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ABSTRACT
As classically proposed in the technical literature, the boundary element modeling of cracks is best carried 
out by resorting to a hypersingular fundamental solution – in the frame of the so-called dual formula-
tion – since with the singular fundamental solution alone, the ensuing topological issues would not be 
adequately tackled. A more natural approach might rely on the direct representation of the crack tip sin-
gularity, as already proposed in the frame of the hybrid boundary element method, with implementation 
of generalized Westergaard stress functions. On the other hand, recent mathematical assessments indicate 
that the conventional boundary element formulation – based on Kelvin’s fundamental solution – is, in 
fact, able to precisely represent high stress gradients and deal with extremely convoluted topologies 
provided only that the numerical integrations be properly resolved. We propose in this paper that inde-
pendent of the configuration, a cracked structure is geometrically represented as it would appear in 
real-world laboratory experiments, with crack openings in the range of micrometers. (The nanometer 
range is actually mathematically feasible, but not realistic in terms of continuum mechanics.) Owing 
to the newly developed numerical integration scheme, machine precision evaluation of all quantities 
may be achieved and stress results consistently evaluated at interior points arbitrarily close to crack 
tips. Importantly, no artificial topological issues are introduced, linear algebra conditioning is kept well 
under control, and arbitrarily high convergence of results is always attainable. The present develop-
ments apply to two-dimensional problems. Some numerical illustrations show that highly accurate 
results are obtained for cracks represented with just a few quadratic, generally curved, boundary ele-
ments – and a few Gauss–Legendre integration points per element – and that the numerical evaluation 
of the J-integral turns out to be straightforward and actually the most reliable means of obtaining stress 
intensity factors. Higher-order boundary elements lead to still better results.  
Keywords: boundary elements, fracture mechanics, machine precision integration, stress intensity factor.

1 INTRODUCTION
Fracture mechanics phenomena have been systematically investigated since the seminal studies 
by Inglis [1] in the year 1913, who showed the importance of analyzing the stress concentration 
around straight cracks in plane plates. Griffith [2] introduced in 1920 thermodynamics con-
cepts to formulate a fracture mechanics theory based on energy balance. Later on, Irwin 
extended Griffith’s ideas to metals and proposed the concept of energy release rate [3] and, 
on the basis of the developments by Westergaard [4], also the stress intensity factor (SIF) as 
a measure to be definitely considered in the fracture mechanics theory [5]. The concept of a 
crack opening displacement (COD) was proposed by Dugdale in 1960  to account for yield-
ing. Shortly thereafter, Rice [7] showed that the energy release rate may be obtained by 
means of a line integral, for two-dimensional (2D) problems, which became known as the 
J-integral. These concepts have been since then generalized for mixed-mode phenomena at a 
crack’s tip, whether or not in the elastic range (e.g. Jiangbo et al. [8]). 

The application of these concepts to a practical problem depends on the adequate  evaluation 
of the stress state around a crack tip. The first boundary element development in the field was 
made by Cruse and Van Buren in the year 1971 [9]. However, owing to space restrictions, we 
cannot carry out a literature review on the subject. 
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The second author and previous collaborators have already, in part, successfully arrived at 
an attempt on the basis of the hybrid boundary element method to adequately represent the 
stress field around a crack tip in terms of Williams’ series as well as of generalizations of 
Westergaard’s stress functions [10–12].

More recently, a consistent formulation – actually both conceptually and numerically long 
due to correction – of the conventional collocation boundary element method (CBEM) was 
proposed [13,14], according to which a convergence theorem could be envisaged and the 
evaluation of results turns out to be achievable within machine precision for internal points 
arbitrarily close to an elastic body’s boundary, regardless of the topology issues. The numer-
ical implementation considers arbitrarily high-order boundary elements for 2D bodies of any 
shape and topology as well as flat boundary elements for 3D bodies [15]. The application of 
this consistent formulation to 2D fracture mechanics problems was the subject of the second 
author’s M.Sc. thesis, which showed that a generically curved crack may be numerically 
simulated exactly as if in a real-life experimentation, with the faces distinctly modeled for 
arbitrarily small openings as long as the continuum mechanics is deemed applicable. 
The following outline extends the authors’ first attempt to report some academic applications 
of the CBEM to linear fracture mechanics [17], keeping for conciseness much of this first 
paper’s introductory part as well as the same numerical examples – only better elaborated. 
Some more examples adapted from [16] are also presented. 

2 THE CONSISTENT BOUNDARY ELEMENT METHOD
As applied to an elastostatic problem, boundary nodal displacements d and traction attributes  
t are interrelated by means of the single- and double-layer potential matrices G and H as

 
H d d G t t G t t−( ) = −( ) + ≡ −( )p p

ad
pe  (1)

In this equation, it is also considered that body forces may be at least approximately 
expressed in terms of equivalent nodal displacements d p and boundary traction parameters t p, 
which is not always a simple task [13,14,16]. This equation turns out to be an application of 
Somigliana’s identity that converts boundary data into domain displacements. For the real-
life case of inaccurate boundary data, in general, as the result of approximated values of 
d ≡ df  and t ≡ d� for a given problem as well as of the piecewise boundary interpolation, an 
error term ε has to be considered in this equation [13,14], from which the concept of an 
admissible matrix Gad  is derived – a matrix that does not transform traction forces out of 
balance. (Owing to space restrictions, this concept is not further explored herein.) The matri-
ces G and H are expressed in terms of the boundary integrals

 

G u ts is s i� �= −( ) ( ) ( )∫ d* x x x x  (2)

 

H n usf jis s j if= −( ) ( ) ( ) ( )∫ ds* x x x x x  (3)

where uis s
* x x−( ) and s jis s

* x x−( ) are the displacement and stress (Kelvin’s) fundamental 
solutions of the elastic problem, respectively – which have global support – and Γ(x) is the 
integration boundary. In the above equation and in the following, repeated indices mean sum-
mation. The vector x ≡ ( )x y z, ,  stands for the Cartesian coordinates of a given point, in the 

case a field point, and nj x x h,( )( ) are the Cartesian components of the unity outward vector 
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from 
�
n x x h,( )( ) to Γ x x h,( )( ), in terms of parametric variables x h,( ), for a general 3D prob-

lem. The subscript s refers to a given source node (at which the unit point force of the singular 
fundamental solution is applied), and the subscripts f (which stands for field) and � (also a 
field reference) indicate respectively to which node or surface point the displacement-inter-

polation function uif x x h,( )( )  or the traction-interpolation function t i� x x h,( )( )  – both with 

local support – is referred. uif x x h,( )( ) comes from the piecewise interpolation of displace-

ments ui x x h,( )( ) along the boundary, u u di if fx x( ) = ( )( )x h, , where df  is the nodal 

displacement. In a practical finite element or boundary element implementation, uif x x h,( )( )  
is actually represented by polynomial shape functions N f x h,( ):

 

u
N i f

if
fx x h

x h
,

,( )( ) = ( ) if and refer to the same Cartesian direction

00 otherwise






 (4)

In the expression of H, the Jacobian used in the definition of nj x x h,( )( ) cancels out with 
the Jacobian of d d dΓ x( ) = ( )J x h x h, . For the single-layer potential matrix G, it is proposed 
that the usual (as found in the literature) interpolation polynomials t i� of traction forces in eqn 
(2) be replaced with
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where J
at �( ) is the value of the Jacobian at the point characterized by the subscript � [13,14]. 

Nothing changes formally in the development of BEM for curved boundary segments (and, 
of course, nothing changes numerically for the trivial cases of straight or flat boundary seg-
ments), except that the evaluation of G becomes much easier and actually more consistent as 
compared to the proposed implementations given in the technical literature. In fact, J  can-
cels out in the product t i�dΓ  in eqn (2) for t i� defined as suggested, and the integrand of G  
becomes a polynomial that multiplies the assumed kernel uis

* . 

2.1 A brief outline of the numerical integration issues

As proposed above, the integrands in eqn (2) are given as products of the kernels with poly-
nomial terms, regardless of the element order for either 2D or 3D problems. For 2D problems, 
it has been shown that boundary elements of any shape may be dealt with in a unified proce-
dure that enables machine precision results for the evaluation not only of G and H but also 
for displacement and stress results at internal points – in the latter case, allowing for eventual 
quasi hypersingularities – no matter how close source and field points may be.

The outline of the numerical evaluation procedures is out of scope in the present develop-
ments, but it may be worth illustrating in Fig. 1 the kinds of singularity that must be taken into 
account. For the curved element of the figure, given in terms of the parametric variable 
x ∈ 0 1, , an actual singularity occurs for the source point at A, thus for 0 1≤ ≤x . For the 
source point at B, represented by x > 1  but still close to the integration interval, the integrals 
of eqn (2) must be dealt with for the special case of a real quasi singularity. On the other hand, 
if the source point is at C, its complex location x = ±a ib must be found for the correct con-
sideration of the corresponding procedure [14,18].
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3 NUMERICAL ASSESSMENTS OF A FEW FRACTURE MECHANICS PROBLEMS
Unless otherwise specified, we consider a material with transversal elasticity modulus G = 
80,000 units of stress and Poisson’s ratio v = 0.25 for plane stress state. All singularity and 
quasi-singularity cases are evaluated within machine precision, but the use of ng = 4  
 Gaussian points for the regular integrals leads to final precision of results that cannot be bet-
ter than 10 7− . In fact, several numerical assessments conducted using four, six and eight 
Gaussian points combined with 20, 30 and 40 precision digits implemented in a Maple™ code 
(Maple-15, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario) showed that all 
results of interest could be obtained within a precision of 10 5−  for ng = 4 points and 30 digits 
[16], which will be used here for all regular integrals along generally curved quadratic ele-
ments. Mode I SIFs are evaluated in terms of J-integrals along circles centered at the crack 
tip, subdivided into 10 sectors and also using ng = 4 Gaussian points per sector, as well as in 
terms of crack tip opening displacement (CTOD). 

3.1 Analysis of a degenerated elliptic crack in the open domain

The simplest and best representative case of fracture mechanics is the one of a straight crack 
in the open domain for a constant stress state applied transversally to the crack at infinity, 
with stress disturbances to be assessed at the crack’s tips and mode I SIF to be evaluated. 
We represent this crack with length 2 2a =  units and already as an elliptic opening with 
2 2 10 3b = × −  units, which, only in the limit case of b → 0, would exactly correspond to the 
problem originally proposed and solved by Westergaard [4]. 

In eqn (1), this case corresponds to a far-field stress state sij
p evaluated as traction parame-

ters t p and nodal displacements d p = 0 at the crack borders. Moreover, the occurrence of the 
crack implies that t = 0, so that eqn (1) directly leads to the solution of the crack borders’ 
nodal displacements d as

 d H Gt= − −1 p  (6)

since H is non-singular for an open domain problem, although we might expect some ill-con-
ditioning due to the proximity of the crack faces (this is assessed in the next example). After 
evaluation of d, results at internal points are obtained, with final stress values given as the 
superposition with the applied far-field particular solution sij

p .
A convergence study is shown on the left in Fig. 2 for simulations with 4–60 quadratic ele-

ments along the crack faces (ellipse semiaxis b = −10 3), with the SIF evaluated in terms of the 
J-integral and compared with the analytical result K aI = ≈s p 1 7724539, . (No advantage is 
taken of the problem’s double symmetry.) The node spacing along the crack varies geometri-
cally from the crack tip to the center according to the indicated ratios. We see that increasingly 

Figure 1: Illustration of actual (A) as well as real (B) and complex (C) quasi-singularity poles.
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agglutinating the nodes close to the crack tip (ratio = 1.5) does not necessarily lead to better 
results, which are for ratio 1.35, with errors tending to 10 4− . This is mainly related to the 
geometric approximation of the assumed elliptic initial crack shape in terms of successive 
quadratic segments, which provokes an undesired angulation between adjacent elements 
instead of a smooth surface.

In order to assess how the size of the ellipse’s minor axis affects results, the right graphic 
of Fig. 2 shows relative errors in the evaluation of SIFs for b = −10 3, 10 4−  and 10 5−  units for 
different ratios of the geometric increase of node spacing from the tip to the middle of the 
crack. There is a tendency to arrive at the SIF for the fracture mechanics theory, although the 
angulation between adjacent elements causes too much disturbance: the best result is the error 
of about 10 6−  for the opening b = −10 5 with ratio 1.1 for the internode space increasing. 

The angulation between adjacent quadratic elements along a smooth boundary may be 
measured in terms of how much the discontinuous part of the matrix H for a node between 
elements differs from 0.5. Since all singular evaluations are carried out within machine pre-
cision, this deviation from 0.5 is a reliable account of the introduced geometry errors. Such 
angulation occurs for nodes 3 and 119 of the insert in Fig. 3 and is given as errors of the 
measured values 1 2−( )q p/  relative to 0.5 for two different increasing ratios of the dis-
tance between adjacent nodes in the case of the half opening b = −10 5  and a total of 60 
quadratic elements in the crack discretization, which corresponds to 31 nodes from the tip to 
face’s middle. Node 1 is at the crack tip and the results shown are absolute values that would 
tend to zero as b → 0. The geometry errors are not large, in general, and smaller for nodes not 
too differently spaced, but larger when closer to the crack tip, where spurious stress gradients 

Figure 2:  Errors of numerical SIF values for the degenerated elliptic crack in the open domain 
with initial opening 2 10 3× −  and different numbers of quadratic boundary elements 
(left), as well as for different assumed initial openings and ratios of the geometric 
increase of node spacing in the simulation with 60 elements.

Figure 3:  Geometry discretization errors measured in terms of the discontinuous part of H for 
the degenerated elliptic crack in the open domain.
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should better be avoided. The conclusion is that results in the values of the SIF cannot be 
expected to improve unless this angulation issue is adequately solved.  

Figure 4 presents on the left normal stress results at 40 points spaced at geometrically 
increasing distances r / a along a straight line extending from the crack tip, as obtained for 
the discretization with b = −10 3 and 60 elements with node spacing ratio 1.35, and are com-
pared with the reference values according to Westergaard’s developments. The closest point 
is at a relative distance 10 3− . The 1/ r singularity tendency is well followed. The comparison 
with the target results is better displayed in terms of the error norm on the right of the figure, 
where both vertical and horizontal axes are in logarithmic scale.  

As assessed by Amaral Neto [16] for this case of an immersed straight crack as well as for 
some other crack configurations, the SIF results are actually dependent on the assumed Pois-
son’s ratio, a fact generally ignored in the literature, maybe because the numerical differences 
are smaller than the built-in errors of the hitherto implemented simulations. 

The normalized modes I and II SIFs, K I and K II , of the linear fracture mechanics problem 
may be evaluated in terms of the CTODs ∆u⊥ and ∆u=, that is, the relative opening and slip 
displacements of the two opposite face points that come as close to the crack tip as possible, 
such as for nodes 1 and 120 in the insert of Fig. 3, 
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for plane strain problems, where G is the shear modulus and v is the Poisson’s ratio. In the 
present CBEM, we might evaluate displacements in the domain (just the Somigliana’s iden-
tity is accurately evaluated) as close to node 1 in the insert of Fig. 3 and as close to the crack 
border as possible. This has not been done yet, but we have rather considered for the evalua-
tion of K I in eqn (7), the opposite nodal displacements along the crack faces – directly 
obtained in eqn (6) – such as in the sequence for nodes 2 through 31 in the two graphics of 
Fig. 5 for crack openings 2 10 3× −  and 2 10 5× −  using either four or eight quadrature points 
per quadratic element, both cases with the ratio 1.35 of the geometric increase of node spac-
ing (which justifies using the logarithmic scale for the indicated node distances in the 
horizontal axes). This example shows that all evaluations are sufficiently accurate with just 
four quadrature points per element. Moreover, the procedure of using eqn (7) is by far simpler 
than the tedious evaluation of the J-integral around the crack tip. On the other hand, the spu-
rious angulosities already reported and assessed by using Fig. 3 may affect the results’ 
accuracy more than when compared with the ones using the J-integral, as in Fig. 2. For a 
more elaborated crack simulation with a total of 120 quadratic elements, the results shown in 
Fig. 6, which are to be directly compared with the ones of Fig. 5, follow quite smoothly the 
tendency of eqn (7), but also present some disturbances close to crack tip owing to the 
reported lack of smoothness. Using eqn (7) is by far more expedite than using the J-integral, 

Figure 4:  Normal stress values (left) and relative errors at points along a line extending from 
the tip for the degenerated elliptic crack in the open domain.
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but leads to results that seem to be at least one order of magnitude less accurate. Observe that 
since the original resource to the CTOD applies to a crack with initial zero opening, eqn (7) 
must be accrued of the inherent error O( )∆q 2 of considering that our proposed degenerated 
crack ellipse already has some opening. 

3.2 Analysis of a crack between two holes in the open domain

The degenerated elliptic crack between two holes in the open domain shown on the left in Fig. 
7 with the opening 2 2 10 3b = × −  is analyzed as in the previous section. For all simulations, 
each circle is discretized with a fixed number of 40 quadratic elements, with internode dis-
tance increasing from the horizontal symmetry axes with the ratio 1.2, while varying from 4 
to 60 quadratic elements the discretization of the elliptic crack and using the internode increas-
ing ratios shown on the right of the figure. The mode I SIF reference value for the proposed 
geometric configuration (but straight crack) and loading is K I = 2 0402701.  [19]. The SIF 
relative error obtained in our evaluations by means of the J-integral tends to be about 10 3− , as 
shown in Fig. 7, a result to be interpreted with all the caveats of the previous section.

3.3 Analysis of an inclined edge crack in a rectangular plate

3.3.1 Accuracy and system conditioning assessment
The rectangular plate with an inclined edge crack of Fig. 8 (drawing not in scale) was exam-
ined by Amaral Neto [16] for a longitudinal constant load and edge openings 2 10 3× − , as 

Figure 5:  Relative errors of numerical SIF values according to eqn (7) for the degenerated 
elliptic crack in the open domain with the initial openings 2 10 3× −  and 2 10 5× −  for 
evaluations using four and eight quadrature points per element, respectively, both 
with the ratio 1.35 of the geometric increase of node spacing and simulation with 
60 quadratic elements.

Figure 6: SIF evaluations as in Fig. 5 for simulations with 120 quadratic elements.
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indicated, as well as 2 10 4× −  and 2 10 5× − . The discretization of the four external edges con-
sisted of a fixed number of 80 uniformly distributed quadratic elements. In the numerical 
analyses, the numbers of quadratic elements along each crack face varied from 1 to 15, and 
results for several internode space increasing ratios from the crack tip to the edge were inves-
tigated, as described for the previous example. Overall results tended to be better when such 
ratios were not too large, but just about 1.2–1.3. The obtained results were quite insensitive 
to discretizations with more than four elements along each crack face.  

Since this is the case of a finite elastic body, a very objective assessment of the imple-
mented numerical solution is worth being undertaken. In fact, as already used by the first 
author in several numerical investigations, Amaral Neto [16] submitted the plate of Fig. 8 to 
a family of displacement fields given by polynomials of degrees one, two, three, four and five, 
a total of 20 fields (four for each degree) that are non-singular fundamental solutions of the 
proposed elastic problem. For each polynomial, boundary displacements and traction forces 
can be evaluated and inserted into eqn (1) in order to check its accuracy as stated in this equa-
tion as well as in terms of the system solution indicated in eqn (6) – after duly compensating 
for rigid body displacements [16]. In fact, while sheer discretization accuracy can be assessed 
by means of eqn (1), the matrix inversion in eqn (6) makes it possible to measure the eventual 
onset of ill-conditioning.

According to Dumont’s convergence theorem for the CBEM [14], the numerical results are 
expected to be accurate within machine precision for linear displacement fields. (It would be 
the case for quadratic displacement fields as well, if the borders were given by straight seg-
ments, which is strictly speaking not the case here, as the crack face nodes are not evenly 
spaced inside a quadratic boundary element and the Jacobian of the coordinates transformation 

Figure 7:  Crack between two holes in the open domain (left) and errors of SIF values for 
simulations of the crack with 4–60 quadratic elements and different geometric 
increase in ratios of node spacing from the crack tip [16].

Figure 8: Inclined edge crack in a rectangular plate (drawing not in scale).
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is, therefore, not constant.) Since the regular parts of the integrals are evaluated numerically, 
the expected global results cannot be more accurate than the quadratures allow for. Figure 9 

shows the error results for eqn (1), Gt Hdpol pol− , as well as for eqn (6), d dpol num− , in the 

cases of crack openings 2 10 3× − , on the left, and 2 10 5× − , using four, six and eight quadrature 
points. The horizontal axes show the average results for the four polynomials of each degree 
used in the analyses. The results for the first-degree polynomials – for which analytical results 
are expected – are multiplied by some constants in order to keep the graphics within a reasonable 
interval. It is expected that errors increase as the polynomial degrees increase. In fact, as the 
quintic polynomials, for instance, give rise to overall high stress gradients, the displayed results 
are a threshold of the accuracy we should expect in the fracture mechanics assessments. It is 
worth observing some ill-conditioning related to eqn (6) – which increases as the crack opening 
gets smaller – but way below the approximation errors, which allows us to attest the robustness 
and reliability of the proposed numerical simulations.  

3.3.2 Numerical comparison for an example in the technical literature
A configuration similar to the one of Fig. 9 was analyzed by Namakian et al. [20] using two 
quite similar meshless implementations (results here are referred to as (a) and (b)), with nor-
malized modes I and II SIFs K I  and K II compared with another meshless model by Zhuang 
et al. [21] as well as with the key reference results by Murakami [22]. The plate considered 
by these authors has dimensions 444 5 177 8 2. .× mm , with the 45° slanted crack of (very large) 
length 177 8 2. / mm starting 177 8. mm from one border, so that two pieces of preserved 
177 8 177 8 2. .× mm  squares are kept before and after the crack formation. The plate is submit-
ted to uniform normal stress along its short edges for plane strain state and Poisson’s ratio 
n = 0 25. . The K KI II,( ) results found by these authors were apud [20] respectively (1.830, 
0.814) 20](a), (1.833, 0.819) [20](a), (1.778, 0.799) [21] and (1.856, 0.834) [22]. 

We ran two analyses for edge openings 2 10 3× −  and 2 10 5× − mm. The plate was simulated 
with 8 + 20 + 8 + 20 = 56 equally spaced quadratic elements along the borders and 22 quad-
ratic elements along each of the crack faces, for internode distance increasing from crack tip 
by a factor 1.15: the distance from the crack tip to the first node was 0.04034 mm (≈ 0 00032.
relative to crack length). 

Figure 10 shows mode I (on the left) and mode II SIF results evaluated according to eqn (7) 
for the two simulations, as compared with the values given by Murakami [22]. Results seem 
to be quite stable for nodes around a relative distance r a/ .≈ 0 011 from the crack tip, node 

Figure 9:  Errors related to eqns (1) and (6) for the plate of Fig. 8 with crack openings 2 10 3× −  
and 2 10 5× −  respectively, and evaluations using four, six and eight points for the 
numerical evaluation of the regular integrals.
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141, which corresponds to the opposite nodes 128 and 154, 2 204 10 5. × −  and 2 204 10 7. × − mm 
apart for the edge openings 2 10 3× −  and 2 10 5× − mm, respectively. The corresponding 
K KI II,( )  values are (1.845, 0.824) and (1.837, 0.824), which are confronted in Table 1 with 

the previously reported results. Our values lie between the results obtained by Namakian et 
al. [20] and Murakami [22] and are most probably the more reliable ones.

4 CONCLUSIONS AND PROSPECTIVE WORKS
It has been shown that a code implementation of the consistent CBEM can be used to analyze 
crack configurations of the 2D fracture mechanics as they are expected to exist in real life 
[16,17]. In this code, a unified integration scheme deals with singularities and quasi singular-
ities of an arbitrary degree of severity, as source and field points can be infinitely close to each 
other, the only limitation being the machine’s capability of representing numbers so as to 
avoid uncontrollable round-off errors [14]. One might think of working with a code that com-
bines Kelvin’s singular and hypersingular fundamental solutions to model a crack’s face and 
its opposite, respectively, a classical usage to represent cracks of zero opening. The present 
code actually already allows for such simulation, as the evaluation of stress results at internal 
points deals with quasi hypersingularities within machine precision. However, modeling real 
crack configurations opens up the possibility of implementing a procedure to investigate the 
crack propagation phenomenon from its onset and during successive steps of the crack 
becoming wider and larger – and eventually kinking and bifurcating. The combination with 
cohesive elements is also quite natural in the present code implementation. 

An issue investigated in the example given in Section 3.1 is the spurious angulations 
between adjacent elements in the attempt to represent an elliptic geometry as a succession of 
quadratic elements – aggravated at the proximity of the crack tip as some stress disturbance 
is unwillingly introduced. (An isogeometric implementation is not a solution, as the consist-
ent BEM must rely on an isoparametric formulation [14].) The main concern is, however, 
how to assume the shape of an unloaded crack in a real sample other than making local meas-
urements and just trying to have representative models. Westergaard [4] developed an 
analytical solution for a straight crack with initial zero opening, for which a far-field constant 

Figure 10:  Modes I (left) and II SIFs for the rectangular plate presented in Section 3.3.2.

Table 1: Percentage errors in comparison with literature results [20–22].

[20](a) [20](b) [21] [22]  

 
K I

0.82, 0.38 0.65, 0.22 3.8, 3.3 –0.59, –1.0

 
K II 1.2 0.61 3.1 –1.2  
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stress state is shown to cause an elliptic opening. This is the reason to suppose in Section 3.1 
that the unloaded straight crack is elliptic with the minor axis tending to zero. In the config-
uration for a = −10 3, the distance between opposite nodes closest to the crack tip is as small 
as 1 8 10 5. × −  for the model with 60 boundary elements. The assumption of a straight edge 
crack of Fig. 8 seems quite reasonable, but the linear narrowing from the edge to the tip is 
also in need of justification. In such a case, there are no spurious angulations and the crack 
tip is very narrow indeed: for the configuration with the indicated opening 2 10 3× −  and a total 
of 30 boundary elements, the distance between the opposite nodes closest to the crack tip is 
8 6 10 8. × − , which is already going beyond the continuous mechanics assumptions, but is still 
doable mathematically. 

A possibility that is already under investigation is the modeling of the crack as arbitrarily 
close, parallel (or not) interfaces interconnected by curved transition elements that preserve 
surface smoothness wherever required (this is done by just adjusting the loci of the internal 
element nodes). The simplest case of the straight crack of Section 3.1 would be modeled as 
in Fig. 11, for quadratic, cubic or quartic boundary elements. 

The model proposed in this figure seems to enable a friendlier manipulation of the numer-
ical simulations as a crack propagates and eventually kinks or bifurcates. This is the subject 
of a research work in progress.
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