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ABSTRACT
The design of closed-loop structural control systems necessitates a certain level of robustness to cope 
with system uncertainties. Neurocontrollers, a type of adaptive control system, have been proposed 
to cope with those uncertainties. However, the performance of neural networks can be substantially 
influenced by the choice of the input space, or the hyperspace in which the representation lies. For 
instance, input selection may influence computation time, adaptation speed, effects of the curse of 
dimensionality, understanding of the representation, and model complexity. Input space selection is 
often overlooked in literature, and inputs are traditionally determined offline for an optimized perfor-
mance of the neurocontroller. Such offline input selection is often unrealistic to conduct in the case 
of civil structures. In this paper, a novel method for automating the input selection process for neural 
networks is presented. The method is purposefully designed for online input selection during adaptive 
identification and control of nonlinear systems. Input selection is conducted online and sequentially, 
while the excitation is occurring. The algorithm designed for the adaptive input space assumes local 
quasi-stationarity of the time series, and embeds local maps sequentially in a delay vector using the 
embedding theorem. The input space of the representation is subsequently updated. The performance of 
the proposed dynamic input selection method is demonstrated through simulating semi-active control 
of an existing structure located in Boston, MA, U.S.A. Simulation results show the substantial perfor-
mance of the proposed algorithm over traditional fixed-inputs strategies.
Keywords: Adaptive control, adaptive hyperspace, adaptive input, online sequential network, self- 
organizing input, sequential neural network, structural control.

1 INTRODUCTION
Constructing representations for system identification and control of large-scale system is a 
difficult task, because dynamic parameters are often uncertain. A solution is to use intelligent 
control, among which neural networks have gained significant popularity due to their universal 
approximation capability [1, 2]. The performance of black-box representations used in neuro-
control is highly dependant on the selection of the input space [3, 4]. For instance, the choice 
of neural net inputs may influence computation time, adaptation speed, effects of the curse of 
dimensionality, understanding of the representation, and model complexity [3, 5, 6].

Several techniques have been proposed to conduct input selection, including filter methods 
[7], wrapper methods [8], and embedding methods [9], with application to automated input 
selection for neural networks [4, 10–13]. The majority of applications in literature are offline 
batch methods where the representation can be trained and evaluated before its utilization, or 
can be trained sequentially until performance satisfaction is attained. These methods are not 
applicable to controllers designed for systems that evolve in unknown environments (i.e. civil 
structures and wind turbines), for which input–output data can hardly be made available, and 
with an immediate performance requirement on the controller upon the occurrence of exter-
nal input. Such control problem is specific, and a suitable approach is a sequential adaptive 
controller, which is herein defined as a black-box controller that constructs the control rule 
sequentially, while the excitation is occurring. In this case, the input space has to be identified 
or adapted online to satisfy a given level of control performance.
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Input selection based on the embedding methods have emerged from the celebrated Takens 
embedding theorem [14]. The theorem states that the phase-space of an autonomous system 
can be reconstructed topologically using a vector formed with a number of delayed measure-
ments from a single state. In other words, there exists a set of inputs, from limited observations, 
that can represent the system dynamics. The embedding theorem has been extended to a 
general class of nonautonomous systems with deterministic forcing [15], state-dependant 
forcing [16], and stochastic forcing [17], and counts numerous applications to analysis and 
identification of time series [18–20].

This paper presents a novel adaptive neural network for identification and control of 
unknown systems for which pre-training is not available. It is a short version of the work 
published earlier by the author and his colleagues [21]. The adaptive neural network is a 
 single-layer wavelet neural network (WNN), with a self-organizing mapping architecture for 
its hidden layer [22]. The novelty of the neural network is the capacity of the input layer to 
self-adapt, including the addition and pruning of nodes. The proposed algorithm that selects 
the input space is termed self-organizing inputs (SOI) algorithm, and is based on Takens 
embedding theorem. The SOI algorithm determines, at each time steps, the input variables 
that capture the essential dynamics of the system, and uses the information to smoothly adapt 
the input space. The proposed SOI–WNN has the substantial benefits of (1) automating the 
input selection process for time series that is not known a priori; (2) adapting the representa-
tion to nonstationarities; and (3) using limited observations.

The paper is organized as follows. Section 2 describes the WNN that is utilized with the SOI 
algorithm. Section 3 presents the novel SOI algorithm. Section 4 integrates the SOI to the 
WNN to create the SOI–WNN, and verifies its performance using a simple simulation on 
tracking of a stationary time series. Section 5 simulates the SOI–WNN on a large-scale struc-
ture subjected to wind and equipped with semi-active dampers. Section 6 concludes the paper.

2 WAVELET NEURAL NETWORK
We have presented in Laflamme et al. [23] an adaptive WNN augmented by a sliding control-
ler for semi-active control mechanisms. This WNN will be utilized with the novel SOI 
algorithm. The neural network is summarized in this section, specialized for a nonlinear and 
nonautonomous controlled systems of the type:

Figure 1: Block diagram of the closed-loop control system.
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where x denotes the state, u the input, y the observation, f the nonlinear functions, and k the 
discrete time steps.

Figure 1 shows a representation of the controller. The structure is excited by an external 
signal and the control device. Its dynamic states, as well as the force inputs, are fed in the 
adaptive WNN. The WNN outputs are in turn fed in the sliding controller that adjusts the 
force based on the force reachability of the semi-active devices. A voltage is then sent to the 
semi-active device based on the required force using a saturation rule, which consists of 
applying a maximum voltage if the required force is in the same direction and sign as the 
previously applied force, or no voltage otherwise.

The wavelet neuro-controller is a single-layer feedforward WNN composed of mexican 
hat wavelets f:
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where ζ is the input vector, μ and σ are the centers and bandwidths of the functions respec-
tively, and ⋅  is the 2-norm. The automation of ζ is discussed in the next section.

2.1 Adaptation rules

The weights, bandwidth, and center of the wavelets are adapted using the back-propagation algo-
rithm for enhanced computation speed. The adaptation rules, in discrete time, are written [23]:
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where Δt is the discrete time step, ξ = [γ μ σ]T is the parameter vector, u = γTf is the neural 
output (here a control force), g are the weights, B is the state-space input matrix, P represents 
the user-defined sliding surface weights, s = PX is the sliding surface computed using the 
state X as the error metric (regulatory problem), Γ represents the adaptation weights of the 
appropriate subscripts, and the hat denotes an estimation.

2.2 Sliding controller

The sliding controller is used for modifying the adaptation mechanism of the WNN when 
the control force is not reachable. This is the case in semi-active control, because control 
devices cannot add energy to a system. The force error  = uact –un is assumed to be large and 
bounded, where uact is the actuator force and un the force required by the neural network. We 
define three adaptation regions. First, the region C, which consists of the bounded set of the 
neural network force output. Second, the region Cd, which is confined within the device 
reachability. Third, the region Ct, which is the transition region between Cd and C, such that 

⊃ ⊃t dC C C :
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where ub is a bound on the admissible error % actu = u - u , uact is the actual force output of the 
semi-active device, and ad, at are user-defined constants with ad ≤ at. Subsequently, the con-
trol law is modified using an adaptation ratio (1 − mb) where mb takes the values:
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where b is a positive constant. Stability of the control law is shown in Laflamme et al. [23].

2.3 Self-organizing rules

The hidden layer is organized sequentially following Kohonen’s self-organizing mapping 
theory [22]. A new node is added if:
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where dmin and sall are the thresholds for the minimum nodal distance to the closest node and 
minimum allowable error, respectively. Once a node is added, the parameters of the new 
node i are set to:
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where l is the network resolution. Note that some bounds exist on the new parameters given 
that we are using wavelet activation functions. They are not listed here for conciseness; 
details are given in Laflamme et al. [23].

Additionally, nodes can be pruned from the network. A node is pruned if its relative weight 
with respect to the largest nodal weight falls under a threshold gmin for a given number of 
consecutive time steps gnum.

3 SELF-ORGANIZING ALGORITHM
The purpose of the SOI algorithm is to sequentially organize the input space of the WNN. 
The algorithm parameterizes the unknown dynamic system using the time series response of 
a single observation. Subsequently, the dimension of the input space is adapted smoothly, 
along with the time lag between observations, using the assumption that the new inputs  
represent the essential dynamics of the unknown system. The objective is to obtain a more 
efficient representation for the dynamic system by selecting, at each time step, the inputs that 
contain a sufficient representation of the current system state.



 S. Laflamme, Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 1 (2015) 53

Takens embedding theorem is applicable to reconstruct the state-space of an autonomous 
dynamic system. The theorem states that the phase-space of the dynamic system in a topolog-
ical space M can be reconstructed from a vector n, termed delay vector, constructed with a 
dimension d of the observations y(k) = fy(x(k)) delayed by a factor t:

 

[ ]( ) ( ) ( ) ( 2 ) ( ( 1) )

( ( ))

= − − − −

=Φ

Kk y k y k y k y k d
x k

n t t t  (7)

where  :Φ → dM R , t = aΔt, with Δt being the sampling rate and a is a positive integer.
Thus, the algorithm takes the delay vector n that would parameterize the reconstructed 
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where σmod is a vector of large constants, σi is the target bandwidths from (6) when a dimen-
sion is added or the actual bandwidths to be removed when a dimension is decreased, and 
mc(k) takes the values:
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where c is a positive constant, and kmod is the time step when d
z
 has been modified. A dimen-

sion is removed from the neural net once the bandwidths fall beyond a threshold. Remark 
that changes in the input space are restrained to unity, which ensures robustness of the 
 representation, because y(k − t) ≃ y(k – t ± 1) and new dimensions are added smoothly 
based on eqn (9).

Although the theory discussed above applies to autonomous systems, the embedding the-
orem has been extended to a general class of nonautonomous systems with deterministic 
forcing [15], state-dependant forcing [16], and stochastic forcing [17]. For nonautonomous 
stationary systems, it can be shown that the delay vector needs to also include the system 
inputs u [17]:
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where Φ : M d→R2 . The delay vector may also be constructed by overembedding the state 
observation y in the case where the input is not observable [20].

Here, the dynamic system of interest (1) is nonstationary. To cope with the problem of 
nonstationarity, the state dynamics fx is taken as a series of maps of dimension n, where each 
map is assumed to be quasi-stationary. This assumption of local quasi-stationarity will be 
verified later. Thus, a sliding window of size n is used, which returns the observations y on 
the local dynamics at step k:

 y(k) = [y(k)  y(k−1)  y(k−2) … y(k− (n − 1))] (11)
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It follows that the delay vector is allowed to be nonstationary.
The embedding theorem holds given that n is constructed using appropriate values for t 

and d. The SOI algorithm uses conventional techniques for the determination of those param-
eters. The time delay t is computed at each time step using the mutual information (MI) 
method based on Shannon’s information theory [24], and the embedding dimension is 
selected using the false nearest neighbor (FNN) method using the algorithm presented in 
Kennel et al. [25].

3.1 Mutual information test

The MI test measures the average information gained from a new measurement, or how well 
can the outputs ŷ be measured given the measurements y. Fraser and Swinney [24] presented 
the theory for mutual information based on Shannon’s information theory, which in terms of 
probabilities has the form:
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where ŷ and y are two sets of n observations. The first local minima of the MI test gives the 
optimal time delay, whereas the subsequent minima correspond to a system that has exceed-
ingly unfolded. The computation of eqn (12) is conducted in the SOI algorithm by classifying 
the last n observations in a pre-defined number of bins MIbin.

3.2 False nearest neighbor test

The FNN test [25] consists of computing the nearest neighbors r from a point y (m) in a given 
dimension d. Thereafter, the dimension is increased, and the distances Rd (m, r) are computed. 
If the change is above a certain threshold Rtol, then a false neighbor is discovered. The dimen-
sion is increased until the percentage of false neighbors converges to zero. Mathematically, a 
false neighbor is discovered if:
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Kennel et al. [25] also added a second condition to ensure that nearest neighbors are also 
close to each other. This condition is written as:
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where z is the space location of the new point added with the new dimension,  is the arith-
metic average of z, and RA,tol is a threshold. An embedding dimension d is found when the 
number of false neighbors fall below a threshold Rnum. Note that, in a dynamic system with 
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forcing, some neighbors that are tested as false neighbors can actually be true neighbors 
where those crossings occur [26].

3.3 SOI algorithm

The proposed SOI algorithm sequentially:

1. applies eqn (12) on the last n observations in the search space [t(k − 1) − 1, t(k − 1) + 1] 
to find t(k).

2. applies eqns (13) and (14) using t(k) on the last n observations in the search space  
[d(k − 1) − 1, d(k − 1) + 1] to find d(k).

3. adapts the input vector z(k) smoothly using unity changes.

Figure 2 summarizes the SOI algorithm integrated to the WNN, which is the proposed 
SOI–WNN. In the figure, the SOI algorithm selects values of t and d using the MI and FNN 
methods on the last n state and input observations found in the sliding window. A delay vec-
tor n is constructed and becomes the objective input space. The actual input space z of the 
WNN is adapted smoothly based on n, and a new forcing u is computed.

The next subsection simulates the SOI–WNN with a simple dynamic system to verify the 
assumption of local stationarity, its sensitivity to the size of the sliding window n, along with 
its capability to sequentially identify a set of fixed inputs.

4 VERIFICATION
The proposed SOI–WNN is simulated for tracking the sinusoidal reference signal y*(t) = 0.02 
sin t from the following nonlinear equation:

Figure 2: Block diagram of the proposed SOI–WNN.
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where the excitation input is x = 0.2 sin 5t, and u is the control input. We have selected this 
arbitrary example, a particle traveling on a wavelet, because of the stationarity of the excita-
tion and reference signal, which isolates the source of nonstationarity in the adaptive 
representation. In addition, the stationarity of both signals allows us to pre-process their time 
series using Takens embedding theorem in order to determine the fixed inputs that would 
appropriately represent their dynamics. Lastly, by using a periodic excitation, it is possible to 
let the neurocontroller converge to a given control rule. The example in the next section 
includes a nonperiodic nonstationary excitation.

The WNN non-adaptive parameters are kept constant throughout the simulations, and no 
training is conducted a priori. Table 1 lists the values selected for those parameters. The 
selected parameters for the MI and FNN tests are arbitrary. Note that Rtol is large to account 
for crossings in the phase-space due to the forcing u. The minimum nodal distance and 
error are set equal and at 5% of maxt y*. The network resolution and pruning parameters 
are arbitrary and based on previous simulations in Laflamme et al. [23]. The adaptation 
weights are set to unity based on the sampling rate of 100 Hz, a sampling rate typical in 
structural control, except for the wavelet weights, which are augmented to 10 for enhanced 
adaptation speed.

The objective is to have the neuro-controller learn the control function as quickly as possi-
ble. A delay is induced in the actuator using the following dynamics: act = –h(uact–un), where 
h is a voltage delay taken as h = 20 s−1 to be consistent with the actuator dynamics taken in 
Laflamme et al. [23]. A sliding window size of n = 100 time steps is selected. The choice of 

Table 1: List of non-adaptive parameters.

NN object Parameter Value assigned

Inputs MIbin (MI test) 20
Rtol (FNN test) 15
RA,tol (FNN test) 2
Rnum 10%
Window size n 100

Hidden layer dmin 5% maxt y*
sall 5% maxt y*
l 10
gmin 1%
gnum 50

Adaptation Weights Γ
m

1
Weights Γ

s
1

Weights Γ
g

10
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n is discussed later in this section. The SOI algorithm is compared against three cases of fixed 
inputs:

•  An input vector built using t = 31 and d = 2, which are parameters obtained from 
 pre-processing the time series of the excitation signal, without forcing (u = 0).

 • An input vector built using t = 8 and d = 2, which are parameters obtained from 
 pre-processing the time series of the reference signal. 

•  An input vector built using t = 31 and d = 8, which are the optimal fixed input parameters 
obtained within the search space t = [1,40] and d = [1,10] while simulating the system 
with forcing.

Note that values obtained for t are coincidentally the same for the first and third cases, 
and that a dimension of 2 was expected for the first and second cases due to the low com-
plexity of both signals. The large embedding dimension for the third scenario can be 
explained by a more complex phase-space that counts several crossings once the eqn (15) 
includes the forcing u.

Figure 3 shows the time series response of the SOI algorithm versus the optimal fixed 
parameters. The SOI algorithm (blue straight line) results in a quicker convergence and better 
tracking results than the optimal fixed-input WNN (black dot-dash line). This is due to the 
dynamics of the control rule changing with time, for which adapting the input space results 
in a more efficient representation, as hypothesized. Table 2 shows the root means square 
(RMS) error for the four input strategies over a tracking time of 20 s, along with the average 
network size. Results from the overall time series show that the SOI gives good performance 
relative to the fixed input cases, and preserved a lean network size, with a substantial differ-
ence compared with the optimal fixed-input strategy t = 31, d = 8. The RMS error taken after 
5 s indicates that its convergence is significantly better.

In addition, the performance of the SOI–WNN has been studied under noise. Various levels 
of Gaussian noise have been induced in the observations. Figure 4 shows the RMS error for 

Figure 3:  Time series responses. The SOI–WNN (blue straight line) converges more rapidly 
than the optimal fixed-input WNN (black dot-dash line).
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noise ranging from 0% to 25%. The SOI–WNN is capable of significantly outperforming any 
optimal fixed-input strategies for noise under 5%. However, above that level, the relative 
performance of the algorithm quickly reduces, with a tendency to perform similarly to the 
fixed-input strategies.

The SOI algorithm is built under the assumption of quasi-stationarity of local maps within 
the sliding window. We first verify the performance of the algorithm as a function of the slid-
ing window size n. Figure 5 shows the RMS error after 5 s for various values of n, along with 
the average computation speed per time step. The performance of the algorithm remains 
approximately constant for values greater than 45 time steps, with a slight degradation for 
larger window sizes. Computation speed is affected negatively for low window sizes, because 
the controller fails at effectively converging. Once the window size is greater than 45, the 
computation time augments linearly with increasing n. Note that the computation speed 
remains under the sampling rate of 100 Hz for 45 ≤ n ≤ 125. Simulations were conducted in 
MATLAB with an Intel i7-2600 3.4 GHz CPU.

We now verify the main assumption of quasi-stationarity of local maps. A time se ries 
stationarity index is constructed by determining the change in the control rule within a 
map. If the change is minimal, then we can write eqn (1) in a stationary way with u(k+1) ≈ 
fu(y(k), u(k)). The observations at step k are taken, and the control force using the control 
rule at step k−n computed. The stationarity index is built comparing u(k−n) and u(k), and 
counts the number of local maps that remained under a given percentage change threshold. 

Table 2: RMS error of the controller for various input strategies (×10−5)

t = 31 t = 8 t = 31
Self-organizing inputs d = 2 d = 2 d = 8

Over 20 s 18.9 21.3 23.4 21.1
After 5 s 3.07 13.2 16.4 12.1
Average network size 23.8 25.3 18.6 55.9

Figure 4: RMS error with respect to noise, after 5 s (×10−5).
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Figure 6 graphs the stationarity index over various time ranges. The figure shows the num-
ber of stationary maps as a function of the percentage of change allowed between u(k−n) 
and u(k). Results show that 43% of the maps have a change less than 5% over the entire 
simulation (last 20 s), which increases to 88% for the last 1 s. If a change of 10% is allowed, 
64% of maps show to be quasi-stationary over the entire simulation, and 91% over the 
last 5 s. Results show that the level of quasi-stationarity increases significantly with the 
convergence of the black-box model. It is estimated that levels of stationary maps above 
85% under 10% allowable change satisfy quasi-stationarity, which is met for the last 10 s 
of the simulation.

Lastly, the SOI algorithm is switched off once the error metric stays below a threshold for 
a pre-defined number of steps, in order to identify fixed (static) inputs for the representation 
once the system has converged. For the task, the capacity of the network to prune nodes has 
been relaxed, as we expect needing a denser network to construct an accurate representation 

Figure 5:  RMS error of the SOI algorithm after 5 s of simulation, along with the average 
computation speed per time step for various sliding window sizes.

Figure 6:  Stationarity index of local maps for the last 1, 5, 10, 15, and 20 s of the simulation.



60 S. Laflamme, Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 1 (2015)

of the global dynamics. Figure 7 shows the evolution of the input parameters over time, 
depicting the self-organizing nature of the input space. The inputs become static after 20 s, 
identifying the parameters t = 12 and d = 2. This compares well with the pre-processed val-
ues of the controlled time series aforementioned to be t = 8 and d = 2, as the phase-space of 
the sinusoidal target only marginally unfolds between both time delays. The value for d is 
significantly lower than for the optimal fixed inputs strategy (d = 8), because the SOI algo-
rithm computes the optimal d based on the last n observations only.

5 LARGE-SCALE SIMULATION
The WNN controller presented in this paper has been simulated with fixed inputs in Laflamme 
et al. [23]. The simulations were conducted on a 39-storey office tower located in downtown 
 Boston, MA, USA. Here, the same structure is taken, and the SOI–WNN performance as an 
improvement to the WNN is studied. The simulated system is fully described in Laflamme 
et al. [23], and summarized here for completeness.

The simulated building currently comprises 60 passive damping devices installed on 
15 floors, which are replaced in the simulation by semi-active damping devices of similar 
capacity. The structure is described by McNamara and Taylor in their work [27]. The 
semi-active devices are large-scale variable friction dampers capable of resisting forces 
in the order of 1350 kN and are described fully in Laflamme et al. [28]. For the scope of 
this paper, it suffices to consider the devices as nonlinear controllable dampers. For the 
external excitation, data from a wind tunnel testing are taken and scaled to match the 
performance described by McNamara and Taylor in their work [27]. The excitation is 
nonperiodic, nonstationary, and considered as unmeasurable. The sliding controller fea-
ture is used, with C taken as 8.33% ub (50/300 kips), Ct as 50% ub, and ub equal to twice 
the device maximum force of 1350 kN since the force can take equal values of opposite 
signs.

For the simulation, each of the devices is controlled using local measurements. For each 
of the 15 decentralized controller, the only available inputs are the acceleration, interstorey 
displacement, and interstorey velocity of the floor, in addition to the damping force of the 
local device. The SOI uses the time series of the acceleration to determine the delay vector n 

Figure 7: Identification of fixed t and d for a global representation



 S. Laflamme, Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 1 (2015) 61

and to subsequently adapt the input space z using data from the acceleration and force states. 
The interstorey displacements and velocities are used for the sliding controller to compute 
the sliding surface s.

Three main control objectives are utilized for evaluating the performance of the controller: 
(1) the maximum acceleration of the 37th floor (J1), which corresponds to the highest occu-
pied floor and corresponds with the main control objective in McNamara and Taylor’s 
description [27]; (2) the maximum floor acceleration (J2); and (3) the maximum interstorey 
displacement (J3). The performance of the SOI–WNN is benchmarked against a linear quad-
ratic regulator (LQR) controller using full-state feedback and full parametric knowledge. In 
addition, the WNN is simulated with three fixed input strategies optimized over the search 
space t = [1, 40] and d = [1, 10]:

•  t = 16, d = 2, the optimized performance for J1. 

 • t = 4, d = 7, the optimized performance for J2. 

•  t = 40, d = 2, the optimized performance for J3. 

Table 3 shows the mitigation performance provided by all control strategies relative to the 
existing passive control strategy. The SOI–WNN performs substantially better than all 
fixed-input strategies. It also achieves better than the LQR controller designed using full 
parametric knowledge. An explanation for such high performance of the algorithm is the 
capacity of the input space to adapt to the nonstationary excitation and system nonlinearities. 
Additionally, despite that the system is nonlinear due to the semi-active control devices, the 
LQR controller was designed assuming linearity in the control force, from which the control 
device would try to achieve the required force. Such design is common in structural control, 
as the dynamic of civil structures is inherently stable, and semi-active devices cannot desta-
bilize the system.

We also look at the sensitivity of the fixed-input strategies. Figure 8 shows three- 
dimensional plots of the mitigation performance for the three performance indices in function 
of t and d. A first observation is that the mitigation performance for both J1 and J3 is close  
to optimal for a dimension d = 1, and does not seem to be influenced by a change in t, mean-
ing that the controller performance can barely be improved by selecting inputs other than a 
single feedback. Note that the WNN tries to achieve sequential control, without pre-training. 
Thus, a fixed-input strategy shows to be inefficient in this case at achieving the task of quick 
learning, because the system is nonlinear and nonstationary, thus requiring several training 
examples. Index J2 shows to have a degradation of performance for high dimension and time 
delay, and also shows a high variation in mitigation performance around the optimal solution 
of t = 4, d = 7, demonstrating the importance of input selection.

Table 3: Mitigation (%) with respect to the existing passive control strategy

t = 16 t = 4 t = 40
Linear quadratic regulator Self-organizing inputs d = 2 d = 7 d = 2

J1 29.0 32.0 28.0 20.1 26.3
J2 23.7 30.2 24.4 25.5 23.6
J3 24.1 24.2 15.2 15.0 20.1
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Figure 8:  Sensitivity of the fixed input parameters to mitigation performance for: (a) J1;  
(b) J2; and (c) J3
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6 CONCLUSION
In this paper, a novel type of neural network has been presented. The neural net consists of a 
single layer feedforward WNN, and the main contribution is the online organization of the 
input space. A verification using sequential tracking of a nonlinear function showed that the 
proposed neural network was capable of outperforming any fixed-input strategies. In addi-
tion, simulations conducted on an existing structure show the significant mitigation 
performance of the proposed SOI–WNN to mitigate vibration in a nonstationary and nonlin-
ear system. It performed better than any of the fixed-input strategies, and also better than an 
LQR controller designed using full knowledge of the system and operated using full-state 
feedback. The SOI–WNN is a powerful neural network capable of sequential learning, which 
is of interest for unknown systems that cannot be trained a priori. It combines the benefits of 
(1) automating the input selection process for time series that are not known a priori; 
(2) adapting the representation to nonstationarities; and (3) using limited observations.
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