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ABSTRACT
The paper deals with two different approaches for the analysis of electromagnetic fi eld coupling to 
arbitrary wire confi gurations buried in a lossy medium: the wire antenna theory and the transmission 
line method. The wire antenna formulation deals with the corresponding set of Pocklington integro-
differential equation, while the transmission line model is based on the telegrapher’s equations. The set 
of Pocklington equations is solved via the Galerkin–Bubnov scheme of the indirect boundary element 
method, while the telegrapher’s equations are treated using the chain matrix method and fi nite differ-
ence technique, respectively. A number of illustrative computational examples pertaining to buried 
multiple lines and grounding systems is given in the paper.
Keywords: Buried wires, antenna model, transmission line approximation, set of pocklington integro-
differential equations, numerical solution methods.

1 INTRODUCTION
The analysis of electromagnetic fi eld coupling to thin wire confi gurations buried in a lossy 
medium is important in many electromagnetic compatibility (EMC) applications, e.g. 
 communications and power cables, geophysical investigations, grounding systems, etc. This 
problem can be analyzed in either frequency or time domain by using the transmission line 
(TL) model, or thin wire antenna theory (AT) (full-wave model) [1, 2] with the latter being 
considered as a more rigorous one. The TL approach is quite plausible approximation for 
long straight conductors with electrically small cross sections but it is not valid for fi nite 
length wires, wires of arbitrary shape and high frequency excitations. Consequently, AT has 
to be used.

On the other hand, a principal drawback of the wire AT applied to buried conductors is 
rather high computational cost. Using enhanced TL model it is possible to overcome some 
limitations of the model restrictions. Thus, a rigorous relationship between frequency domain 
TL equations and integral relationships arising from the wire AT for the single wire below 
ground has been reported in [3].

The comparison between frequency domain wire antenna model and TL model pertaining 
to a single buried conductor has been presented in [4] and, quite recently, in [5]. The analy-
sis has been extended to multiple buried wires, as well [6]. The formulation used in [6] 
arises from the wire AT and is based on the set of the Pocklington integro-differential equa-
tions for half-space problems. The TL model discussed in [4–6] is related to the telegrapher’s 
equations. The set of the Pocklington equations is numerically handled via the frequency 
domain Galerkin–Bubnov scheme of the indirect boundary element method (GB-IBEM) [2]. 
The telegrapher’s equations, arising from TL model, are treated using the chain matrix 
method [4–6].
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Furthermore, a transient analysis of complex grounding systems using both AT and TL 
approximation has been presented in [7–9] for a single horizontal grounding electrode and 
complex grounding systems, respectively. 

This paper reviews the analysis methods of electromagnetic coupling to buried wire con-
fi gurations in the frequency domain [4–10].

The full wave approach and approximate TL approaches are discussed throughout the 
paper and a trade-off between these techniques has been stressed out. Modeling of multiple 
buried conductors and grounding systems are presented in separate sections. 

A number of illustrative computational examples pertaining to buried conductors and 
grounding systems is given throughout the paper.

2 BURIED LINES
This section compares the wire AT approach to the TL approach in the modeling of electro-
magnetic coupling to buried conductors in the frequency domain. The AT approach is based 
on the set of Pocklington integro-differential equations for arbitrary wires. The presence of 
a lossy half-space is taken into account by means of approximate refl ection coeffi cient (RC) 
approach [11]. The resulting integro-differential equations are numerically solved via a fre-
quency domain version of the GB-IBEM. The TL model in the frequency domain is based 
on the corresponding telegrapher’s equations which are treated using the chain matrix 
method.

The geometry of interest is related to multiple horizontal conductors buried in a lossy 
ground, as shown in Fig. 1.

The present analysis deals with the frequency response of buried conductors confi gura-
tions using the AT and TL approach, respectively.

2.1 Antenna theory approach: set of coupled Pocklington equations for arbitrary wire 
confi gurations

The set of Pocklington equations for multiple buried wires of arbitrary shape can be readily 
derived as an extension of the Pocklington integro-differential equation for a single buried 
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Figure 1: The geometry of horizontal buried lines.
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wire enforcing the continuity condition for the tangential fi eld component along the thin wire 
surface [10].

The wire placed in an infi nite lossy medium is fi rst considered, and then the formulation is 
extended to a corresponding half space problem.

Assuming the perfectly conducting wire, the total fi eld composed from the excitation fi eld �
excE  and scattered fi eld 

�
sctE  vanishes:

 
( ) 0exc scts E E⋅ + =
� ��

  on the wire surface (1)

where 
�s  is the unit vector tangent at the observation point.

Starting from Maxwell’s equations and the Lorentz gauge, the scattered fi eld can be 
expressed in terms of the vector potential 

�
:A

 

1 ( )sct

efec

E j A A
j

w
wme

= − + ∇ ∇
� ��

 (2)

The magnetic vector potential is defi ned by the particular integral:

 
0( ) ( ') ( , ') ' '
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where I(s′) is the induced current along the line, 
�s'  is the unit vector tangent at the source 

point and g0(s,s′) is the corresponding Green’s function of the form:

 

1 0

0
0

( , ')
jk Reg s s

R

−

=  (4)

while R0 is the distances from the source to the observation point, respectively:

 
( ) ( ) ( )2 2 2 2

0 ' ' 'R x x y y z z a= − + − + − +  (5)

where a denotes the wire radius.
Combining eqns (1)–(5) leads to the Pocklington integro-differential equation for the 

unknown current distribution along the single wire of an arbitrary shape insulated in an 
unbounded lossy medium [9, 10]:

 
( ) ( ) ( )2

1 0
'

1 ' ' , ' '
4

exc

eff C

E s I s s s k g s s ds
j pwe

⎡ ⎤= − ⋅ ⋅ ⋅ + ∇∇⎣ ⎦∫ � �
 (6)

Integral equation for an infi nite lossy medium (6) can be extended to a case of a thin wire 
located near the interface between two media by modifying the kernel to account for the 
electric fi eld refl ecting from the interface.

The excitation fi eld component then can be written as the sum of the incident fi eld 
�

incE  and 
the fi eld refl ected from the interface 

�
refE , i.e.

 = +
� � �

exc inc refE E E  (7)
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while the refl ected fi eld 
�

refE  is given by
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The Green’s function gi(s,s*) arising from the image theory is:

 
( )

1 1

1

, *
jk R

i
eg s s

R

−

=  (9)

with R1 being the distance from the image point to the observation point, respectively, *�s  is 
the unit vector tangential at the source point of the image wire, while k0 and k1 are propaga-
tion constants of air and lossy ground, respectively:

 
2 2
0 0 0w m e=k  (10)

 
2 2
1 0 effk w m e=  (11)

The complex permittivity of the lossy ground εeff is given by

 
0eff r j s

e e e
w

= −  (12)

where er and s are relative permittivity and conductivity of the ground, respectively, and w is 
the operating frequency.

The kernel Gs(s,s′)
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f f  (13)

is a correction term containing the Sommerfeld integrals and involves the following compo-
nents for horizontal and vertical dipoles [11, 12]:
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The Sommerfeld integral terms are:
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where
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and

 
2 2 2 2

0 0 1 1;k kg l g l= − = −  (23)

Finally, combining eqns (1), (6), (7) and (8) yields the Pocklington integro-differential equa-
tion for the unknown current distribution along the single wire antenna of arbitrary shape 
buried in a lossy ground
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To derive the corresponding set of coupled Pocklington integro-differential equations for 
NW wires of arbitrary shape the infl uence of each antenna has to be summarized, i.e. it 
follows:

  

( )

( ) ( )

( ) ( )

( ) ( )

2
1 0

'

2 2
20 1
12 2

1 0 1 '

'

' ' , ' '

1 ' * , * '
4

' * , ' '

1,2,...,

n

W

n

n

n n m n n m n n
C

N
exc
sm m n n m n inm m n n

neff C

n n m n s m n n
C

W

I s s s k g s s ds

k k
E s I s s s k g s s ds

j k k

I s s s G s s ds

m N

pwe =

⎡ ⎤⎡ ⎤⋅ ⋅ ⋅ + ∇∇ +⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥− ⎡ ⎤= − + ⋅ ⋅ ⋅ + ∇∇ +⎢ ⎥⎣ ⎦+⎢ ⎥
⎢ ⎥
+ ⋅ ⋅ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
=

∫

∑ ∫

∫

� �

� �

� �

 (25)



 D. Poljak et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 2 (2013) 147

An approximate simplifi ed form of Green’s function containing refl ection coeffi cient, 
deduced from the rigorous approach involving the Sommerfeld integrals, for overhead wires 
has been reported in [11]. Similarly, for the case of multiple buried wires the integral equation 
set (25) becomes [6]:
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where RTM and RTE are the refl ection coeffi cients for the case of transverse magnetic and 
transverse electric polarization, respectively, given by [6]:
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where In(sn′) is the unknown current distribution along the n-th wire, ( )exc
mE s  the excitation 

function on the m-th wire, g0,nm(sm, sn′) the free space Green’s function, while gi,nm(sm, sn*) 

arises from the image theory and 
0

.effn
e

e
=

The principal advantage of the RC approach versus rigorous Sommerfeld approach is sim-
plicity of the formulation and appreciably less computational cost. Generally, RC approach 
produces results roughly within 10% of those obtained via rigorous Sommerfeld integral 
approach [11].

2.2 Antenna theory approach: numerical solution

The set of integral equations (26) is handled via an effi cient GB-IBEM. The essence of the 
method has been presented in detail in [2]. Some special features related to isoparametric 
elements implementation have been discussed recently in [10].

The unknown current ( )ze
nI  along the n-th wire segment is expressed in terms of linearly 

independent basis functions fni, with unknown complex coeffi cients Ini:
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and the use of isoparametric elements yields:
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where n is the number of local nodes per element.
A linear approximation over a wire segment is used in this work and the corresponding 

shape functions are given by:
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as this choice was proved to be optimal for numerical treatment of various wire structures [2]. 
Applying the weighted residual approach and implementing the Galekin–Bubnov proce-

dure the set of Pocklington equations is transformed into a system of algebraic equations. 
Performing some mathematical manipulations, the following matrix equation is obtained:
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where Nm is the number of elements on the m-th antenna and Nn is the number of elements on 
the n-th antenna. 

Equation (32) can also be, for convenience, written in the matrix form:

 
[ ] { } { }i j

1 1
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w nN N

e
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where [Zji] is the mutual impedance matrix for the j-th observation segment on the m-th wire 
and i-th source segment on the n-th antenna.
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The use of isoparametric elements results in the following expression for mutual imped-
ance matrix:

  

[ ] { } { }

� � { } { }

{ } { }

� � { } { }

1 1

0
1 1

1 1
2
1 0

1 1

1 1

2 2
1 10 1

2 2
0 1 2

1

' ( , ' ) '
'

' ' ( , ' ) '
'

' ( , * ) '
'

* ' ( , * ) '
'

e T n m
nm m nji j i

T n m
m n nm m nj i

T n m
inm m nj i

T n
m n inm m nj i

ds ds
Z D D g s s d d

d d

ds ds
k s s f f g s s d d

d d

ds ds
D D g s s d d

d dk k
k k ds d

k s s f f g s s d
d

z z
z z

z z
z z

z z
z z

z
z

− −

− −

− −

= −

+ ⋅ ⋅ +

− +
−

+
+

+ ⋅ ⋅

∫ ∫

∫ ∫

∫ ∫

� � { } { }

1 1

1 1

1 1

1 1

' ' ( , ' ) '
'

m

T n m
m n snm m nj i

s
d

d

ds ds
s s f f G s s d d

d d

z
z

z z
z z

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥ +⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+ ⋅

∫ ∫

∫ ∫

 (34)

Note that matrices {f} and {f ′} contain the shape functions while {D} and {D ′} contain their 
derivatives.

The voltage vector is given by:

  
{ }

1

1
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m

m inc m
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and can be evaluated in the close form [10]. 

2.3 Transmission line approximation

Voltages and currents along the multiple buried conductors shown in Fig. 1 induced by an 
external fi eld excitation can be determined from the fi eld-to-transmission line matrix equa-
tions in the frequency domain [5]:

 
( ) ( ) ( )ˆ ˆ ˆ ˆ. F

d V x Z I x V x
dx
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The procedures for the assessment of longitudinal impedance matrix [ ]
∧
Z  and the transversal 

admittance matrix ˆ[ ]Y  are discussed in detail in [1]. The solution of the frequency domain TL 
equations is based on the chain matrix discussed in [3]. The per unit length parameters R, L, 
C and G of buried conductors are evaluated using the modal equation available in [13] and 
are frequency dependent. Such an approach is more accurate than use of well-known Pol-
aczeck formulas [1]. The standard TL and modifi ed TL (MTL) [5] approach are both used, 
respectively.

It is worth emphasizing that the TL theory can handle the problem of electromagnetic 
coupling directly in time but without considering the impact of frequency on the parameters 
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per unit length (in the expression of Z impedance). The direct time domain solution of TL 
equations requires the numerical calculation of a convolution integral which is a rather tedi-
ous task as the correction term includes the fi nite conductivity of the soil within the 
impedance Z. Moreover, this term is not available in the closed form and the inverse  Fourier 
transform (IFT) algorithm has to be used.

2.4 Computational examples

Numerical results presented in this section are related to various confi gurations of three 
 buried conductors.

The electric fi eld of the transmitted plane wave exciting multiple wires confi guration at 
certain burial depth z is [6]:

 
1

0
jk ztr

TME E e−= Γ  (38)

where E0 is the fi eld amplitude and the point of reference is located at the interface of two 
media z = 0. Note that E0 = 1 V/m in all examples to follow. Also, all numerical results 
obtained via GB-IBEM (abbreviated as BEM in fi gures to follow), standard TL and MTL, 
respectively are compared to the results calculated via NEC (numerical electromagnetic 
code) [14] with Sommerfeld approach and RC approximation, respectively. Figure 2 shows 
the fi rst confi guration of interest. The radius of all conductors is 10.25 mm, the distance 
between neighboring conductors is 106 mm, and the burial depth is 1 m.

The numerical results for the current induced at the center of the middle wire (confi gura-
tion No 1) are shown in Fig. 3. The length of conductors is 50 m and the ground parameters 
are: s = 0.001 S/m and er = 10.

Figure 4 shows the current induced at the center of the middle wire (confi guration No 1) 
for the conductor length of 50 m with higher ground conductivity (s = 0.01 S/m), while the 
 permittivity is the same (er = 10).

The second confi guration of interest is shown in Fig. 5. The radius of all conductors is 
10.25 mm, the distances between neighboring conductors are d1 = 36 mm, d2 = 18 mm, while 
the burial depths are h1 = 1 m, h2 = 0.97 m.

The numerical results for the current induced at the center of the middle wire (confi gura-
tion No 2) are shown in Fig. 6 for the conductor length of 50 m with the conductivity s = 
0.001 S/m and permittivity er = 10.

The numerical results for the current induced at the center of the middle wire (confi gura-
tion No 2) are shown in Fig. 7 for the conductor length 50 m. The ground parameters are s = 
0.01 S/m and er = 10.

 

D

d d

h

Figure 2: Confi guration No 1: D = 20.5 mm, d = 106 mm, h = 1 m.
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Figure 4: The frequency response at the center of the middle wire (confi guration No 1, 
L = 50 m, s = 0.01 S/m).

Figure 5: Confi guration No 2: D = 20.5 mm, d1 = 36 mm, d2 = 18 mm, h1 = 1 m, h2 = 0.97 m.

 

D

d1

h1

h2

d2 d2

Figure 3: The frequency response at the center of the middle wire (confi guration No 1, 
L = 50 m, s = 0.001 S/m).

0

5

10

15

20

25

0,1 0,5 0,9 1,3 1,7 2,1 2,5 2,9

I [
m

A]

f [MHz]

BEM

MTL

TL

NEC-Som

NEC-RC



152 D. Poljak et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 2 (2013)

Though all waveforms are alike, the magnitudes vary signifi cantly. Generally, the numerical 
results obtained via different approaches agree better for higher values of ground conductiv-
ity and longer wires.

3 GROUNDING SYSTEMS
This section deals with an assessment of the transient behavior of different grounding grid 
confi gurations using both AT and modifi ed TL model, respectively. 

The AT approach is based on the set of homogeneous frequency domain Pocklington 
integro- differential equations, with ground–air interface effects being taken into account 
through the exact Sommerfeld integral formulation. The set of homogeneous Pocklington 
equations is solved via the GB-IBEM [2] featuring linear isoparametric elements. Finally, 
the corresponding transient response is obtained by means of Inverse Fast Fourier Transform 
(IFFT) algorithm.

The MTL model is based on the corresponding telegrapher’s equations. The partial differ-
ential equation for the transient voltage, arising from the time domain TL equations, is solved 
via the fi nite difference technique directly in time domain. 

Figure 6: The frequency response at the center of the middle wire (confi guration No 2, 
L = 50 m, s = 0.001 S/m).

0

5

10

15

20

25

0,1 0,5 0,9 1,3 1,7 2,1 2,5 2,9

I [
m

A]

f [MHz]

BEM

MTL

TL

NEC-Som

NEC-RC

Figure 7: The frequency response at the center of the middle wire (confi guration No 3, 
L = 50 m, s = 0.01 S/m).
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The physical problem of interest shown in Fig. 8 is related to the square grounding grid 
energized by a lightning channel.

Several grounding grid confi gurations with dimensions varying from 10 × 10 m2 to 
30 × 30 m2, with or without additional vertical electrodes are analyzed in the paper. All grids 
consist of wire conductors with radius a = 5 mm, and buried at d = 1.5 m depth. 

Figure 9 shows various grid confi gurations. Two values of soil conductivity are considered: 
σ1 = 0.001 S/m and σ2 = 0.01 S/m. In both cases relative permittivity is εr = 9. In all cases the 
current injection point is located at the center of the grid. 

3.1 Antenna theory approach: set of homogeneous Pocklington Integro-differential 
equations for grounding systems

The currents fl owing along the grounding grid are governed by the set of coupled Pockling-
ton integro-differential equations for wires of arbitrary shape [9]. 

The full wave analysis of grounding systems excited by the current source shown on the 
left-hand side of expression (25) vanishes and the resulting set of Pocklington equations 
simplifi es reducing to the homogenous one.

Figure 9: Different grounding grid confi gurations.
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Note that the excitation is taken into account into formulation through the forcing condition [15]:

 1 gI I=  (40)

where Ig denotes current generator and I1 current at the injection point. 
Furthermore, at a junction consisting of two or more segments the continuity properties of 

the electric fi eld must be satisfi ed [16], which is governed by applying the Kirchhoff current 
law:

 1

0
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k
k

I
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=∑  (41)

and the continuity equation:
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Condition (42) ensures the discontinuities in charge per unit length to be ruled out in passing 
from one conductor to another across the junction. On the other hand, at the conductor free 
ends, the total current vanishes.

3.2 Antenna theory approach: the evaluation of the input impedance spectrum

The input impedance is given by the ratio:

 

g
in

g

V
Z

I
=  (43)

where Vg and Ig are the values of the voltage and the current at the driving point.
Once calculating the current distribution, a feeding point voltage is obtained by integrating 

the normal electric fi eld component from infi nity to the electrode surface: 

 

r
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∞
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�� �

 (44)

It is worth noting that the direct calculation of (44) is very time consuming. On the other 
hand, by carefully choosing an integration path, the computational cost can be appreciably 



 D. Poljak et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 2 (2013) 155

reduced. Thus, in the case of horizontal arrangement of wires, the best path is vertical, i.e. 
over the z-axis. 

The input impedance spectrum is multiplied with the current spectrum and the frequency 
response of grounding system is obtained. Finally, the transient response is calculated by 
means of the IFT.

3.3 Antenna theory approach: numerical solution

The set of Pocklington integro-differential equations (39) is numerically handled via the 
GB-IBEM. The boundary element solution technique used in this work is an extension of the 
method applied to single wire cases and presented elsewhere, e.g. in [2].

Undertaking the procedure already presented in Section II.B the set of Pocklington equa-
tions (39) is transferred to the system of equations [9]:
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where [Z]ji is the mutual impedance matrix for the j-th observation segment on the m-th 
antenna and i-th source segment on the n-th antenna, where Nw is the total number of wires, 
Nm the number of elements on the m-th conductor and Nn the number of segments on the n-th 
conductor. 

Implementation of isoparametric elements yields the following expression for the mutual 
impedance matrix:
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Matrices {f} and {f ′} contain the shape functions while {D} and {D ′} contain their 
 derivatives.

The excitation function in the form of the current source Ig is taken into account as a forced 
condition at the certain node i of the grounding system [9]:

 i gI = I  (47)

The wire junctions are treated through the Kirchhoff’s current law in its integral and differ-
ential form, respectively, related to the continuity of induced currents and charges at the 
junction (41)–(42). 
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3.4 Modifi ed transmission line method approach

Within the framework of the MTL approach one neglects the transverse propagation effects 
the grounding system is simulated by means of a complex network [9]. 

The corresponding coupling equations for the scalar potential and the current in the time 
domain for one-dimensional case are reported by the Agrawal model [17]:
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where l = x or y.
El (l, t) is the tangential component of the electric fi eld excitation.
Note that combining the two telegrapher’s equations, (48) and (49), the induced current or 

voltage can be eliminated and the second order partial differential equation for either voltage 
or current is obtained. If the propagation occurs in two-directions; x and y, the corresponding 
two-dimensional partial differential equation for transient voltage is given by:
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where the electric fi eld constitutes the excitation source, and R, L, C and G are per unit length 
parameters of the interconnected conductors.

For the grounding grid, the per unit length parameters are calculated taking into account 
the soil–air interface effects. There are various approaches for the assessment of these param-
eters, e.g. using the formulas suggested by E.D. Sunde [18] or by Y. Liu [19].

3.5 Finite difference solution of the potential differential equation for transient 
induced voltage

Partial differential equation (50) is solved numerically using the fi nite difference technique. 
The spatial discretization of 2nd order differential operator at certain point (i, j) using the 
fi nite difference approximation is shown in Fig. 10.

N1d

us(i,j-1)
us(i+1,j)us (i-1)

us(i,j)Δ x

Δ y

N2d

us(i,j+1)

Figure 10: Spatial discretization of the square grid.
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The fi nite difference approximation of spatial and temporal derivatives at certain point 
(i, j) can be written, as follows:
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Substituting (51)–(56) into (50) yields the following relation:
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which can also be expressed in the matrix form:
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where [A] denotes the coeffi cients matrix, [us] is the unknown voltage vector, [B] is the entire 
right-hand side and N is the total number of nodes.

The diagonal elements of matrix [A] are given by:
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while the non-diagonal elements of matrix [A] are as follows:
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The elements of vector [B] are: 
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The solution of the partial differential equation (50) requires the knowledge of the condi-
tions at the grid edges, as indicated in Fig. 12. 

In the case of an indirect lightning strike, at a certain point on the border of the grid Fig. 11 
the following equation is to be used [17]:
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where G′ is the equivalent conductance of corresponding nodes, while:
I(l, t – Δt) is the transversal current know at instant (t – Δt), and es

zE  is the z component of 
the electric fi eld in soil.

L R

G’ C’x

z y
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a- border of the grid. b- representation by π-Cell 

Figure 11: (a) Conditions at the grid edges; (b) Equivalent electrical network of grounding grid.
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The presence of a two-media confi guration is taken into account calculating the linear 
parameters of the electrical circuit for the case of the grounding electrode [18, 19]. Such a 
treatment of non-homogeneous media is identical to the case of TL with ground return path.

At each calculation step, the determination of induced voltages provides the evaluation of 
the currents induced along interconnected conductors of grounding grid by numerical inte-
gration of the telegrapher’s equation (48).

Note that the case of the direct impact of the lightning strike on the presented procedure 
is used by simply imposing Ee = 0. Therefore, in this case the voltage differential equation 
(eqn (50)) in the frequency domain becomes:
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where u is the potential in any point of the grid.
In this case, at the injection node the value of the current is known (lightning strike gener-

ator) providing the assessment of the corresponding voltage.
The input impedance is defi ned as follows:
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where k is the injection node index.

3.6 Numerical results

In all computational examples the lightning current is expressed by the double exponential 
function with parameters: I0 = 1.1043 kA, a = 0.07924·106 s–1, b = 0.07924·106 s–1.

Figure 12 shows the transient voltage at the feeding point calculated by AT and TL approach, 
respectively, for all four grid confi guration scenarios and soil conductivity σ1 = 1 mS/m, while 
Fig. 13 shows the related transient impedance of the grounding systems.

The results obtained by different approaches for grid type 1 and 2, agree rather satisfacto-
rily, and relatively good agreement can be also observed for type 3, while major differences 
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Figure 12: Transient feeding-point voltage for dry soil.
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occur for type 4 grid. Some differences appear at very early time instants (from 10–8 to 10–7 s) 
corresponding to the high frequency content of the input signal spectrum, which cannot be 
accurately predicted by the MTL method. Consequently, there are some differences in rather 
early time instants, as is visible from Fig. 12, i.e. MTL fails to accurately predict the early time 
behavior of grounding grids.

A similar conclusion can be drawn for the transient impedance, shown in Fig. 13, as well. 
Greater the grid size, the worse agreement between the results is achieved. The MTL 

method would be expected to work better if the wires are longer, but it is not the case in this 
particular grid confi guration. 

Such a behavior can be explained is due to the fact that the parts of the grid behave as sin-
gle antennas and there are many refl ections from discontinuities which MTL fails to take into 
account. This effect is more evident for low conductive soils than for higher ones and what 
can be seen in Figs. 14 and 15, presenting the transient voltages and impedances at injection 
point calculated for ground conductivity σ2 = 0.01 S/m.

The agreement between the results obtained via different approaches is found to be satis-
factory, particularly for later time instants which correspond to lower frequency part of the 

Figure 13: Transient impedance for dry soil.
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Figure 14: Transient fed-point voltage for wet soil.
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spectrum. For very early time instants the results are alike, although the transient voltage 
peaks, for all cases of grid confi guration are somewhat higher. 

Comparing the results for both values of ground conductivities it can be noticed that the 
peak value of the voltage is advanced for the case of higher conductivity. Also, the values of 
the peak voltages are pretty much alike regardless of the grid size. It is well-known that for 
very early time instants the higher frequency part of the impedance spectrum is important. As 
the grid density (mesh) remains the same for all grid confi gurations that part of the frequency 
spectrum is unchanged regardless of the grid size, as shown in Fig. 16. Depending on the 
conductivity that part of spectrum starts at different frequency values. In the case of σ2 = 0.01 
S/m the frequency is about 3 MHz (Fig. 16), while for σ1 = 0.001 S/m it is above 30 MHz 
(Fig. 17). Thus, one concludes that in high conductivity environment effective length of the 
grounding wires becomes very short at higher frequencies.

Therefore, very early time behavior is identical for all confi gurations since the very high 
frequency spectrum part is pretty much the same. Also, it should be noted that the analysis of 
results presented in Figs. 16 and 17, respectively is related to the results obtained by applying 
the antenna approach only, as the MTL results are obtained directly in time.
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Figure 15: Transient impedance for wet soil.
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4 CONCLUDING REMARKS
The present paper reviews the models and methods for the analysis of the electromagnetic 
fi eld coupling to buried wire structures. Thus, the multiple buried lines and grounding sys-
tems have been analyzed by means of both the wire antenna model and (TL) method.

The antenna model is based on the set of coupled Pocklington equations for wires of arbi-
trary shape, while the TL model deals with the corresponding set of telegrapher’s equations. 
The standard TL approximation and modifi ed TL approach are both used. In the case of 
grounding systems the set of Pocklington equations is homogeneous.

The set of Pocklington integro-differential equations for buried lines has been solved via 
the GB-IBEM, while the TL equations are treated using the chain matrix method. The 
obtained numerical results have been compared to the results obtained via the TL and MTL 
approaches, as well as the numerical electromagnetics code (NEC). 

The numerical results for buried multiple lines obtained via different approaches agree 
more satisfactory for higher values of ground conductivity and longer wires. 

The set of homogeneous Pocklington equations for grounding systems is solved via the GB-
IBEM, as well. The corresponding MTL equations are solved using the fi nite difference method. 

Observing the obtained numerical results for grounding systems, one concludes that MTL 
method fails to predict accurate results for the very early time instants of the transient imped-
ance, particularly for lower values of soil conductivities. At later time instants, a good 
agreement between the methods can be noticed, although differences are higher as the grid 
size increases for the case of low conductivity soil. For the higher conductivities scenario, an 
agreement between results obtained via different method is rather satisfactory.
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