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ABSTRACT
Glicksman’s viscous limit set of dimensionless parameters have been investigated using experimentally 
verifi ed computational fl uid dynamics model. Simulations have been performed for the two bubbling 
fl uidized beds with different particle sizes and densities. Dimensionless average pressure drops across 
the bed height, dimensionless pressure standard deviations and dimensionless relative pressures have 
been investigated as a function of dimensionless superfi cial gas velocities for the two beds. Fluctuation 
of solid volume fraction and contours of solid volume fraction have also been investigated at different 
dimensionless gas velocities. Time series data of the pressure fl uctuation and solid volume fraction are 
compared. The results indicate that the fl uid dynamic similarity between two beds holds up to particle 
Reynolds number of 15. After this, the bubble activities in the two beds start to deviate signifi cantly. 
The results of the work show that the analysis of solid volume fraction fl uctuation gives higher accuracy 
than time-series pressure fl uctuation when scaling the bubbling fl uidized bed within the viscous limit.
Keywords: Fluidized bed, scaling, viscous limit, Glicksman, CFD.

1 INTRODUCTION
Scaling of fl uidized bed reactors in a proper way remains a major challenge in process indus-
tries. Scaling of fl uidized beds is still an inexact science rather than a mix of mathematics, 
witchcraft, history and common sense as indicated by Matsen [1]. The scaling law for fl uidized 
bed reactors has been developed by Glicksman. The law is derived by non-dimensionalizing the 
governing fl uid dynamic equations for gas–solid fl ow [2]. This gives a set of dimensionless 
parameters. For two fl uidized bed reactors to be fl uid dynamically similar, the set of dimension-
less parameters should be matched. The set of the dimensionless parameters is used to developed 
lab-scale cold models that simulate the fl ow behavior of an operating plant. This enables to 
improve the fl ow behavior of an existing plant when it is required. In addition, scaling is useful 
for the modifi cation of the existing plants.

Glicksman has derived two sets of dimensionless parameter for scaling of fl uidized beds: 
full set and simplifi ed set. In the full set, dimensionless parameters such as Froude number, 
Reynolds number, density ratio, bed to particle size ratio, bed geometry ratio, particle sphe-
ricity and particle size distribution should be matched. van Ommen et al. studied the simplifi ed 
set, full set and extended full set with additional dimensionless pressure group and found 
reasonable agreements [3]. In the particular application such as biomass gasifi cation reactors, 
it is diffi cult to match all the parameters of the set. Sometimes exotic particles (very high 
density and very low particle size) are required when it comes to scaling down a very large 
operating plant to a lab-scale cold model [4]. To overcome this problem, Glicksman has sim-
plifi ed the full set. In the simplifi ed set, Reynolds number has been replaced by the ratio of 
excess gas velocity to minimum fl uidization velocity and the ratio of particle diameter to bed 
diameter has been omitted [5]. The simplifi ed set gives more fl exibility in selecting dimen-
sions for the small-scale reactors. 
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The simplifi ed set is divided into two fl ow conditions. When the fl uid–particle drag is 
dominated by inertial forces, it is the inertial limit. When the drag is dominated by viscous 
forces, it is the viscous limit. This division allows to consider the viscous dominated and 
inertial dominated fl ow separately [6]. In the viscous limit, the gas–particle density ratio is 
omitted for lower particle Reynolds numbers. For the particles with particle Reynolds num-
ber up to 4, the particle to gas density ratio can be omitted in the dimensionless set of 
parameters. This makes the viscous limit set of dimensionless parameters more fl exible for 
scaling of fl uidized bed. Bubbling fl uidized bed reactors operate comparatively at lower gas 
velocities. Geldart A and B particles with lower gas velocities have low particle Reynolds 
numbers. Therefore, the viscous limit set is particularly suitable for scaling of bubbling fl u-
idized bed reactors. In the literature, some authors have claimed that the viscous limit of the 
particle Reynolds numbers is higher than that given by Glicksman. The range of particle 
Reynolds numbers is not consistent. Stein et al. [7] have claimed that the density ratio can be 
neglected up to particle Reynolds number 100. Farrel [8] has shown that the viscous limit set 
does not hold for the particle Reynolds number between 10 and 25. Various reasons are 
responsible for the deviations.

The scaling of bubbling fl uidized bed should be guided by the well understanding of particle 
properties and fl ow regimes in the bed. The scaling laws are derived from the set of independ-
ent dimensionless parameter. The dependent variables such as pressure and void fraction 
should also be compared in their non-dimensional form.

Downscaling of a large reactor to small lab-scale model sometimes requires signifi cant 
reduction of particle size to maintain the dimensionless parameters. Particles with very dif-
ferent particle sizes belong to different Geldart groups. Different Geldart group particles have 
different fl ow regimes and this may result in different bubble behaviors in the scaled bed [9]. 
The selection of particle size and densities for scaled bed should be within the same Geldart 
group of particles. Scaling from very large commercial scale to small lab-scale cold model 
may also change the operating velocities between the two beds signifi cantly. This may result 
in changing fl ow regime and consequently the bubble behavior of the two beds. In addition to 
this, the bed geometry also needs scaling. In practice, experimental investigation of all these 
conditions is not possible. 

Computational fl uid dynamic (CFD) models are valuable tools for this situation. The CFD 
tools have a signifi cant potential in predicting the effect of scaling in hydrodynamics of fl u-
idized beds [10]. Any particle density and size can be selected for the simulation of the 
model. The result of the simulations can serve as proper guidelines on selection of particle 
size, density and scaled bed geometry. This helps to avoid many intermediate errors in con-
structing lab-scaled cold model of an operating plant. 

2 VISCOUS LIMIT SET OF SCALING RULES
The viscous limit set is derived by Glicksman for dense fl uidized bed with low gas velocities 
[5]. In the dense region of the bed, the viscous forces are dominant compared with the inertial 
forces. Due to insignifi cant effect of inertial forces, requirements of dimensionless parameters 
to be matched are less. Equation (1) shows the viscous limit set of dimensionless parameters. 
Application of the set requires similarity of Froude number, the ratio of excess gas velocity to 
minimum fl uidization velocity, bed geometry ratio, particle sphericity and particle size distri-
bution. In addition to this, the particle Reynolds number should not exceed the value of 4. This 
criterion is shown in eqn (2). In practice, the viscous limit set of dimensionless parameters can 
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be applied for scaling of bubbling fl uidized beds. The particles of the large bed as well as 
scaled bed should have lower particle size.

 
 (1)

 
 (2)

3 COMPUTATIONAL MODELS
Two approaches in modeling of gas–solid multiphase fl ow have been applied currently: 
Eulerian–Lagrangian and Eulerian–Eulerian. Eulerian–Lagrangian model tracks the motion 
of each particle and solves the dynamics of the fl uid at the length scale smaller than the par-
ticle diameter. The modeling approach requires large computer memory and time for 
simulation. Eulerian–Eulerian model treats both the fl uid and solid phases as interpenetrating 
continua and solves the dynamics averaging their equation of motion. The modeling approach 
is computationally less demanding [11]. The Eulerian–Eulerian approach is implemented in 
modeling the fl uid dynamics of fl uidized bed. To treat the particles as continuum, kinetic 
theory of granular fl ow is applied. The kinetic theory of granular fl ow considers the conser-
vation of solid fl uctuation energy [12]. The simulations have been performed using 
commercial CFD software ANSYS/Fluent 13.0.

The CFD model used in this work was validated against the experimental data. The exper-
imental measurements were performed in a cold model with pressure sensors. Experimental 
data such as pressure drop across the bed height, pressure standard deviation and bubble 
behavior were compared with computational prediction of the model. A good agreement 
between the experimental measurements and the model predictions were established. The 
details of the validation work performed by the authors can be found in WIT Transactions on 
Engineering Series 2012 [13].

Two-dimensional simulations have been performed with air as fl uidizing gas. The coeffi -
cient of restitution is set to 0.9. The coeffi cient represents the elasticity of collision between 
the particle–particle and particle–wall. Variation in the coeffi cient of restitution affects on fl uid 
dynamic similarities between two beds [14,15]. The simulation is initialized with solid volume 
fraction of 0.6. In the simulations, the particles in both beds are assumed as spherical mono-
sized particles. The simulation time for reference and scaled bed are 9.2 and 8 s, respectively. 
The simulation time is different for two beds to adjust the scaling factor with time.

The locations of the surface monitors for the two beds are presented in Fig. 1. In each bed, 
25 surface monitors are set to record the pressure fl uctuations and solid volume fraction fl uc-
tuations. The monitors are located at 0%, 25%, 75% and 100% along both the bed height and 
the bed width. In addition to this, line monitors are set at the bed height of 25%, 50% and 
75% for the solid volume fraction fl uctuation. 

The properties of particles and gases used in the model for the two beds are presented in 
Table 1.

To start the simulation, theoretical minimum fl uidization velocities for the particles are 
calculated using the following equation:

  (3)
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The gas velocities and the dimensionless parameters of the two beds used in the simulation 
are presented in Table 2.

4 RESULTS AND DISCUSSION
Pressure fl uctuation is most commonly used in the studies of fl uidized beds. In bubbling fl u-
idized bed, the pressure fl uctuation is related to the bubble motion in the bed. A single 
pressure point contains the global information about the bed. Many researchers have 
attempted to validate fl uid dynamic similarity between the bubbling fl uidized beds from 
time-series pressure data [16]. The standard deviation of pressure fl uctuation is an indirect 
method to identify the fl uid dynamics in fl uidized beds [17].

The pressure fl uctuations in the bed are monitored at the equally distributed 25 points 
within the bed. The dimensionless pressure standard deviation is the ratio of pressure stand-
ard deviation at identical points of the two beds with identical dimensionless gas velocity. 
The dimensionless gas velocity is the ratio of excess gas velocity to minimum fl uidization 
velocities of the two beds. The dimensionless pressure standard deviation as a function of 
dimensionless gas velocity is presented in Fig. 2. For two beds to be fl uid dynamically 

Table 1: Properties of particles and gases.

Set
dp

(µm)
ρp

(kg/m3)
ρg

(kg/m3)
µg

(Pa·s)
umf

(m/s)
H

(m)
D

(m)
Geldart 
group

Reference bed 320 2500 1.225 1.78·10−5 0.147 0.16 0.12 B
Scaled bed 240 3800 1.225 1.78·10−5 0.170 0.12 0.09 B

Figure 1:  Bed dimensions and location of surface monitors: (a) reference bed and (b) scaled 
bed.
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 similar, the dimensionless pressure standard deviation should be similar for the same dimen-
sionless gas velocity at any identical points of the beds. But the dimensionless pressure data 
need not to be equal to 1. This requirement applies only to Glickman’s full sets and inertial 
limit sets of dimensionless parameters. In the viscous limit set, the density ratio between 
two beds does not need to be matched. This makes the set more attractive for scaling of 
fl uidized bed reactors within the limited particle Reynolds number. The fi gure shows pres-
sure standard deviations of the two beds at 0%, 25%, 50% and 75% of the bed heights at fi ve 
different dimensionless gas velocities. The dimensionless pressure standard deviations are 
almost same for those points of the bed at the dimensionless gas velocities of 2–5. This 
shows the fl uid dynamic similarity of the beds at gas velocities higher than minimum fl uid-
ization. The dimensionless pressure standard deviation at the dimensionless gas velocity of 
1 has a slight deviation. Particularly, the dimensionless pressure standard deviation at the 
bottom of the bed has different value than other points along the height of the bed. The 
dimensionless velocity of 1 represents the transition of the beds from static condition to 
fl uidizing condition. Slight difference in initial minimum fl uidization velocity set in the 
simulation may result in such types of deviations. However, the deviation is within the 
acceptable error limit.

Table 2: Gas velocities and dimensionless parameters used in the simulation.

Simulation Set
u0

(m/s)
u0

2/gdp

(–)
u0/umf

(–) Re (–)

1
Reference bed 0.170 9.19

1
2.43

Scaled bed 0.147 9.24 3.73

2
Reference bed 0.340 36.75

2
4.86

Scaled bed 0.294 36.98 7.46

3
Reference bed 0.510 82.69

3
7.28

Scaled bed 0.441 83.20 11.20

4
Reference bed 0.680 147.00

4
9.71

Scaled bed 0.588 147.9 14.93

5
Reference bed 0.850 229.69

5
12.14

Scaled bed 0.735 231.10 18.66

Figure 2:  Dimensionless pressure standard deviation as a function of dimensionless gas 
velocity at different bed heights.
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The pressure standard deviation increases with gas velocity. The pressure standard devia-
tions for both the beds taken separately have minimum values at the minimum fl uidization 
velocity. The pressure standard deviation at the dimensionless bed height of 0.5 is presented 
in Table 3.

Dimensionless relative pressure as a function of dimensionless gas velocity is presented in 
Fig. 3. The dimensionless relative pressure is the ratio of the pressure along the same dimen-
sionless bed height.

Dimensionless relative pressure does not show signifi cant difference along the bed height 
with increasing dimensionless gas velocities. However, the dimensionless relative pressure is 
slightly decreased at dimensionless gas velocities of 4 and 5. This indicates the deviation of 
relative pressure at these dimensionless gas velocities in comparison to the others.

The dimensionless average pressure drop as a function of dimensionless gas velocity is 
shown in Fig. 4. The average pressure drop is the ratio of pressure drop across the bed height 
to the total height of the bed. In the viscous limit set, the density ratio of the particles is not 
maintained. The differences in the particle to gas density ratio result in different average pres-
sure drop across the bed height. Therefore, the average pressure drop across the bed can only 
be compared in its dimensionless numbers. As indicated in the fi gure, the dimensionless values 
of average pressure drop are increased more at the dimensionless gas velocities of 4 and 5.

The increased dimensionless average pressure drop at dimensionless gas velocities 4 and 5 
indicates the deviation of pressure fl uctuation in the two beds for these dimensionless gas 

Table 3: Pressure standard deviation at dimensionless bed height of 0.5.

Dimensionless 
gas velocity (–)

Pressure standard deviations (Pa) Dimensionless 
pressure standard 

deviation (–)Reference bed Scaled bed

1  24.41  19.35 1.26
2 151.45 191.91 0.78
3 281.10 306.41 0.91
4 338.68 393.75 0.86
5 405.35 475.14 0.85

Figure 3:  Dimensionless relative pressure as a function of dimensionless gas velocity at 
different bed heights.
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velocities. The deviation is signifi cant as the particle Reynolds number numbers approaches 
about 15 and 19, respectively. The contours of solid volume fraction at these dimensionless 
gas velocities shown in Fig. 5 also confi rm the signifi cant deviation, suggesting the viscous 
limit set is valid up to the particle Reynolds number <15.

Analysis of time series of pressure fl uctuation data in the two beds shows that the pressure 
fl uctuations in the beds do not show signifi cant deviation even the particle Reynolds number 
is signifi cantly higher than the viscous limit. However, at the dimensionless gas velocities of 
4 and 5, slight deviation of dimensionless pressure standard deviation, dimensionless relative 
pressure and dimensionless average pressure drop can be seen from the fi gures. It shows that 
the fl uctuation of pressure between two beds at these velocities deviate signifi cantly.

Detailed information about the bubble activities in the bed can be obtained from the data 
of solid volume fraction fl uctuation. The fl uctuation of solid volume fraction in a bubbling 
fl uidized bed is due to the bubble activities. The contours of solid volume fraction for the two 
beds are presented in Fig. 5. The contours are presented from dimensionless gas velocity 2–5. 
The contours are snapshots taken at the simulation time of 9.2 and 8 s for reference and 
scaled bed, respectively. The simulation time is different because of the scaling factor. The 
ratio between the scaling times is 1.15, which is the scaling factor of the beds. As long as the 

Figure 4:  Dimensionless average pressure drop across the bed height as a function of 
dimensionless gas velocity.

Figure 5:  Contours of solid volume fraction at different dimensionless gas velocities at 9.2 
and 8 s of simulation time for reference and scaled bed, respectively. Left: reference 
bed and right: scaled bed.
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time is also scaled, the solid volume fraction of the beds should be similar at a given time for 
two beds to have fl uid dynamic similarity.

At the dimensionless gas velocity of 1, the beds are static and there are no bubbles in the 
bed. The contours of solid volume fraction for two beds at the dimensionless gas velocity of 
2 and 3 are similar. This shows that the bubble formation and bubble activities in the bed are 
similar. The contours show negligible deviation between the two beds. The highest particle 
Reynolds number at these velocities is about 11. Up to this value of particle Reynolds number, 
the bubble behavior of the bed is similar. At the dimensionless gas velocity of 4, the contours 
show some deviation between the bubble activities in the beds. The particle Reynolds number 
for the dimensionless gas velocity is about 15. This is the Reynolds number at which the devi-
ation of the bubble activities between the two beds starts. At the dimensionless gas velocity of 
5, the contours deviate signifi cantly. The particle Reynolds number at this velocity is about 18.

The time-series data of solid volume fraction fl uctuations for the two beds are presented in 
Fig. 6. The time series of solid volume fraction fl uctuation in the beds gives more precise 
information of bubble activities. The fi gure shows the solid volume fraction fl uctuation at a 
single point. Similarity in the fl uctuation of solid volume fraction between the two beds 
means the similar bubble behavior in the beds.

5 CONCLUSION
Glicksman’s viscous limit set of dimensionless parameters are applied in scaling of bubbling 
fl uidized beds with different particle sizes and densities. The beds are simulated using exper-
imentally validated CFD model. The simulations are performed in commercial CFD software 
ANSYS/Fluent 13.0. Dimensionless pressure standard deviation, relative pressure and aver-
age pressure drop across the bed height are investigated as a function of dimensionless 
superfi cial gas velocities. Dimensionless pressure standard deviation is similar for the two 
beds at the dimensionless gas velocities 2–5. The dimensionless relative pressure and dimen-
sionless average pressure drop deviate at dimensionless gas velocities of 4 and 5. 

Fluctuation of solid volume fraction and contours are investigated as a function of dimen-
sionless gas velocity. The contour of solid volume fraction is similar for the two beds at the 
dimensionless gas velocities of 2 and 3. The contour starts to deviate from the dimensionless 
gas velocity of 4 and deviates signifi cantly at the velocity 5. The similarity of solid volume 
fraction fl uctuation or the bubble activities in the bed holds for the particle Reynolds number 
up to 15.

Figure 6:  Solid volume fraction fl uctuation with time. Dimensionless bed height = 0.5, 
dimensionless bed width = 0.75 and dimensionless gas velocity = 2.
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NOMENCLATURE
CFD computational fl uid dynamics

D bed diameter (m)

dp particle diameter (m)
g acceleration due to gravity (m/s2)

H static height of bed (m)
L1, L2 bed geometry (m)
Re Reynolds number (–)
u0 excess gas velocity (m/s)
umf minimum fl uidization velocity (m/s)
ρp particle density (kg/m3)
ρg gas density (kg/m3)
mg gas viscosity (Pa·s)
φ particle sphericity (–)
εmf void fraction at minimum fl uidization (–)
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