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ABSTRACT
This article introduces an innovative technique that integrates a genetic algorithm (GA)-based digital 
image correlation with laser speckle photography for the estimation of surface displacements in struc-
tures. The images (before and after deformation) are digitized using a digital camera, and the grayscale 
intensity matrices are read and processed by an image processing algorithm. The two matrices of the 
images are then inputted into GA-based optimizer that utilizes an advanced cross-correlation fitness 
function to approximate the surface displacements. Furthermore, the surface strains are computed from 
the displacements using radial basis function differentiation and interpolation. The computed displace-
ments are compared with simulated results obtained by the boundary element method. Close agreement 
between the two results proves the validity of the developed noncontact technique for accurately esti-
mating surface displacements and strains. These experimentally estimated displacements can further be 
used in an inverse technique to detect and characterize subsurface cavities in structures.
Keywords: boundary element method, genetic algorithm, laser speckle pattern, RBF interpolation, sur-
face strain.

1 INTRODUCTION
The surface strain is an important material property that needs to be measured to understand 
the mechanical behavior of the material under a specific loading condition, as mentioned by 
Manthey and Lee [1]. With the advancement in the field of the automated stereo vision sys-
tem, it has been possible to measure the surface strain value of an object using various 
imaging techniques. Vogel and Lee [2] explained that the accuracy of such automated vision-
based measurement techniques much depend on multiple factors: number of pictures, camera 
resolution, the internal geometry of camera, accuracy of grid pattern, etc. Studies by Theo-
caris and others [3–9] were resourceful in the description of various coherent optical light 
methods and noncoherent optical light methods. The Moiré technique makes it feasible to 
study the strain values with the normal eye. Takaki et al. [10] explained the process of obtain-
ing higher accuracy in strain measurements by using a digital camera. In recent years, Moiré 
interferometers with high magnification have been developed [11, 12]. One of the crucial 
limiting factors of this technique is the accurate detection of the depth of field. Holographic 
interferometry stores multiple wave fronts to perform interferometry. Trolinger [13] invented 
a multi-exposure technique for real-time holographic interferometry, which mitigated the 
problem of fringe formation depending on either rapid or too slow movement of the object.

The principle behind speckle interferometry is interference between two coherent light 
rays, as described by Rastogi [14]. Speckle interferometry is classified into specklegram, 
speckle decorrelation, and speckle pattern shearing interferometry (shearography). Speckle-
gram technique is used to measure strain and in-plane movement of surfaces. Speckle 
decorrelation method is used to visualize surface movement when there is a speckle separation 
during a double exposure. Shearographic interferometry is resilient to the environment and it 
finds its application in measuring surface displacement, as discussed by Francis et al. [15].
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A more straightforward technique using the digital image correlation (DIC) method was 
developed in the early 1980s for measuring the in-plane deformations of an object [16, 17]. 
Sutton et al. [18] explained the versatility of DIC and its applications in different domains of 
engineering. The main principle behind DIC is to compare images of an object at different 
stages during deformation. Different DIC solutions are available to obtain sub-pixel resolu-
tion based on Newton–Raphson iteration, a nonlinear optimization technique, genetic 
algorithms (GAs), etc. as explained by Bing et al. [19]. Results obtained through DIC is 
dependent on the spatial and temporal resolution of the imaging system and homogeneity of 
the material, as discussed by Mudassar and Butt [20]. Studies by Zhang and others [21–26] 
were resourceful in elaborating on the existence of a nonlinear relationship between the 
actual displacement of the object plane and the displacement of speckle pattern at the image 
plane and establishing the geometric distortion correction factor that must be applied to 
obtain accurate in-plane displacements.

To this end, we developed an image domain decomposition approach to laser speckle pho-
tography (LSP) for deformation measurements. In this article, a GA was utilized to determine 
the motion of the center of pixel groupings by maximizing a simplified cross-correlation 
expression. The whole specimen deformation was subsequently reconstructed using radial 
basis function interpolation, and the strains were found by radial basis function (RBF) differ-
entiation. The experimentally obtained displacement results utilizing RBF-GA-based domain 
decomposition technique were validated against simulations conducted by using an in-house 
code developed on boundary element method (BEM).

2 METHOD

2.1 Laser speckle pattern setup

Gauvin and others [27–30] described three different categories of speckle patterns, i.e. natu-
ral texture, artificial speckle, and laser speckle patterns. The application of the LSP involves 
the impingement of a coherent laser beam onto a rough surface that produces the laser speckle 
pattern, and these laser speckle particles are relative to the wavelength of the laser and surface 
roughness of the specimen. The ideal surface texture of the object to be studied should be 
isotropic. Laser speckles are formed when laser irradiates the surface of the object leading the 
surface to scatter numerous coherent wavelets. These wavelets interfere with each other in 
space around the object. When the phase difference between the scattered wavelets satisfies 
constructive interference, wavelets form a bright spot. When wavelets satisfy destructive 
interference, dark spots are formed. Bright and dark spots formed by these wavelets are dis-
tributed in a random fashion around the surface. The bright and dark spots imaged in an 
image acquisition device gives rise to laser speckle [31, 32]. The procedure involves the 
application of a random speckle pattern to a surface of interest, and then capturing consecu-
tive digital images of the surface before and after deformation has occurred. Finally, the two 
captured images are compared to compute the displacement for the surface. Figure 1 shows 
the schematic of the experimental setup. In general, LSP requires less mechanical stability 
compared with holographic interferometry. To accurately measure in-plane translation, strain 
rotation, vibration, and out-of-plan rotation, the LSP has been used [33].

When a coherent beam generated from a laser source impinges at a point on the speckle-
gram, a diffraction cone with an angle a will be formed at the observation screen by the two 
speckle patterns regulated by parallel fringes. The screen is at a distance ‘Z’ behind the 
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specklegram as shown in Fig. 2. Fringe patterns created are equidistant and similar to Young’s 
fringes. A point-by-point record for displacement is obtained when the spacing of the fringes 
and orientation can be measured. u and v components of displacement are calculated by

 u = U cosq  (1)

 v = U sinq  (2)

 U
Z

Md
=

l
 (3)

where q is the angle between the horizontal and normal to the fringe, l is the wavelength of 
the laser beam, Z is the distance between specklegram and observation plane, M is the magni-
fication, and d is the spacing between fringe. Magnification is the ratio of image to object size. 

Figure 1: Schematic of the experimental setup.

Figure 2: Point-wise filtering for in-plane displacement measurements.
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2.2 Domain decomposition technique

Usually, various kinds of image matching techniques are used with the LSP to compute 
deformation of a surface. Depending on the type of in-plane movement of the gray value 
subset, suitable type of image matching technique is chosen, e.g. differential method, tem-
plate matching, and subset or polynomial shape function. Fraley and others [34–37] gave an 
in-depth insight into different types of correlation methods and optimizing algorithms based 
on evolutionary methods for DIC. 

In this article, an effective domain decomposition method was developed based on the 
cross-correlation of the gray value of the subset. Assume a speckle pattern is created on a 
given surface and an image is captured as shown in Fig. 3a. Depending on the loading condi-
tion, a point of interest on this image undergoes motion. When a region around this point is 
selected, the region may undergo displacement and strain so that the location and shape of the 
region are shown as a parallelogram as shown in Fig. 3b. Now the point of interest is the 
center of the parallelogram.

The method for comparing the two subsets (to determine the displacement vector 
�
u , see 

Fig. 4) is commonly given by the cross-correlation coefficient, C:
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where ∆M is the subset in the undeformed image, ∆M* is the subset in the deformed image, 
and f(x,y) is the gray level of speckle at a point (pixel).

The values of u and v which maximize C are the local deformation (displacement compo-
nents) for the selected subset. The objective of the image correlation process is to obtain the 
values for the subset under investigation and repeat for all subsets in a given region to obtain 
the whole field deformation profile. The above is then implemented as
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Figure 3: (a) Undeformed image and (b) actual deformed image.
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To account for actual deformations and not translation alone, the above correlation should at 
least be augmented by first derivatives. Since a domain decomposition approach is adopted, the 
regions under deformation are significantly reduced in size with each subdomain viewed with 
the full resolution of the camera as illustrated in Fig. 5. For each group of pixels, the values of u 
and v that maximize the correlation in eqn (4) are determined by a GA. The image of the whole 
specimen is then reconstructed via RBF interpolation of the motion of each pixel grouping.

2.3 Genetic algorithm

The GA optimization begins by setting up a set of random set of possible solutions, called the 
population, with a fixed set of individuals. Each individual in the population is defined by its 
optimization variables that are represented by a bit string or chromosome. In this case, an 

Figure 4: Model utilized in this study: motion of the center of a grouping of pixels.

Figure 5: Domain decomposition of the image.
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objective function Z(u,v) = C(u,v) is evaluated for individuals in the current population to 
define their fitness or their probability of survival. A selection operator is applied to the pop-
ulation to determine and select individuals who are going to pass information during the 
mating process with rest of the individuals in the population. This mating process is called the 
crossover operator. By doing this process, the genetic information present within the best 
individuals combines to form the offspring. Also, a mutation operator randomly affects the 
information obtained during the mating process. This mutation is a critical step for continu-
ous improvement. During every single iteration of GA, the process of selection, crossover, 
and mutation is used to update the population.

In nature, an organism has some properties that are described by a string of genes present 
in the chromosomes. Therefore, haploid model using binary vector is adopted in this article 
to model a given chromosome. The number of design variables and the required precision of 
each design variable dictate the length of the vector. Each design variable is bound to maxi-
mum and minimum values, and in this process the precision of the variable is determined. 
During discretization, the number of divisions used is an integer power of two. This allows 
easy mapping from binary strings to real numbers and vice versa. Each individual is equipped 
with a value objective function that corresponds to the given set of design variables. This 
value is the measure of the fitness of the individual design. Poorly fit designs are not dis-
carded in GA, and they are kept to provide genetic diversity in the evolution of a population. 
Genetic diversity is required for the forward movement of the population during mating, 
crossover, and mutation processes that characterize the GA [38].

In this developed GA algorithm, the population size is fixed which initiates the algorithm in 
all chromosomes. Operation is performed by assigning 0 or 1 in random orders for each bit in 
each of the chromosome. After the population is initialized with random values, the fitness of 
each individual is evaluated by computing the value of the objective function. The probability 
of being a selected individual for mating is calculated as the ratio between the value of the 
fitness function of every individual and the sum of all fitness function values. This is given by 
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=
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1  

(6)

vi is the ith member of the population, and Fitness(vi) is a measure of the fitness of that mem-
ber under its currently evolved parameter set configuration. A weighted Roulette wheel is 
generated, and every member of the current population is assigned a portion of the wheel that 
is in proportion to its probability of being selected. The wheel is spun as many times as there 
are individuals in the population to select which members mate. Some individuals can be 
selected more than once, and hence the best chromosomes get more copies, the average stays 
even, and the worst dies off. After selection is applied, crossover and mutation occur to the 
resulting offspring which further enlarge genetic diversity in the population. Other probabil-
ities that are referred to the description of GA adopted in this article are computed in an 
analogous fashion as the selection probability.

The probability of crossover Pc is a parameter that determines the expected population of 
chromosomes (Pc × population size) that undergo crossover operation. This operation can be 
executed in two steps: (1) pairs of individuals obtained by a random selection based on the 
probability of crossover and (2) generation of a random number between the first and last 
positions of binary vector to indicate the location of the crossing point that delineates the 
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location about genetic information that is interchanged between two chromosomes. The 
mutation operator is the final operator implemented. The probability of mutation Pm provides 
the expected number of mutated bits. All chromosomes in the entire population have an equal 
opportunity to undergo mutation. The process is implemented by a generation of random 
numbers between 0 and 1 for each bit in the chromosome. A bit is mutated if the generated 
number is smaller than the bit. 

Following selection, crossover, and mutation, the new population is ready for its next evo-
lution until the convergence criteria ‘fitness’ is reached. It is the very nature of the binary 
representation of the design variables of the objective function and the random search process 
which provides yet another but implicit degree of regularization in this optimization process. 
The sensitivity of the objective function can be tuned depending on the size of each element 
of the chromosome. Thus, low bit representation is insensitive to large variations in input 
(regularized but may lead to poor solution due to low resolution), while high bit representa-
tion is sensitive to large variations in input (not regularized and therefore may lead to poor 
solution as well). There is a range of bit size which produces a regularized and sensitive 
response leading to stable solutions.

The GA used to obtain results presented in this article, and the following parameters are 
considered: population size of 50 individuals/generation, a string of 10 bits to define each 
parameter with each individual, two offsprings for every mating, 1% probability of mutation, 
and 70% probability of crossover. Population growth is not allowed, and this parameter com-
bination has proven to yield accurate and efficient optimization results for different studies 
carried out by Divo and others [39–41, 49].

2.4 RBF interpolation and strain computation

The RBF interpolation is defined by a set of data centers, xc, comprised of points distributed 
throughout the entire domain and its boundary which need not be uniformly distributed. 
These data centers work as collocation points for the localized expansion of variables of 
interest in the domain and on its boundary.

A localized expansion over a group or topology of influence points, NF, around each data 
center is sought such that:

 

f a c a( ) ( ) ( )x x P xj j
j

NF

j NF j
j

NP

= +
=

+
=

∑ ∑
1 1

 (7)

Variable f will take the values of u or v based on the application, x indicates the x–y pair of 
coordinates at a given point, aj indicates the unknown expansion coefficients, cj are the RBF 
expansion functions, NP is defined as the number of additional polynomial functions, Pj(x), 
added to the expansion such that constant and linear fields are retrieved exactly. RBF utilized 
belongs to the family of Hardy multiquadrics [42]:

 c j j

n
x r x c( ) ( )= + 

−2 2
3

2  (8)

Here n is defined as a positive exponent, c is defined as the shape parameter, and rj(x) is the 
Euclidean distance from x to xj. In this article, n = 1 is utilized, which yields the inverse mul-
tiquadrics whose behavior is extensively studied in the literature [43, 44]. The behavior of the 
interpolation and accuracy of its derivative is controlled by the shape parameter, c. The 
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computed derivative field becomes smoother when the shape parameter is large for a specific 
expansion over a given set of data centers. The magnitude of the shape parameter cannot be 
increased without bound as the expansion functions become flatter and the collocation coef-
ficient matrix becomes ill-conditioned. To determine each value of the shape parameter used 
in every expansion at different local topologies, a simple optimization search is employed. 
The ratio of the average distance between data centers in a given topology to the number of 
points in that topology is taken as the initial guess for c.

The localized expansion approach [45, 46] decreases the computational burden on global 
RBF interpolation by expanding the field variable locally around each data center to interpo-
late and to obtain its derivatives. By this approach, a small interpolation matrix is generated 
for each data center rather than having a large interpolation matrix obtained by global 
methods.

By performing a circular search around each data center, the region of influence or the 
localized topology is selected. The search is automated in a way that a minimum number of 
points will be included and additional criteria are met, such as including all directions around 
the internal data centers, as shown in Fig. 6.

The following matrix–vector form is obtained after the collocation of the field variable at 
the points within the localized topology:

 { } [ ]{ } { } [ ] { }f a a f= ⇒ = −C C 1  (9)

where the matrix [C] and the vector {f} are composed as:
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Evaluating eqn (7) for the field variable at the data center xc and substituting eqn (9) lead 
to the following form:

 f c f y f( ) ( ) [ ] { } ( ) { }x x C xc c
T

c
T= { } = { }−1  (11)

Figure 6: Point collocation of data centers with uniform spacing, and collocation topology for 
nonuniform spacing.
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Field variable derivatives at the data centers can be computed directly by differentiating the 
RBF expansion of the field variable in eqn (7). For example, consider any linear differential 
operator L:

 L x L x LP xc j j c
j

NF

j NF j c
j

NP

f a c a( ) ( ) ( )= +
=

+
=

∑ ∑
1 1

 (12)

where xc is the data center of the topology. Thus, in matrix–vector form:

 L L L L C L Lc c
T

c c
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c
Tf a f f f f= { } { } ⇒ = { } [ ] { } ⇒ = { } { }−1

 (13)

where the vector {Lc} is composed by:
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An alternative approach for calculating the field variable derivatives is through the use of 
RBF-enhanced finite differencing (RBF-FD). This approach reduces instabilities associated 
with directly differentiating the RBF expansion (see [45]). In this case, RBF interpolation is 
utilized to approximate the field variable at locations on a finite difference stencil at the data 
centers. For example, a second-order central difference evaluation of the first x-derivative at 
the data center xp involves interpolating the field variable at locations a and b as shown in 
Fig. 7. Equation (7) is then applied on a topology surrounding these two points, leading to:

 
f y f( ) ( )x xa a

T

a
= { } { }

 
(15)

 f y f( ) ( )x xb b
T

b
= { } { }  (16)

Figure 7: Differentiation stencil and local topology for radial basis function-enhanced finite 
differencing.
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where y( )xa{ } is the interpolating weight vector and f{ }a
 is the nodal value vector associ-

ated with point a, and y( )xb{ } is the interpolating weight vector and f{ }b is the nodal value 
vector associated with point b.

Therefore, substituting these virtual point expressions into a second-order accurate central 
difference of the first x-derivative at the data center xc leads to:
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For any other derivative of interest, this is readily extended. Using the RBF-ND or RBF-FD 
approaches, the field variable derivatives are evaluated at every one of the data centers xc. This 
can be accomplished by an inner product of two small vectors: {Lc} that can be pre-built and 
stored and { }f  that contains the field variable values at the surrounding RBF points within the 
topology of the data center xc. In this article, all derivatives in the calculation of strain fields 
are computed using the RBF-FD:
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2.5 Boundary element method formulation

In the single-domain direct boundary element method, with a given domain Ω, parameters 
such as displacement, traction, and stresses can be computed on the boundary Γ. Displace-
ment and stress can be computed inside the domain by obtaining the numerical solution of a 
boundary integral equation as mentioned in Brebbia et al. [47].

The equilibrium equation governs the state of stress in the solid body as follows: 
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The strain tensor is given by:
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In a Hookean solid, the stress tensor is linearly related to the strain tensor as:

 s mn
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+
2

1
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where si j  is the stress tensor, ui is the displacement vector, dij is the Kronecker delta, m is the 
shear modulus, and n is the Poisson’s ratio. The boundary traction ti = sij.nj is used to define 
the normal boundary condition with nj denoting the boundary outward-drawn unit normal 
vector. Combining eqns (19) and (21) leads to the following Navier’s equation that expresses 
equilibrium in terms of displacement:
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In a well-posed boundary value problem, either the displacement u ui i=  on boundary Γu 
or the traction t ti i=  on boundary Γt must be prescribed on each part of the boundary. 
Γu∪Γt = Γ is the boundary of the domain Ω. In the formulation of BEM based on Somigliana 
identity, an integral relation between the displacements ui

p in a collocation point ‘p’ and the 
displacements ui and tractions ti on all boundary Γ is derived. Body force term bi is related 
through a domain integral as follows:

 c u H u d G t d G b dij
p

i
p

ij i ij i ij i+ = +∫∫ ∫Γ Γ Ω
ΓΓ Ω�� �  (23)

The fundamental solution of the above equation in terms of displacement and traction is 
obtained from Gij and Hij, while cij

p is a geometric constant which takes the values 0, ½, and 
1 based on the following conditions:

 cij
p = 0 if p Œ Ω (24)

 cij
p = ½ if p œ Ω (25)

 cij
p = 1 if p Œ Γ (26)

The fundamental solutions for the two-dimensional (2D) case are
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The above equation can be discretized in the standard BEM form as

 [ ]{ } [ ]{ } { }H U G t b= +  (28)

By introducing boundary conditions into the vectors {U} and {t}, the above equation leads 
to a system of simultaneous linear equations which is of the form [A]{x}={B}, and this is 
obtained by rearranging eqn (28) by taking known quantities to the right-hand side and 
unknown to the left-hand side as described in the studies by Kassab and others [33], [48, 49].

3 EXPERIMENTAL PROCEDURE AND DATA COLLECTION
For the experimental setup, a Plexiglas block specimen of 168 mm in width, 250 mm in 
length, and 4.8 mm in thickness, with two circular holes with diameters of 35 and 40 mm was 
fabricated and tested. A clear divergent laser beam was installed to illuminate the Plexiglas 
specimen. This was obtained by adjusting the translation stage that held the spatial filter. 
Other optical instruments were clamped onto a table as shown in Fig. 8. The Plexiglas spec-
imen was clamped on a loading frame and 500 lb (2224.11 N) of the tensile load was applied. 
Two images covered with laser speckles were captured using a digital camera. The first image 
was under the deformed state with a load of 500 lb and the second image was captured when 
the tensile load was reduced to 100 lb (444.82 N).

The digital camera used in this experiment can give a full resolution of 2832 × 2128 pixels 
at its full zoom. Upon cropping the images to size, the resolution obtained was 0.125 mm/
pixel. Figure 9 indicates the gray-level distribution, where the intensity distribution of light 
reflected by the specimen is stored as gray levels (set of nondimensional numbers) in a 
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computer via an appropriate information transfer. The gray-level distribution indicates the 
brightness of pixels in the domain. The minimum gray level is 0 and the maximum gray level 
depends on the depth of the digitized image. For example, for an 8-bit depth image it is 255. 
Hence in a gray scale of such image, a pixel can take on any value between 0 and 255. Pre-
liminary BEM results showed that the maximum deformation of the Plexiglas specimen 
would be in the order of 0.3 mm, and this corresponds to less than 3 pixels. The low-resolu-
tion image provided poor output for surface displacements when initial runs of image 
correlation were done using the GA.

The low-resolution problem was overcome by decomposing the Plexiglas specimen into 
equally spaced subdomains and then capturing an image for each subdomain separately at 
full zoom and highest resolution. Figure 10a and 10b shows the surface of the Plexiglas spec-
imen divided into 20 subdomains, each identified by its own row and column (starting at 11: 
top left-hand side subdomain).

The camera was mounted and firmly clamped on the isolation mount and was kept 250 mm 
away from the Plexiglas specimen. The camera at its highest resolution was zoomed to focus 
on the first subdomain (11). This process was repeated for each of the regions (11–54) under 

Figure 8: Photograph of the experiment setup and details of the test specimen.

Figure 9: Gray-level distribution of specimen covered by laser speckles.
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the two different tensile loads of 500 and 100 lb. By implementing the specimen domain 
decomposition into equally spaced subdomains, the resolution was improved to 0.027 mm/
pixel, which could be further improved simply using a camera with higher resolution. After all 
the images were stored under both tensile loading conditions, the GA-based correlation tech-
nique was employed to compare the image intensity matrices and estimate the displacements.

4 RESULTS AND DISCUSSION
The results obtained from each subdomain are assembled as shown in Fig. 11 and the final 
deformation gradient was obtained.

At the interface between different subdomains the information is unknown, and the equa-
tions of elastostatic compatibility were not satisfied. This was resolved by computationally 
integrating the various blocks and averaging the intensity of the nodes at the edges between 
neighboring subdomains along the median coordinate between the edges using an RBF inter-
polation technique. This resulted in a displacement distribution of the overall specimen as a 
single entity and not a compilation of several mismatching subdomain displacements. This 
methodology included the superposition of the boundaries of the holes where a smooth dis-
placement field distribution is also obtained. 

Figure 10: (a) Subdivided specimen and (b) region numbering scheme (row and column).

Figure 11:  Displacement distribution of displacement components u and v from the genetic 
algorithm.
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The experimental results were validated against BEM simulations. The material property 
of the Plexiglas specimen was specified as shear modulus G = 1.030 GPa. As the 2D BEM 
formulation is based on the principle of plane strain, the Poisson’s ratio was modified to  
n = 0.2668 to match the actual test case. The boundary of the test specimen was discretized 
with 168 quadratic isoparametric discontinuous boundary elements while the holes were dis-
cretized each with 28 quadratic isoparametric discontinuous boundary elements. For the 
BEM models the bottom boundary was clamped, while a traction load of 2.75 N/mm2 was 
applied on the top boundary of the specimen to match the 500-lb load. The left and right 
boundaries, as well as the edges of the holes, were traction-free.

Figures 12 and 13 show the x and y displacement field distribution plots magnified by a 
factor of 10 as compared with the solution obtained from BEM simulations. The results 
reveal reasonable qualitative agreement between the experimental and BEM results with 

Figure 12: Displacement distribution of u and v at 10X magnification obtained from the 
integrated genetic algorithm. 

Figure 13:  Displacement distribution of u (U_x) and v (U_y) computed using boundary 
element method.
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general features of the displacement field distribution as well as the maximum values of the 
x and y displacements being properly captured by the experimental methodology.

Using RBF-FD differentiation scheme and its distribution, the strain components 
e e gx y xy, , and  were computed as shown in Fig. 14.

5 CONCLUSION 
The GA-based DIC technique was successfully applied to measure surface displacements in 
structures using LSP. With readily available high-resolution digital cameras, the sensitivity of 
this technique can be significantly increased. A major advantage of this technique is its ability 
to subdivide the domain and hence use the full camera resolution in a small region. In addition, 
the GA was used to compute only the displacement components, which makes the technique 
more efficient. This is complemented by the RBF implementation to accurately compute the 
strain components. The technique is completely noncontact and highly accurate even for very 
small displacements as shown in the validation study conducted by the BEM simulations.
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