal-strength structure was determined to be 
549.1MPainh

ap = . To determine the effect of the optimized model of the inhomogeneous 
equal-strength structure, the effi ciency ratio /inh hom

a ap pb =  is introduced; this indicates how 
external loads produced on a body can be increased compared with the homogeneous analog. 
For the equal-strength cylinder considered in this section, β = 2.57. Thus, it has been shown 
that if a heterogeneous equal-strength thick-walled shell is produced, the action of the load 
produced on it can be greater by more than 2.5 times.

5 INVERSE PROBLEMS OF THICK-WALLED SPHERICAL SHELLS SUBJECTED 
TO TEMPERATURE LOADS 

This section contains some solutions to inverse problems of thick-walled spherical shells 
loaded by the pressures obtained previously [3] and presented by Andreev [8]. In this section, 
the inverse problem of a spherical shell is considered, where stresses are caused not only by 
force loads but also by the temperature fi eld. This problem was solved for the cylindrical shell 
[9], and for the spherical shell [10]. Solutions to inverse problems in the presence of a tem-
perature fi eld have some features that need further consideration.

As for the previous problems of loaded shells, internal and external pressures must satisfy 
the condition of equilibrium. For example, if a cylindrical shell is subjected to internal pres-
sure, the equilibrium condition for half of a cylinder is (Fig. 8a)

 
0

0 2 d sin d 2 .
b

a

Y r p
p

qs q qΣ = ⇒ = ⋅ = ⋅∫ ∫ à àà ð à  (27)

If the thick-walled shell is in a steady-state temperature fi eld caused by the temperature 
difference between the inner and outer surfaces, the stress diagram sq is self-balanced 
(Fig. 8b) and, therefore,

 d 0.
b

a

rqs =∫  (28)

For an inhomogeneous cylinder to comply with the condition sq = const, it follows from 
eqn (28) that sq ≡ 0. Thus, the solution to the inverse problem of a thick-walled shell sub-
jected solely to a temperature fi eld is impossible in the absence of simultaneous action by 
force loads, including internal and (or) external pressures.

Here the elasticity theory of inhomogeneous bodies is applied to the inverse problem for 
thick-walled spherical shells under central symmetry. Constant equivalent stresses are 

Figure 8: Condition of equilibrium of half of a cylinder: (a) stress diagram sq caused by the 
action of internal pressure; and (b) stress diagram sq caused by the action of the 
temperature fi eld.
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assumed according to the third theory of strength (maximum shear stress theory). It is also 
assumed that n = const = 0.2 and E = E(r). The basic notation in this section is the same as 
used earlier in this paper.

In [1], there is an equation formulated for stress sr, which represents the axisymmetric 
problem of a radially inhomogeneous body:

 ( ) ( ) ( ),r r rr r f rs s y s+ + =′′ ′f  (29)

where

 
24 2 (1 2 )( ) , ( ) , ( ) .

(1 ) (1 )
inEE Er r f r

r E r E r
en

y
n n

′−′ ′= − = − = −
− −

f  (30)

Here εin is the induced (in this case temperature) strain, which is computed using the formula

 εin = αTT(r), (31)

where αT = const is the temperature coeffi cient of linear expansion.
Substituting (30) and (31) into (29) leads to the equation

 
24 2 (1 2 ) .

(1 ) (1 )
T

r r r
E TE E

r E r E r
an

s s s
n n

′−′ ′⎛ ⎞+ − − = −′′ ′⎜ ⎟⎝ ⎠ − −
 (32)

For a steady-state temperature fi eld in a hollow sphere, the inner boundary of which is 
maintained at temperature Ta = T0, while the external at Ta = 0, the through thickness temper-
ature is given by the formula

  (33)

The boundary conditions for function σr are given in (2). Subsequently, for the purpose of 
the calculations, it will be assumed that a = 1 m, b = 2 m, pa = 0, pb = 100 MPa, E0 = 2 × 104 

MPa, n = 0.2, Ta= 100°C and αT =1 × 10−51/°C.
Based on the maximum shear stress theory, the relation E = E(r) is determined where the 

stress state satisfi es the condition τmax = (sq − sr)/2 = const. Substituting sq − sr = s0 = const 
into the equation of equilibrium

 
d

2 0
d

rr

r r
qs ss −

+ =  (34)

gives

 02 .r r
s

s =′  (35)

The solution to this differential equation is the function

 02 ln .r
r A
a

s s
⎛ ⎞= +⎜ ⎟⎝ ⎠

 (36)

On the basis of boundary conditions (2), constants A and σ0 can be determined to be

A = 0, s0 = −72.13 MPa.
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By substituting relation (36) into eqn (32), after some transformations, the fi rst-order dif-
ferential equation for function E(r) is obtained as

 2

2
0

3 0,
1 2 ln 1 2 ln

BE E E
r rr k r k
a a

s

− − =′
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 (37)

where B and k are identifi ed as follows:

B = αTT0(ab)/(1 − n)(a − b), k = (1 − 2n)/ (1 − n).

Equation (37) is a Bernoulli equation; therefore, for a given Poisson’s ratio n = 0.2, the 
desired relation E(r) is obtained:

 

2

0

0

2 3 ln

10 6 ln

rr
a

E .
rB B Cr
a

s

s

⎡ ⎤⎛ ⎞+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦=
⎛ ⎞+ +⎜ ⎟⎝ ⎠

 (38)

Constant C can be determined for two possible boundary conditions, that is, the value of 
Young’s modulus E0 can be provided at the inner or the outer surface of the shell:

 1:r = a, E = E0; 2:r = b, E = E0 (39)

Figure 9 demonstrates the results corresponding to the two options as diagrams of the rela-
tionship E(r). It is noteworthy that the quantitative change of the modulus of elasticity, which 
is the ratio E(b)/E(a), for the two options of the initial condition (39) is almost the same.

Figure 10 shows the distribution of stresses srand sq, and Fig. 11 presents the diagram of 
the maximum shear stress τmax = (sq − sr)/2. The results of the calculation of stresses were 
also the same with respect to both options (39).

By analogy with the test conditions of equilibrium (27), the same test may be performed in 
the case of a half sphere. Projecting the pressure and stress sq onto axis Z (Fig. 12) leads to

22 2

1
0 0 0

d cos d 0,
b

b
a

F p F
pp p

qs q− =∫ ∫ ∫ ∫

Figure 9: Dependences of the modulus of elasticity in the whole sphere: –––, inhomogeneous 
material; - - -, homogeneous material.
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Figure 10: Distribution of normal stressesalong the radius: –––, inhomogeneous material; 
- - - homogeneous material.

Figure 11: Distribution of maximum shear stress along the radius: –––, inhomogeneous 
material; - - homogeneous material.

Figure 12: Checking the static equilibrium of the hemisphere.
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which can be re-written as

 

22 2

0 0 0

d d cos sin d .
b

r b
a

r r p bd b
pp p

qs s q q q= ⋅ ⋅′∫ ∫ ∫ ∫f f  (40)

The static test (40) has also demonstrated the validity of the results.
It is noteworthy that the maximum shear stress  in the inhomogeneous 

equal stress shell, while in a homogeneous sphere . Thus, the maximum 
shear stress in an inhomogeneous shell is about 2.5 times smaller than in the same uniform 
shell.

The transition to the equal-strength structural model shell can be performed using the 
method described in subsection 4.4 of this article.

6 FROM MODELING TO PRACTICE
It is quite diffi cult to develop a thick-walled cylinder in which the modulus of elasticity varies 
along the radius according to a continuous law. Some years ago there was an attempt at 
designing a cylinder made of epoxy resin EDT-10 fi lled with quartz sand of different volume 
fractions. An uncured mixture was poured into a special form, which was placed into a heat-
ing chamber for curing and rotating. It was expected that silica particles of different fractions 
would be distributed continuously along the radius and a material with a variable modulus of 
elasticity (Fig. 13a) would be obtained. However, after curing, it turned out that all the parti-
cles were gathered in a narrow layer near the outer surface of the cylinder, and the result was 
a two-layer structure (Fig. 13b). 

One way of solving the direct problems of the theory of elasticity for inhomogeneous 
 bodies is to replace the continuous function E(r) with a piecewise-homogeneous function. By 
analogy, it is proposed that optimized thick-walled cylinders consisting of several layers are 
designed. Thus, the modulus of elasticity of the material of each layer is determined by 
 solving the above inverse problem in which the continuous function E(r) is defi ned.

The solution to the above problem for a multilayered cylinder is rather simple. It corre-
sponds to the solution of the Lame problem for each layer; therefore, identifi cation of constant 
values of the boundary conditions (2) and the conditions of an ideal layer-to-layer boundary 
contact are employed:

 ui = ui+1; sr,i = sr, i+1, (41)

where i is the layer number and u the radial displacement. 
One of the fundamental questions is how to choose the value of Ei in the ith layer. As has 

been proven by the analysis of the thick-walled cylinder, in order to satisfy the condition of 
strength (10) at all points of the layer, it is necessary that the Ei are equal to the value of E(r) 
at the left edge of the layer.

Figure 13: Attempt to design a variable stiffness cylinder: (a) anticipated distribution of 
quartz sand and (b) resulting distribution of quartz sand.
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Stresses sr, sq and sz developing in a three-layer cylinder are demonstrated in Fig. 14, and 
diagrams of equivalent stresses may be found in Fig. 15.

The resulting load applied to the piecewise-homogeneous cylinder can be compared with 
the load applied to a homogeneous structure. Using (23), the value of the internal pressure 
can be found to be . By comparing this pressure with the load applied to 
the piecewise-homogeneous cylinder ( (3) ( ) 391 MPaa a rp p r as= = − = = ), the value of the 
effectiveness ratio (3) / 1.83hom

a ap pb = =  is obtained. Similar calculations performed for a cyl-
inder consisting of four and fi ve layers produce the following results: (4) / 1.99hom

a ap pb = = , 
(5) / 2.09hom
a ap pb = = . It is obvious that the larger the number of layers in the cylinder, the 

closer the value of coeffi cient β to the value β = 2.57, which corresponds to the model with 
continuous inhomogeneity. Thus, multi-layer structures can be called close to equal-strength 
structures.

7 CONCLUSIONS
In this paper, a summarized method of identifi cation of radial changes in the modulus of 
elasticity is provided when the equivalent stress in a thick-walled cylinder and a sphere at 
each point is equal to the strength of the material. The method is based on the solution to the 
inverse problem of the elasticity theory of inhomogeneous bodies. Thus, designs are equal-
strength structures. Since development of such structures is hard enough to implement in 
practice, it is proposed that multi-layer structures are constructed in which the modulus of 
elasticity of each layer is identifi ed by solving the inverse problem. Such structures are close 
to equal-strength structures. 

Figure 14: Stress distribution in a  three-layer cylinder.

Figure 15: Strength Rb (1) and equivalent stress (2) in a three-layer cylinder.
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Models of the above structures are more effi cient than those of uniform structures. For 
example, the value of an external load applied to an inhomogeneous concrete cylinder may 
be increased almost 2.5 times. Due to the diffi culties that accompany development of struc-
tures with continuous inhomogeneity, the proposed method of creating multi-layered shells 
is also very effi cient.

In the problems considered the shells are loaded by internal and (or) external pressure, and 
they may also be under a non-uniform temperature fi eld. It is proven that no structure can be 
optimized if only the temperature fi eld is present, because the variation of sq should be self-
-balanced, and this property anticipates that sq ≡ 0.

Generally, such shells may be made of various materials (concrete or reinforced concrete, 
steels, polymers, etc.). Practical application of these shells will result from the collaborative 
work of specialists in mechanics, chemistry and technology.
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