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ABSTRACT
A three-dimensional double-diffusive natural convection with opposing buoyancy effects in a cubic 
enclosure fi lled with fl uid saturated porous media is studied numerically using the boundary element 
method (BEM). The mathematical model is based on the space-averaged Navier–Stokes equations, 
which are coupled with the energy and species equations. The simulation of coupled laminar viscous 
fl ow, heat and solute transfer is performed using a combination of single-domain BEM and subdomain 
BEM, which solves the velocity-vorticity formulation of governing equations. The numerical simula-
tions for a case of negative values of buoyancy coeffi cient are presented, focusing on the situations 
where the fl ow fi eld becomes three-dimensional. The results are analyzed in terms of the average heat 
and mass transfer at the walls of the enclosure. When possible, the results are compared with previous 
existing numerical data published in literature.
Keywords: boundary element method, Brinkman-extended Darcy formulation, porous media, 
 velocity-vorticity formulation, three-dimensional double-diffusive natural convection.

1 INTRODUCTION
The analysis of convective fl ows in porous media has been the subject of intense research 
over the last few decades. Several published experimental, analytical, as well as numerical 
results show the importance of the problem, which has several applications in natural and 
industrial processes. In the fi eld of buoyancy-induced fl ows, the most commonly studied 
problems are thermally driven fl ows, which can simulate, e.g. the heat transport in fi brous 
insulations, geothermal energy. More challenging situations occur in the case of combined 
action of thermal and concentration buoyancy forces, which can aid or oppose each other, in 
general. The so-called double-diffusive natural convection occurs in various engineering 
processes, e.g. contaminant transport in groundwater, heat and mass transfer in the mushy 
zone arising during the solidifi cation of alloys. In such processes, complex fl ow patterns 
may form mainly due to the presence of porous media, which adds hydraulic resistance, as 
well as the competition between the thermal and concentration buoyancy forces.

The fl ow in porous enclosures under these circumstances has been investigated mainly for 
two-dimensional (2D) geometries. However, for a certain range of controlling parameters in 
an enclosure imposed to thermal and concentration gradient, the fl ow may become three 
dimensional (3D).

Several different confi gurations have been studied considering the double-diffusive natural 
convection in porous enclosures, which differ from each other regarding the position of the 
thermal and concentration gradients. Most commonly studied confi gurations that can be 
found in the literature include the following [1,2]:

• Thermal and concentration gradients are imposed on vertical walls and are either aiding 
or opposing each other.
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 • Thermal and concentration gradients are imposed on horizontal walls and are either aiding 
or opposing each other.

• Thermal/concentration gradient is imposed on vertical wall and concen tration/thermal 
gradient is imposed on the horizontal wall.

Most published studies dealing with double-diffusive natural convection in porous media are 
based on the 2D geometry and mainly on situations where thermal and concentration 
 buoyancy forces are aiding each other [3–10]. Combined natural convection with opposing 
buoyancy effects are reported in [11,12]. Only few recent studies are considering 3D 
 geometry. Sezai and Mohamad [13] published study where 3D double-diffusive natural 
 convection in porous media is considered, where the thermal and concentration buoyancy 
forces are opposing each other. They reported that under a certain range of controlling 
 parameters (porous Rayleigh number, Lewis number, buoyancy coeffi cient), the fl ow in cubic 
enclosure becomes three dimensional. Later Mohamad et al. [14] investigated 3D convection 
fl ows in an enclosure subjected to opposing thermal and concentration gradients, focusing on 
the infl uence of the lateral aspect ratio. They found that for the certain range of controlling 
parameters, the aspect ratio has no infl uence on the rates of heat and mass transfer, but it 
strongly infl uences the fl ow structure.

In the present paper, a combination of single domain and subdomain boundary element 
method is presented for simulation of double-diffusive natural convection in a cubic  enclosure. 
The algorithm solves the velocity-vorticity formulation of the space averaged Navier–Stokes 
equations, which are obtained for porous media fl ow. The main advantage of the proposed 
numerical scheme, as compared with classical volume-based numerical methods, is that it 
offers an effective way of dealing with boundary conditions on the solid walls when solving 
the vorticity equation. Namely, the boundary vorticity is computed directly from the  kinematic 
part by a single-domain boundary element method (BEM) and not through the use of some 
approximate formulae.

The proposed algorithm is based on the pure fl uid and nanofl uid simulation codes obtained 
by Ravnik et al. [15,16]. Numerical examples for different values of buoyancy ratio at fi xed 
porous Rayleigh, Darcy, and Lewis numbers are investigated, focusing on situations where 
thermal and concentration buoyancy forces are opposing each other (negative values of 
 buoyancy coeffi cient).

2 MATHEMATICAL FORMULATION
The geometry under consideration is a cubic enclosure, fi lled with porous media, which is 
fully saturated with fl uid and is shown in Fig. 1. The left and right vertical walls are imposed 
to different temperature and concentration values, where T1 > T2 and C1 > C2, while the 
remaining boundaries are adiabatic and impermeable. It is assumed that the fl uid is 
 incompressible, Newtonian and the fl uid fl ow is steady and laminar. Furthermore, the 
porous matrix is assumed to be homogenous, isotropic, and non-deformable. The porosity 
and  permeability of porous medium are constant, while the density depends only on tem-
perature and concentration variations and can be described with Oberbeck Boussinesq 
approximation. 

Due to subjected temperature and concentration differences on two vertical walls, the 
 natural convection phenomena in the enclosure will occur. The density of the heated 
fl uid next to the hot wall decreases and buoyancy will carry it upwards. On the other hand, 
fl uid along the cold wall will be colder and denser, and it will travel downwards. Due to 
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applied concentration differences on the walls, additional concentration buoyancy forces are 
induced, which cause additional movement of the fl uid. Both induced buoyancy forces can 
aid or oppose each other, which also infl uences the strength of the convective motion of the 
fl uid. The cases when solute is transported due to induced temperature gradient (Soret effect) 
or heat is transferred due to concentration gradient (Dufour effect) have been neglected in the 
present study.

2.1 Governing equations

The governing equations for the problem of double-diffusive natural convection in porous 
media are given in terms of conservation laws for mass, momentum, energy, and species. 
They are obtained from classical Navier–Stokes equations for the pure fl uid fl ow, which are 
generally written at the microscopic level. By volume averaging over suitable representative 
elementary volume and considering the fact that only a part of this volume, expressed with 
the porosity φ, is available for fl uid fl ow, macroscopic or volume averaged Navier–Stokes 
equations can be derived. The averaging procedure is given in detail in [17]. The general set 
of macroscopic conservation equations can be written as:

• continuity equation

 0,u∇⋅ =
� �  (1)

 • momentum equation
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Figure 1: Geometry of the problem.
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 • energy equation
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 • species equation
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The parameters used above are: 
�v volume averaged velocity, φ porosity, t time, r density, v 

kinematic viscosity, p pressure, 
�g gravity vector, and K permeability. In the energy equation, 

s represents the heat capacity ratio s = (φ cf + (1 – φ)cs)/cf, where cf = (rcp)f and cs = (rcp)s 
are heat capacities for fl uid and solid phases, respectively. λe is the effective thermal conduc-
tivity of the fl uid saturated porous media given as λe = φλf + (1-φ) λs, where λf and λs are 
thermal conductivities for fl uid and solid phases, respectively. In the species equation C is 
concentration, and D is mass diffusivity. The momentum equation is coupled with energy and 
species equation due to the buoyancy term, which is described with the Oberbeck Boussinesq 
approximation, considering the fact that the fl uid density depends only on temperature and 
concentration variations:

 0 0 0(1 ( ) ( )).T CT T C Cr r b b= − − − −  
(5)

bT and bC in the above equation are volumetric thermal expansion coeffi cient and volumetric 
expansion coeffi cient due to chemical species, respectively:
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The subscript 0 refers to a reference state.
In the present work, the velocity-vorticity formulation of macroscopic Navier–Stokes 

equations is used, obtained with the introduction of the vorticity vector as a curl of the veloc-
ity fi eld ,w u= ∇ ×

�� �
 which is solenoidal by the defi nition 0.w∇⋅ =

� �
 Due to velocity-vorticity 

formulation, the computational scheme is partitioned into kinematic and kinetic parts, where 
the kinematics is governed by the elliptic velocity vector equation, while the kinetics consists 
of vorticity transport equation [18].

Non-dimensional form of the governing equations is adopted, using following  dimensionless 
variables:
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where v0 is characteristic velocity, r� position vector, L characteristic length, w
�
 vorticity 

 vector, t time. tw, tT, and tC are modifi ed times as tw = t/φ, tT = t/s, and tT = t/φ.  Furthermore, 
T0 and C0 are characteristic temperature and concentration, ΔT and ΔC are characteristic 
 temperature and concentration differences. Characteristic velocity is given with the 



 J. Kramer et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 2 (2013) 107

 expression v0 = λf/(cfL), which is common defi nition when considering buoyant fl ow 
 simulations.

The kinematics equation, which is a vector elliptic partial differential equation of Poisson 
type can be written for the case of an incompressible fl uid as:

 
2 0,u w∇ + ∇ × =

�� �  (8)

where both velocity and vorticity are divergence free.
The kinetics is governed by the macroscopic vorticity transport equation, energy, and 

 species equations.
The macroscopic non-dimensional vorticity equation can be written as:
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with non-dimensional governing parameters defi ned as: 

• Pr, Prandtl number

 
,vPr =

α
 (10)

Where v is kinematic viscosity and a thermal diffusivity, given as a = λf/cf  .

• RaT, thermal fl uid Rayleigh number:
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• N, buoyancy coeffi cient:
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where RaS is solutal Rayleigh number:
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 • Da,  Darcy number:

 
2 ,
KDa
L

=  (14)

where K  is permeability of porous media.
Furthermore, the porous Rayleigh number is defi ned as:
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Equation (9) is derived from the governing momentum equation applying the curl operator. 
The advective vorticity transport is equated on the left hand side, while the fi rst and the 
 second terms on the right hand side are vortex twisting and stretching term and the buoy-
ancy term. In this case, the Darcy–Brinkman formulation is used with two viscous terms, 
e.g. Brinkman viscous term (third on the r.h.s) and Darcy viscous term (fourth on the 
r.h.s.). The Brinkman viscous term is analogous to the Laplacian term (diffusion term) in 
the classical Navier–Stokes equations for pure fl uid fl ow. It expresses the viscous resist-
ance or viscous drag force exerted by the solid phase on the fl owing fl uid at their contact 
surfaces. With the Brinkman term the non-slip boundary condition on a surface, which 
bounds porous media is satisfi ed [1]. The infl uence of Brinkman viscous term depends on 
the Darcy number. In case of high Da, the Brinkman viscous term plays a signifi cant role 
and reduces the overall heat transfer. With decrease in Da the infl uence of Brinkman term 
becomes almost negligible; consequently, the inertial effect becomes signifi cant due to 
high fl uid velocity. The infl uence of Darcy term is investigated in [19] for the case of 2D 
double-diffusive natural convection in porous media and in [20] for the case of 3D natural 
convection in porous cube.

Further assumption is that no internal energy sources are present in the fl uid-saturated 
porous media. The irreversible viscous dissipation is also neglected, while no high- 
velocity fl ow of highly viscous fl uid is considered in the present study. The solid phase of 
porous medium is assumed to be in thermal equilibrium with the saturation fl uid. 
 According to this, the energy conservation equation in the non-dimensional form can be 
written as:
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The species conservation equation in its non-dimensional form reads:
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Where Le is Lewis number, given with the expression:

 
.Le

D
α

=  (18)

3 BOUNDARY ELEMENT METHOD
The governing set of equations (8), (9), (16), and (17) are solved using an algorithm based on 
the BEM. Either Dirichlet or Neumann type boundary conditions for velocity, temperature, 
and concentration must be known. The no-slip boundary condition is prescribed on all solid 
walls; in addition, temperature and concentration differences are prescribed on vertical walls. 
The following steps are performed:

1. The porous media parameters (porosity φ, specifi c heat s, and permeability K) are 
 determined.

2. Vorticity values on the boundary are calculated by single-domain BEM from the 
 kinematics equation (8).
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3. Velocity values within the domain are calculated by subdomain BEM from the  kinematics 
equation (8).

4. Temperature values within the domain are calculated by subdomain BEM form 
 equation (16).

5. Concentration values within the domain are calculated by subdomain BEM from the 
concentration equation (17).

6. Vorticity values within the domain are calculated by subdomain BEM from the vorticity 
equation (9).

7. Check convergence. All steps from 2 until 5 are repeated until all fl ow fi elds achieve the 
required accuracy.

The numerical algorithm for simulation of 3D fl uid fl ow by a combination of single and 
 subdomain BEM was developed by Ravnik et al. [15]. The solver has been adopted for 
 simulation of fl ow, heat, and solute transfer within the porous media. Porous parameters have 
been introduced in the vorticity, temperature, and concentration equations.

3.1 Integral form of governing equations

All governing equations are written in the integral form by using the Green’s second identity 
for the unknown fi eld function and the fundamental solution u* of the diffusion operator 
* 1 4 .u rp x= −

� �

The integral form of the kinematics equation in its tangential form is:
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Here, x
�
 is the source or collocation point, n� is a vector normal to the boundary, pointing out 

of the domain, and ( )c x
�

 is the geometric factor defi ned as ( ) 4c x q p=
�

,  where q is the inner 
angle with origin in x

�
. This tangential form of the kinematics equation is used to determine 

boundary vorticity values; the domain vorticity and velocity values are taken from the 
 previous nonlinear iteration. In addition, the domain velocity values are obtained from 
the kinematics equation, where the following form is used:
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Solution is obtained by subdomain BEM. Boundary values of velocity are known boundary 
conditions, while domain values of vorticity are assumed known from the previous iteration.

In addition, the same fundamental solution and a standard BEM derivation [21] are used to 
write the integral forms of the vorticity transport equation (9), energy transport eqn (16), and 
species transport eqn (17):
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Here, w j is a vorticity component, qj is a component of vorticity fl ux, qT and qC are the heat 
and species fl ux, respectively. In the present study, only steady fl ow fi elds will be considered, 
and thus, the time-derivative terms ,tww∂ ∂  TT t∂ ∂  and CC t∂ ∂  are omitted.

In the subdomain BEM, a mesh of the entire domain Ω is used, where each mesh element 
is named a subdomain. Equations (21), (22), and (23) are written for each of the subdomains. 
In order to obtain a discrete version of the equations, shape functions are used to interpolate 
fi eld functions and fl ux across the boundary inside of the subdomain. In this work, hexahedral 
subdomains with 27 nodes are used, which enables continuous quadratic interpolation of 
fi eld functions. The boundary of each hexahedron consists of six boundary elements. On each 
boundary element, the fl ux is interpolated using discontinuous linear interpolation scheme 
with four nodes. By using discontinuous interpolation, fl ux defi nition problems in the corners 
and edges could be avoided. Between subdomains, the functions and their fl uxes are assumed 
to be continuous. The resulting linear systems of equations are over-determined and sparse. 
They are solved in a least-squares manner.

4 RESULTS AND DISCUSSION
Applying temperature and concentration differences on two opposite walls on a cubic cavity, 
which is otherwise insulated, starts up natural convection phenomena due to aiding or oppos-
ing thermal and solutal buoyancy forces, which results in a large vortex in the main part of 
enclosure. In case when buoyancy coeffi cient is negative, the buoyancy forces are opposing 
each other, which slows down the convective motion and at the critical point, the fl uid fl ow 
direction is reversed. In this paper, the simulations for fi xed values of porous Rayleigh, Lewis, 
and Darcy numbers are presented in order to investigate the infl uence of negative value of the 
buoyancy coeffi cient. All calculations are performed for very low values of Darcy number 
(Da = 10–6), which means the model gives similar results as the classical Darcy model [22]. 
Comprehensive studies, patterned on the present research, concerned with the combined heat 
and solute transfer processes driven by buoyancy through fl uid saturated porous medium for 
2D geometries using classical Darcy model, were published by Bejan et al. [3–-6].

The results are expressed in terms of average Nusselt and Sherwood numbers presenting 
the wall heat and species fl ux, which are given as:

 
, .Nu T nd Sh C nd

Γ Γ
= ∇ ⋅ Γ = ∇ ⋅ Γ∫ ∫
� �� �  (24)

All calculations were performed on a nonuniform mesh with 20 × 8 × 20 subdomains and 
2,8577 nodes. Subdomains are concentrated toward the hot and cold walls. The convergence 
criterion for all fi eld functions was 10–5, and under-relaxation of vorticity, temperature, and 
concentration values ranging from 0. 1 to 0.01 was used. For all calculations, the porosity 
parameter value was set to φ = 0.8, the specifi c heat σ = 1, and Prantl number 10.
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In order to validate the obtained numerical algorithm, some test examples were per-
formed fi rst and compared with the available results from the literature. Table 1 presents 
Nusselt and Sherwood number values for Da = 10–6; Rap = 1 and 10; Le = 1, 10, and 50; 
and N = –0, 2 and 0, 5. The comparison with the study of Mohamad et al. [14] shows good 
agreement.

According to published study of Sezai and Mohamad [13], where 3D analysis of 
 double-diffusive natural convection in a porous enclosure is investigated, focusing on 
 situations, where the temperature and concentration gradients are opposing each other, 
the fl ow becomes 3D for a certain range of controlling parameters, e.g. for a fi xed 
Le = 10, Ra > 20, and N = –0.5. From this starting point, further presented results were 
obtained for fi xed values of Rap = 100, Da = 10–6, and Le = 10 and variable negative 
values of N. The results of computation are presented in Table 2. It is observed that with 
the decrease of N from 1 until –2, the overall heat and mass transfer decrease, which 
clearly shows the  infl uence of opposite directions of thermal and solutal buoyancy forces. 
In case when N = –2, the  Nusselt number value is near to unity, which means that heat is 
transferred mainly by the  conduction mechanism. The values of Sherwood number start 
to increase from N = –1.5, where the solutal buoyancy force is predominant. These results 
are consistent with the  temperature, concentration, and fl ow fi elds on plane y = 0.5, pre-
sented in Figs. 2, 3, and 4. Both the temperature and concentration fi elds are observed to 
be stratifi ed for higher  values of N. Decrease of N slows down the convective motion, 
which results in vertical isotherms (when N = –2) and iso-concentration lines (when 
N = –1.5). The fl ow direction is clearly reversed when N = –1.5 due to downward species 

Table 1:  Nusselt and Sherwood number values for 3D natural convection in a cubic  enclosure 
for Da = 10–6 and different values of porous Rayleigh number, Lewis number and 
buoyancy coeffi cient. The results are compared to study of Mohamad et al. [14] 
(values in brackets).

Rap = 10, N = –0, 5 Le = 1 Le = 10

Nu 1,019 (1, 0198) 1,039 (1, 0404)
Sh 1,019 (1, 0198) 2,450 (2, 4467)

Le = 50 , N = –0, 2 Rap = 1 Rap = 10

Nu 1,001 (1, 0005) 1,072 (1, 0705)
Sh 1,952 (1, 9517) 7,388 (6, 9861)

Table 2: Nusselt and Sherwood nu mber values for 3D natural convection in a cubic enclosure 
for Rap = 100, Le = 10, Da = 10–6 and different values of buoyancy coeffi cient.

Rap = 100 Da = 10–6 Le = 10

N = 1 N = 0 N = –0.5 N = –1 N = –1.5 N = –2 N = –3

Nu 4, 364  3, 4358  2, 811 2, 068 1.291 1, 061  1, 893
Sh 18, 444 13, 295 10,233 7, 653 7.449 9, 122 13, 923



112 J. Kramer et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 1, No. 2 (2013)

buoyancy, which dominates the fl ow. This can be clearly seen from the fl ow fi eld pre-
sented in Fig. 4.

In Fig. 5, temperature and concentration profi les for RaP = 100, Da = 10–6, Le = 10 and 
N = 0, N = –0.5, N = –1, and N = –2 are presented. The temperature and concentration 
 gradients increase with the decrease of N. The highest gradients can be observed close to the 
hot and cold walls in case when N = 0. When N = –2, the temperature profi le is close to the 
linear profi le. The Nusselt number value is close to unity, which means the heat is transferred 
mainly by conduction.

The 3D nature of the phenomena can be observed in the corners of the domain, which can 
be clearly seen from the iso-surfaces of absolute value of y velocity component plotted in 
Fig. 6. The extent of movement perpendicular to the plane of the main vortex becomes more 
apparent in case of lower values of N.

Figure 2:  Temperature contour plots on the y = 0.5 plane for RaP = 100, Da = 10–6, Le = 10 
and N = 0, N = –1, N = –1.5 and N = –2, respectively.

Figure 3:  Concentration contour plots on the y = 0.5 plane for RaP = 100, Da = 10–6, Le = 10 
and N = 0, N = –1, N = –1.5 and N = –2, respectively.

Figure 4:  Streamlines on the y = 0.5 plane for RaP = 100, Da = 10–6, Le = 10 and N = 0, 
N = –1, N = –1.5 and N = –2, respectively.
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5 SUMMARY
The 3D natural convection in a cube enclosure fi lled with fl uid saturated porous media was 
examined numerically using the combination of the single-domain and subdomain boundary 
element method. The results of overall heat and mass transfer through enclosure are 
 presented, focusing on the infl uence of opposing effect of thermal and concentration 
 buoyancy forces. The fl ow as well as heat and mass transfer follow complex patterns 
 depending on the interaction of the governing parameters, especially buoyancy ratio. The 
local direction of the fl ow changes because of the opposing buoyant mechanisms, which is 
also refl ecting in the values of Nusselt and Sherwood numbers. Fluid fl ow becomes three- 
dimensional in case of low values of buoyancy coeffi cient, which can be observed in the 
corners of the enclosure.

Figure 5: Temperature and concentration profi les at y = 0.5 and z = 0.5.

Figure 6: Iso-surfaces with temperature contours (–0.5 < T < 0.5) for Rap = 100, Da = 10–6, 
Le = 10 and absolute value of velocity component |vy | = 0.5 for N = 0 (left), N = –0.5 
middle and N = –2 right. In addition, the velocity vectors on the plane y = 0.5 are 
displayed.
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