
 M. Pourghasemi, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 3 (2021) 261–275

© 2021 WIT Press, www.witpress.com
ISSN: 2046-0546 (paper format), ISSN: 2046-0554 (online), http://www.witpress.com/journals
DOI: 10.2495/CMEM-V9-N3-261-275

SPHERICAL PARTICLE MIGRATION EVALUATION IN 
LOW REYNOLDS NUMBER COUETTE FLOW USING 

SMOOTH PROFILE METHOD

MAHYAR POURGHASEMI1, NIMA FATHI1, PETER VOROBIEFF1, GOODARZ AHMADI2,  
SEYED SOBHAN ALEYASIN3 & LUÍS EÇA4

1 Mechanical Engineering Department, University of New Mexico, Albuquerque, NM, USA. 
2 Mechanical and Aeronautical Engineering Department, Clarkson University, Potsdam, NY, USA. 

3 Department of Civil and Environmental Engineering,University of Windsor,Windsor,Ontario,Canada. 
4 Mechanical Engineering Department, Instituto Superior Técnico, Lisbon, Portugal.

ABSTRACT
An Eulerian–Lagrangian model is developed to investigate the solid particle migration in low Reyn-
olds number shear flows between two parallel plates. A continuous kernel function with a predefined 
thickness is applied in the implemented numerical model to smooth the discontinuity at the interface 
between primary and secondary phases. At each time step, the solid particle’s rotation and displacement 
are calculated to directly capture the interaction between the solid particle and primary liquid phase 
without simplification. Solution verification is performed using the global deviation grid convergence 
index approach. The observed order of accuracy for the primary phase solver approaches 2, consistent 
with the formal order of accuracy of the applied discretization scheme. The obtained velocity pro-
files from the implemented numerical approach show a good agreement with the analytical solution, 
confirming the single-phase flow solver’s reliability. The obtained numerical results from the applied 
Eulerian–Lagrangian multiphase model are also compared with experimental data from a linear shear 
flow apparatus with suspended buoyant particles, and good agreement was found.
Keywords: CFD, multiphase flow, particle migration, shear flow, solid–fluid interaction, verification 
and validation.

1 INTRODUCTION
Solid–liquid multiphase flow analysis is an interdisciplinary research area with various tech-
nological applications. From the sediment transport in rivers, fillers motion within polymers, 
to high-performance coolants, having a correct understanding of particle–fluid flow interac-
tions plays a key role in research and development. Fluid flows containing small-size particles 
occur in biological and engineering systems, including aerosol transport, air pollution, paper-
making, and targeted drug delivery processes. Analyzing fluid flow with suspended particles 
is important not only for predicting the motion of particles within the primary fluid phase but 
also for evaluating their impact on the flow of the primary phase. Computational methods 
have been developed to analyze and evaluate the multiphase flow in different scales. Mul-
tiphase flow modeling using computational fluid dynamics goes back to the 1950s and the 
1960s when Particle-in-Cell (PIC) and Marker-and-Cell (MAC) methods were developed at 
Los Alamos National Laboratories [1–4]. A recent review of the MAC method can be found 
in Mckee et al. [5]. Although the MAC method provided significant progress in numerical 
modeling of the multiphase flows, it was relatively inaccurate. The volume of fluid (VOF), 
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front tracking, as well as level set methods, were more robust and accurate techniques pro-
posed in the late 1980s to investigate multiphase flows numerically [6–8]. The VOF approach 
uses a color/marker function representing the phase fraction of each fluid within a computa-
tional cell. The main problem with the VOF method is capturing the sharp boundary between 
different phases and interfacial properties such as surface curvature and surface tension [9]. 
Front Tracking Method introduced in the late eighties uses the Eulerian approach to solve a 
single set of governing equations, that is, Navier–Stokes and continuity equations for incom-
pressible fluid flow, in the entire computational domain. Sharp changes in material properties 
such as viscosity and density can be captured, while the effect of surface tension is included 
by adding an appropriate source term at the interface between different phases in the front 
tracking technique [10]. The interface is directly captured by tracking the marker points on 
the boundaries between different phases. The direct representation of the boundaries between 
different fluids makes this method suitable and accurate to investigate and capture interfacial 
phenomena such as surface tension, force balance, phase change, and surface curvature with 
a high order of accuracy. Recently, other analytical and computational investigations were 
performed on particle–fluid interaction. Ingber et al. [11] evaluated different particle inter-
actions, including particle/particle, wall/particle, and particle migration, in different types 
of nonlinear shear fields. A semi-analytical solution was developed for the motion of two 
spherical particles suspended in an unbounded arbitrary shear flow by the same group [12]. 
The results of the discrete phase element method (DPM) against the analytical solution were 
evaluated, and the verification and validation (V&V) for the single and double particle tra-
jectories in a rectangular and cylindrical domain were conducted in [13–16]. Previously, our 
progress on applying the DPM using the ANSYS/Fluent code to model the particle migration 
was reported in [17]. The current investigation is dedicated to studying the particle behavior 
in a low Reynolds number Couette shear fluid flow under different boundary conditions using 
our recently developed Eulerian–Lagrangian computational code using a similar scheme as 
the smooth profile (SP) method [18, 19] to simulate the coupled solid and fluid phases simul-
taneously. 

2 NUMERICAL APPROACH
A finite volume CFD code has been developed to study the migration of a solid particle in 
low Reynolds number Couette flows between two parallel plates. Figure 1 shows the compu-
tational domain used in the numerical simulations. The left and right boundaries are assigned 
as a periodic boundary condition. 

Figure 1:  Schematic illustration of the motion domain of a suspended particle in a 2-D 
Couette flow.
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The incompressible Navier–Stokes (N–S) equation is given as follows:
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where uf is the fluid velocity, P is the relative pressure with the hydrostatic pressure as the 
reference, and ρf and μf are the density and viscosity of the fluid phase, respectively. Since 
the fluid is assumed to be incompressible, the continuity equation simplifies to the following:

 ∇ =·u f 0. (2)

The translational and rotational motions of the solid particle within the flow field are con-
sidered using the Lagrangian approach. These are as follows:
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where ms is the particle mass, us is the particle velocity, Ff is the hydrodynamic force imposed 
by the fluid on the particle, and Fb is the buoyancy force acting on the spherical particle. 
Also, Is is the rotational inertia of the particle, ω is the particle angular velocity, and Tf is the 
torque inserted by the fluid to the particle at the interface. The hydrodynamic force and torque 
exerted by the fluid flow on the solid particle are given in eqn (4):
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To overcome discontinuity at the interface in this Eulerian–Lagrangian approach, the 
interface between solid particle and primary fluid phase is replaced by a kernel function, 
ψ, creating a SP from solid into the liquid with a predefined thickness [1,2]. The only input 
parameter for this smoothed kernel function is the thickness of the interface, δ. The corre-
sponding kernel function for the smoothed profile that is used in the present work is given by 
[2] as follows:
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where r is the radius of the particle, xc is the particle’s center of mass, dx is the spatial dis-
cretization size, and δ is the interface thickness, which is the only input parameter to define 
the smoothing kernel function. As it can be inferred from eqn (5), the kernel function ψ is 1 
within the solid particle region, |x-xc| < (r - δ ⁄ 2), zero in the fluid region, |x-xc| > (r + δ ⁄ 2), 

,
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while varying smoothly from 1 to 0 within the interface thickness. Using the kernel function, 
the velocity field in the entire solution domain can be expressed as follows:

 u u uf s= −( ) +1 ψ ψ ,  (6)

where us designates the velocity of the solid particle. With a well-defined time step and ini-
tial velocities within solid and fluid domains, eqns (1–6) are solved numerically using the 
smoothed profile method proposed by Nakayama and Yamamoto [16, 17]. The finite volume 
technique is applied to the N-S equations along with the continuity equation, given by (1) 
and (2). The derived system of equations is solved simultaneously to obtain fluid veloc-
ity distribution as well as pressure field with the use of an explicit second-order projection 
method [19,20] using spatially central-difference approximation on a fixed, staggered grid 
configuration. Obtained results are considered as intermediate velocity and pressure fields 
(uf*, P*). Total velocity is equal to the velocity of the particle within the particle domain, 
|x–xc|<(r - δ     ⁄     2). 

At the interface, due to the no-slip boundary condition, the velocity of both phases is equal. 
These two constraints are applied by correcting the intermediate pressure and velocity fields. 
The corrected pressure field, Pc, and fluid velocity are used to study the disturbing effect of 
the solid particle on the fluid velocity field.
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The total velocity field defined in eqn (6) should be divergence-free. By taking the diver-
gence of eqn (6) and considering eqn (7), the Poisson equation for the correction pressure 
field is derived as follows:
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Consequently, eqn (4) converts to the following equation:
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After obtaining the hydrodynamic force and torque, particle translational and angular 
velocities are updated using eqn (3). This procedure repeats for the next time step.

3 EXPERIMENTAL APPROACH
The initial motivation was to develop a new particle model originated from our experimental 
analyses, which have been conducted for several years. Figure 2 shows the experimental 
setup. As can be seen, the experimental setup consists of a tank and a computer-controlled 
stepper motor (compumotor). The compumotor is used to displace the belts shown in Fig. 
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Figure 2: The experimental setup used to study the migration of suspended particles.

Figure 3: Top view of the single spherical particle and the moving upper belt.

2. In the setup to determine the behavior of a spherical particle suspended in linear shear 
flow, one spherical polymethyl-metacrylate particle with a diameter of 6.35 mm is suspended 
between two layers of fluids with approximately equal viscosity and different density. The 
particle was placed into a tank between two belts, as shown in Fig. 3.

4 RESULTS AND DISCUSSION
To assess the accuracy of the developed CFD code, in the first scenario, a single-phase Couette 
flow between two parallel plates with a distance of 0.1 m is considered while the top plate moves 
with a velocity of 1 m/s toward the right and the bottom plate moves with the same velocity in 
the opposite direction (toward left). The density of the fluid has been considered as 1 kg/m3,  
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and the fluid viscosity is 0.001 Pa. S. The simulations have been conducted for mesh grid 
sizes of 3 × 3, 6 × 6, 12 × 12, 24 × 24, and 48 × 48 cells, respectively. Figures 4 and 5 show 
the numerical results as well as exact solutions for u velocity in the middle of the domain for 
a mesh grid of 6 × 6 cells and 48 × 48 cells. 

As it can be observed from Figs. 4 and 5, the developed CFD solver gives accurate results 
even with the coarse mesh of 6 × 6 mesh elements. This is mainly because of the simplicity 
of the problem since there are no advection and pressure terms, and the flow field is mainly 
controlled by viscous diffusion. 

Figure 5:  Velocity distribution for Couette flow between two parallel plates, mesh grid of  
48 × 48 elements.

Figure 4:  Velocity distribution for Couette flow between two parallel plates, mesh grid of  
6 × 6 elements.
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Figure 6:  The observed order of accuracy for single-phase Couette flow obtained from results 
presented Table 1.

Mesh Grid (elements) L1 L2 L∞
3 × 3 2.16e-4 2.64e-4 3.23e-4

6 × 6 9.83e-6 1.04e-5 1.47e-5

12 × 12 3.98e-6 4.37e-6 5.97e-6

24 × 24 3.14e-6 3.48e-6 4.88e-6

48 × 48 2.97e-6 3.3e-6 4.65e-6

Table 1: L1, L2, and L∞ norms for single-phase Couette flow.

The L1, L2, and L∞ norms for single-phase Couette flow are presented in Table 1 in order 
to investigate the observed order of accuracy of the implemented CFD solver. Figure 6 also 
shows the obtained observed order of accuracy. 

As shown in Table 1 and Fig. 6, the observed order of accuracy is 4.5 for a mesh grid of  
6 × 6 elements, and then decreases to 1.5 for a mesh grid of 12 × 12 elements, while it reaches 
0.1 for a mesh grid of 48 × 48 elements. The formal order of accuracy is 2, both for spatial 
and temporal variables. This observed order of accuracy seems strange, while it reduces con-
tinuously by mesh refinement.

The exact solution of this flow is a straight line, and so the discretization error would be 
zero if there were no round-off errors and iterative errors. Round-off errors are unavoida-
ble, and the results of Table 1 suggest that single precision was used. It is observed that the 
summation of truncation and round-off error for this simple flow becomes larger than the 
discretization error after the mesh grid size of 6 × 6 elements. As a result, the observed order 
of accuracy reduces continuously with further mesh refinement. Although the observed order 
of accuracy is less than 2 for Couette flow, Fig. 5 shows that the obtained result for velocity 
matches very well the exact (analytical) solution for a mesh grid size of 48 × 48 elements. 
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The second verification scenario for a pressure-driven flow between two parallel plates is 
considered to further verify the code accuracy. The channel is 0.2 m long and 0.01 m wide with 
a periodic boundary condition at left and right ends, and an applied pressure gradient of 240 
Pa. Fluid density is 1 kg/m3, and its viscosity is 0.001 Pa.S. Numerical simulations have been 
conducted for grid sizes of 8 × 8, 16 × 16, 32 × 32, 64 × 64, and 128 × 128 mesh elements. 

Figure 7 compares velocity profiles predicted by the present CFD code for the primary 
phase with mesh grids of 16 × 16 and 128 × 128 elements with the exact solution. The CFD 
results match the exact solution fairly well, confirming the accuracy of the single-phase flow 
solver. Since the primary phase is a fully developed flow (solution does not change in the 
x-direction), the error was calculated along the y-direction. Note that the errors were cal-
culated for cross-sections of the domain and they differ only at the level of round-off error. 

The observed order of accuracy from the CFD results of a pressure-driven flow between 
two parallel plates for different norms is presented in Fig. 8. As can be seen, the observed 
order of accuracy for the developed Fortran CFD code approaches the formal order of accu-
racy, which is 2. In contrast with the single-phase Couette flow, pressure and viscous terms 
affect the flow field in this simulation scenario. The truncation and round of errors are much 
smaller than discretization error, and therefore, the observed order of accuracy is 2, which 
is consistent with the formal order of accuracy of the applied numerical algorithm in the 
developed code.

The migration of a solid particle in a Couette flow is studied. The above-mentioned peri-
odic and the no-slip wall boundary conditions in the x- and y-direction, respectively, are used 
(Fig. 3). The following nondimensional numbers are also used in the study:

Figure 7:  Velocity distribution for a pressure-driven flow between two parallel plates. (a) 
Mesh grid 16 × 16; (b) Mesh grid 128 × 128.
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Figure 8: Observed order of accuracy for the pressure-driven flow.
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where D is the particle diameter, H is the distance between two parallel walls in the Couette 
flow, and V is the velocity magnitude of the upper and lower walls. Table 2 summarizes the 
corresponding nondimensional numbers used in this study.

The experimental data on the migration of particles in a low Reynolds number Couette 
flow from our experimental setup was used to perform validation. The top belt moves with 
a velocity of 0.002 m/s to the left, while the bottom belt moves with the same velocity to 
the right. The particle is initially located near the top belt, while its center of mass is 1.25 
D below the belt. To study the effect of the slip boundary condition, a different set of simu-
lations, including the slip boundary condition instead of no-slip boundary conditions were 
performed. Slip boundary condition can be modeled numerically using the concept of slip 
length, β [16]. Slip length measures a distance from the interface where the fluid velocity 
reaches to zero. Eqn (11) is implemented in the performed numerical simulation in order to 
find the fluid slip velocity at the walls of the computational domain (see Fig. 1). 

 u du
dywall wall= β |  (11)

ζ

α ζ
Re

1 0.0888 0.04–0.32

Table 2: Nondimensional numbers used in numerical simulations
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Figure 9 compares the experimentally measured and numerical predicted migration rates. 
It is observed that the particle migrates slowly toward the channel centerline. The migration 
rate is quite small, and the uncertainty in the experimental data is considerable. However, 
the CFD prediction and the experimental data follow the same trend. The ratio between the 
particle’s center of mass relative velocity and belt velocity as the applied CFD boundary 
condition is presented in Fig. 10. It is seen that there is a considerable difference between the 

Figure 9:  Comparison between the experimental data and numerical results on the migration 
of solid particles.

Figure 10:  Comparison of the numerical results on the particle relative velocity with the 
experimental data.



 M. Pourghasemi, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 3 (2021) 271

experimental data and the CFD prediction for the case with no-slip boundary condition. The 
CFD result with a no-slip boundary condition at the belts suggests that the relative velocity 
ratio is around 0.21, while experimental data gives a value of 0.7. 

In the performed numerical simulations with the no-slip boundary condition for the 
walls, the velocity profile within the fluid domain is high near the top and bottom belts such 
that the particle centerline velocity is around 79% of belt velocity, as shown in Fig. 10. 
However, the velocity ratio obtained from the conducted experiment in Fig. 10 is around 
0.3. The deviation between the obtained numerical results and experimental data for the 
particle centerline velocity illustrated in Fig. 10 is due to fluid slippage at the belts in the 
experiments. 

It is observed in Figs. (9) and (10) that by considering a slip length of 4.5 μm, the veloc-
ity ratio and particle migration rate approach to the experimental data. Therefore, the 
current numerical simulations predict a slip length of 4.5 μm for the fluid near the belts in 
the performed experiments. Further numerical simulation with an apparent slip length of  
β = 4.5 mm was conducted, and the result is presented in Figs. 9 and 10. It is observed that by 
considering apparent slip, the velocity ratio and particle migration rate get closer to the exper-
imental data. Further numerical simulations at different Reynolds numbers were performed 
to investigate the effect of shear rate on particle migration in a Couette flow. Figure 11 pre-
sents the trajectory of the center of the mass of the particle as a function of time for different 
Reynolds numbers of 0.04–0.32. As it is seen, the particle migrates toward the center of the 

Figure 11:  Trajectories of the suspended particle as a function of time for different Reynolds 
numbers.
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Figure 12:  Instantaneous angular velocities of the suspended particle as a function of time for 
different Reynolds numbers.

flow domain (yc/H = 0.5), where the shear stress is the lowest. The initial position of the solid 
particle is the same for all Reynolds numbers, and simulations are terminated once the par-
ticle leaves the solution domain from left or right boundaries (see Fig. 2). At high Reynolds 
numbers, the particle travels faster, and therefore, as presented in Fig. 11, the corresponding 
simulation time is shorter. 

The inertial lift force on a migrating particle is exerted within a shear flow. This force is 
first observed and formulated by Saffman in the 1960s [21]. In this work, the combination 
of imposed inertia and lift forces from the fluid flow resembles the Saffman lift force and 
pulls the particle toward the channel centerline, as can be inferred from migration rates in  
Fig. 12. The streamlines around the particle at Reynolds number of 0.32 are shown in Fig. 13. 
A counterclockwise rotation of the particle can be observed, which tends to push the particle 
upward toward the top plate. 

Figure 14 illustrates the angular velocity of the particle as a function of time for the Reyn-
olds number in the range of 0.04–0.32. Angular velocity increases as the Reynolds number 
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Figure 13:  Streamlines around the solid sphere in Couette flow with the Reynolds number 
of 0.32.

Figure 14: Average particle angular velocity as a function of Reynolds number.

gets higher, and so does the fluid velocity near the particle surface. However, the observed 
trend for particle migration rate in Fig. 11 suggests that the inertia force from fluid flow dom-
inates in the case of low Reynolds number Couette flow (Re < 0.32) and, therefore, particle 
migrates toward the centreline. The average angular velocity correlates with the Reynolds 
number and can be fitted to eqn (12):

 ωave Re= 2 84 1 044. ..  (12)

As it can be inferred from Fig. 14 and eqn (12), in the low Reynolds number Couette  
flow (Re <0.32), the induced angular velocity of the particle varies almost linearly with the 
Reynolds number. 
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5 CONCLUSIONS 
The results of the newly developed Eulerian–Lagrangian model for a spherical single-particle 
migration in a low Reynolds number shear flow were presented. Code verification and solu-
tion verification were conducted for the primary phase. The solid particle (secondary phase) 
migration was evaluated by performing validation against the experimental data obtained 
from our low Reynolds apparatus. The obtained computational results of the solid particle 
migration rate and relative transport velocity showed good agreement with the experimental 
data confirming the accuracy and reliability of the Eulerian–Lagrangian approach. It was 
observed that the solid particle tends to migrate toward the channel centerline at all Reynolds 
numbers (0.04–0.32). The obtained induced average angular velocity of the solid particle was 
observed to vary almost linearly with the Reynolds number.
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