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ABSTRACT
This study aims at evaluating the corrosion rate at the first stage of stress corrosion cracking by a 
numerical simulation. The stress corrosion cracking starts with a pitting corrosion which appears from 
a damaged portion of passive film induced by plastic deformation. From micromechanical standpoint, 
the stress and strain are concentrated around the grain boundaries due to the heterogeneity of micro-
structures; therefore, the plastic slip occurs mainly around the grain boundaries and generates a fresh 
surface without passive film. This produces a microcell and affects the macroscopic polarization curve. 
We obtained this polarization curve of stainless steel from the open-circuit tensile tests associated with 
the microscopic electrostatic simulations. Moreover, this paper shows the two-dimensional formulation 
for coupling analysis of elastic stress and electrolytic potential. Both fields are solved by the boundary 
element method with the discontinuous quadratic element. The strain-dependent polarization curve is 
used as a nonlinear boundary condition of the potential problem. First, the elastic problem is solved to 
obtain the surface strain which governs the polarization curve on the surface. Next, the potential prob-
lem is solved to obtain the current density on the surface which determines the corrosion rate. Since 
each node has two corrosion rates in different directions coming from the neighbouring elements, we 
average these two rates and directions, so as to conserve the volumetric reduction rate unchanged. After 
moving the nodes as a result of corrosion during the time step, we return to the stress analysis and iterate 
this procedure during the interested period of time. We demonstrate a corrosion pit growth from a small 
hemi-elliptic surface defect and show the availability of the proposed method.
Keywords: boundary element method, coupling problem, electrochemistry, mechanical damage, oxide 
film, polarization, stress concentration, stress corrosion.

1 INTRODUCTION
With the recent advancement of numerical simulation techniques, corrosion simulations are 
gathering attention for understanding the insight of localized corrosions such as pitting cor-
rosion [1], crevice corrosion [2] and also stress corrosion cracking [3]. Localized corrosion is 
a highly complicated physical and chemical process consisting of diffusion and migration of 
ions, convection of fluid, anodic dissolutions and cathodic precipitations. Moreover, the 
stress-assisted corrosion adds the effect of stress and strain on the anodic dissolution through 
mechanical damage in the passive film on the material surface. The method most widely used 
is the finite element method due to its versatility for multi-physics approach and historical 
advantage in commercial code development [4]. However, the boundary element method 
(BEM) has also been widely used in corrosion simulation from the early stage of its develop-
ment [5–8]. While the application of BEM in corrosion simulations is limited to a single 
physical problem, that is, electrostatics described by Laplace equation, the BEM has two 
invariable advantages, namely, discretization is easy since the discretization domain is one 
order of dimension less than the analysis domain and the discontinuity or singularity of field 
variable can be easily and precisely formulated. Especially, the electric current density must 
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be discontinuous at the boundary of dissimilar materials, which are in this instance an alloy 
element grain surrounded by the matrix such as iron or aluminium. 

In this study, we focus on the polarization curve of austenitic stainless steel as a boundary 
condition of the electrostatic field and its dependency on mechanical stress. The polarization 
curve represents the activity of the anodic and cathodic reactions on the material surface and 
depends on the surface condition. When applying a mechanical stress, the passive film is 
microscopically and partially broken due to the stress concentration around the grain bound-
aries. Then, the bulk material is exposed from the damaged portion of the passive film. The 
damage of passive film is usually recovered in several tens of minutes by repassivation in an 
electrolyte solution. However, the impact of mechanical damage on the corrosion is not neg-
ligible, since the electrochemical property of the bulk material is completely different from 
that of the passive film. We have experimentally obtained immediate change in the natural 
potential of stainless steel during the tensile test in sodium chloride solution. It shows a dras-
tic decrease in natural potential along with plastic elongation. By using this result with the 
normal polarization curve, the strain-dependent polarization curve is estimated by the micro-
scopic electrostatic analysis by BEM in this study. From the microscopic standpoint, stress 
and strain must concentrate around the heterogeneity of the microstructure, such as grain 
boundaries, and moreover, this strain concentration induces the local potential drop through 
the strain-dependent polarization curve. This is the initiation condition of the localized corro-
sion assisted by stress. Assuming the existence of stress concentration such as a notch defect, 
we show the stress–corrosion coupling formulation with a moving boundary modelling based 
on the BEM. Finally, we show a numerical example concerning a corrosion pit growth from 
a hemi-elliptic surface defect under a constant stress applied and discuss the availability and 
validity of the proposed method.

2 STRESS–CORROSION COUPLING SIMULATION 

2.1 Governing equation and boundary conditions

The rigorous governing equation of ion transport in electrolyte solution is the Nernst–Planck 
equation [4]. In this study, the diffusion and convection are neglected for simplicity and no 
ion production (chemical reaction) is considered within the solution, except on the material 
surface. Then, the governing equation can be reduced to a simple potential problem of elec-
trostatic field as Laplace equation

 ∇ =
2

0p  (1)

where p is the electrolytic potential. The electroconductivity κ is needed to calculate the cur-
rent density from the gradient of potential. The boundary condition on the material surface is 
the polarization curve, that is, the relationship between current density and potential 

 ˆ̂ ( )q q p= , (2)

where q̂  is the outward normal current density. Note that the potential and current density in 
the electrostatic analysis are different from the experimentally measured potential E and 
current density I and they hold the relationship [5]

 ˆ,    p E q I= − = − . (3)

As described later, the polarization curve of eqn (2) depends on the mechanical damage in 
the surface. The dependency on the stress and strain will be introduced in this study. 
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To evaluate the stress on the material surface, stress analysis is carried out. The linear elas-
tic constitutive equation is adopted for simplicity. The governing equation of elastostatic field 
without body force is described by the Navier equation

 
( )2 1

1 2n
∇ + ⋅ =

−
u u 0— —  (4)

where u is the displacement vector and ν is Poisson’s ratio. 
The problem is assumed to be two dimensional. The above two governing eqns (1) and (4) 

are solved by BEM individually. On the interface between electrostatic and elastostatic fields, 
however, the surface stress affects the polarization curve, which is the boundary condition of 
the electrostatic field. In other words, these two problems interact on the interface between 
them. Moreover, this interface moves as the corrosion develops with anodic dissolution. 
Since the time scale of this moving boundary is much longer than the ion transportation and 
stress redistribution, the loose coupling strategy is justifiable and the moving boundary 
update with a small time step can be conceptually separated from solving the governing equa-
tions. Therefore, the simulation procedure is simple: (1) stress analysis with the current 
interface, (2) potential analysis with the updated polarization curve, (3) update of moving 
interface with the prescribed time step and repeat (1) through (3) until the end of the pre-
scribed period of simulation time. The electrostatic problem is nonlinear, so the 
Newton–Raphson method was adopted by considering potential as an independent parameter 
and current density as a dependent parameter on the interface. The BEM code used in this 
study was developed by the authors. The discontinuous and three-node curve element was 
used. 

2.2 Moving boundary model

The moving velocity of the interface is determined by Faraday’s law based on the current 
density. Assuming that the potential analysis for present time t was done, the moving velocity 
normal to the surface of node i of n-th element is described by

 
ˆt n t n t n

i i i
M q

zFr
= −v n , (5)

where M is the atomic mass, z the valence of dissolved metal ion, ρ the mass density, F the 
Faraday constant and t n

in  the outward unit normal vector at node i of n-th element. Note that 
now we are using the discontinuous quadratic element which has all the nodes inside it; there-
fore, the current density has to be extrapolated from the internal nodes for field variables to 
the geometric node at the end of line element and is used in eqn (5). 

The magnitude and direction of the moving velocity is not always continuous at the ele-
ment boundary (joint of line elements). To keep the moving velocity continuous, we modify 
the nodal velocity by the sense of averaging. Consider the globally counted I-th node which 
connects n-th element to n+1-th element. The nodal position of n-th quadratic element at time 
t is denoted by t n

ix  (i = 1,2,3), as shown in Fig. 1. As a nature of element discretization, the 
moving velocity vectors 3

t nv  and 1
1

t n+v  do not always coincide in their magnitude and direc-
tion. The moving direction in this study is fixed to the mid-angle between those two velocity 
vectors and described by the outward normal vectors as

 
( )1 1

3 1 3 1
t t n t n t n t n

I
+ += + +n n n n n . (6)
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Next the moving velocities t nv3 and t nv1
1+  are projected to the direction t In  so as to conserve 

the dissolved volume in a unit time (areas of triangles ABC and AED). To keep the areas of 
triangles ABC and AED, the points C and E move parallel to the lines AB and AD and reach 
the points C′ and E′, respectively. Thus, the projecting direction is determined based on the 
geometrical configuration as

 
( )3 3 2 2 3 2 2

t n t n t n t n t n t n t n
= − − − −a x x v x x v , (7)

 
( )1 1 1 1 1 1 1

1 1 2 2 1 2 2
t n t n t n t n t n t n t n+ + + + + + += − − − −a x x v x x v . (8)

Denoting the distances of projection as α n and α n+1, the modified nodal velocities are 
obtained as

 3 3
n t t n n t n

Iv a= +n v a� , (9)

 
1 1 1 1

1 1
n t t n n t n

Iv a+ + + += +n v a� . (10)

Finally, the velocity of I-th node is determined by averaging these two velocities as

 

1

2

n n
t t

I I
v v ++=v n
� � . (11)

The nodal position is updated with the time step ∆t by using the continuous velocity field 
obtained by eqn (11) as

 
1

3 1
t t n t t n t t t t

I I I tD+∆ +∆ + +∆

= = = +x x x x v . (12)

Note that when 1
1

t n+n  was opposite to 3
t nn  as in case of crack, the mid-angle direction t

In  
is obtained by rotating 3

t nn  by π/2 counterclockwise instead of eqn (6). 

Figure 1:  Moving velocity of I-th node and its correction to conserve the dissolved volume.
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2.3 Strain-dependent polarization curve

We obtained the polarization curve of 316 stainless steel without stress in aerated 1 mass% 
NaCl solution of room temperature by the electrochemical experiment. The result is shown 
by the black solid line in Fig. 2, where the vertical axis means the absolute value of current 
density. In practice, the cathodic part on the left side of the curve has a negative current. Its 
anodic part and cathodic part were individually approximated by the empirical equation as

 
[ ] ( )0

11 exp ( )
DI C E E
E E B

  = + − + − −  
, (13)

where B, C, D, E0 and E1 are the fitting parameters [9]. This curve is used as the polarization 
curve of intact portion of the material surface. The fitting results are shown by the blue solid 
line in Fig. 2. 

To determine the polarization curve of the damaged portion, we used the relationship 
between natural potential and applied stress obtained by the fast tensile test in 1 mass% NaCl 
solution with open-circuit measurement. Figure 3 shows the relationship between true stress 
and true strain which were calculated from the nominal stress and nominal strain measured 
by the strain gauge. The strain gauge was broken before reaching the tensile strength. The 
breaking point was estimated by using the minimum cross-sectional area measured after the 
tensile test. The unknown part from the gauge failure to the specimen failure was linearly 
interpolated as shown in Fig. 3. To determine the stress corresponding to an arbitrary strain 
uniquely, this relationship was approximated by the empirical equation as 

 
0.31851280 s e= . (14)

The above equation will be used to convert the stress-dependent polarization curve to the 
strain-dependent one, as shown subsequently.

Figure 2: Polarization curves for intact and damaged portions.
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Figure 4 shows the relationship between natural potential and true stress which was meas-
ured during the tensile test. Since the strain rate is reasonably fast, almost no effect of 
repassivation is included in this result. This potential decrease due to stress was used to deter-
mine the polarization curve of the damaged portion. When applying the stress over the yield 
stress, a lot of damaged surface without passive film is generated by the plastic strain. Then, 
many microcells are constituted and the micro-current flows from damaged portions to intact 
portions keeping the self-equilibrium, which means that the average current density is null. 
In this condition, the potential distribution is almost uniform [9]. Hence, by assuming the 
uniform potential and null average current density, the potential and local current density on 
the damaged portions can be calculated as follows. The plastic strain εp is determined by the 
applied stress based on the experimental data in Fig. 3. 

Figure 3: Relationship between true stress and true strain.

Figure 4: Relationship between open-circuit potential and true stress.
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p E

se e= − , (15)

where E is the Young’s modulus. In the above equation, the strain is defined in logarithmic 
sense. Therefore, the plastic strain was converted to nominal one. This nominal plastic strain 
εnp is regarded as the ratio of the damaged portion to the intact portion (damage ratio). On the 
other hand, the potential drop by the applied stress is determined by the experimental data in 
Fig. 4. The natural potential decreases by this drop from the intact state (−296 mV), and the 
decreased potential Eint prescribes the local cathodic current density Iint on the intact portions 
by the cathodic polarization curve of the intact surface using eqn (13). Then, the local anodic 
current Idam on damaged portions has to be equal to the local cathodic current due to the 
assumption of null average current density. Thus, the local anodic current density Idam corre-
sponding to the applied stress can be calculated according to the damage ratio as

 

int
dam

np

II
e

= − . (16)

The potential of damaged portions Edam is almost the same as Eint [9]. Thus, several sets of 
Edam and Idam corresponding to selected stress values were calculated and plotted as red open 
circles in Fig. 2. Moreover, these plots were approximated by using the empirical formula in 
eqn (13) again. This curve is the identified polarization curve of the damaged portion. The 
cathodic polarization curve of the damaged portion was assumed to be parallel to that of the 
intact portion. The obtained results of the fitting parameters are listed in Table 1.

To obtain the stress-dependent polarization curve, the microcell of a single damaged por-
tion located at the centre of passive film as shown in Fig. 5 was evaluated by BEM. The 
number and size of microcells does not affect the average potential and average current den-
sity [9]; therefore, this single unit cell analysis is justified. The intact portion of the passive 
film and the damaged portion have the polarization curves obtained in eqn (13) and Table 1, 
respectively. The width and height were fixed to L = 1 mm and H = 10 mm, respectively. The 
damage ratio r/L was determined by the nominal plastic strain corresponding to the pre-
scribed stress. To obtain the polarization curve, some current density corresponding to the 
experimental current density is applied on the top of electrolyte. Then, the distributions of 
potential and current density on the material surface were calculated by BEM and the average 
potential on the material surface was evaluated. By changing the applied current density, the 
polarization curve at that stress was obtained. Some example results are shown in Fig. 6. Note 
that these polarization curves are the electrochemical property immediately after the loading, 
since the potential recovery by repassivation was not considered.

Table 1: Parameters of polarization curves of intact and damaged portions.

Intact portion Damaged portion

Anodic Cathodic Anodic Cathodic

B (mV) 31.2 −150 13.1 −150

C (S/mm2) 1.25 × 10 −7 5.52 × 10−7 1.73 × 10−6 5.52 × 10−7

D (S/mm2) 2.95 × 10−4 3.47 × 10−6 4.12 × 10−5 3.47 × 10−6

E1 (mV) 576.6 −600 −526.6 −960.5

E0 (mV) −296.3 −296.3 −656.8 −656.8



58 O. Kuwazuru, et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 9, No. 1 (2021)

The fitting parameters in the polarization curve of eqn (13) were determined by fitting to 
the simulation results at each stress level and their dependency on the stress was examined. 
As a result, we obtained the stress-dependent fitting parameters as 

 
0

0 w1 exp[ ( ) ]
XX X D

s s s
= +

+ − −
, (17)

Figure 5: Damaged passive film model to determine the polarization curve.

Figure 6: Polarization curves in stressed state without repassivation calculated by BEM.
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where X denotes one of B, C, D, E0 and E1, collectively, and X0, ∆X, s0 and sw are the fitting 
parameters. As a result of fitting to the relationship between the parameters and stress, we 
found the parameters as listed in Tables 2 and 3.  

Although the obtained polarization is stress dependent as mentioned above, the stress can 
be easily converted to strain by using eqn (14). The numerical example presented subse-
quently demonstrates the corrosion analysis coupled with the linear elastic analysis, where 
the plastic deformation is not considered. Since the stress is overestimated in the elastic 
analysis, the mechanical damage should be evaluated based on the strain. Then, the strain-de-
pendent polarization curve obtained by combining eqns (13), (14) and (17) with Tables 2 and 
3 can be used. 

3 NUMERICAL EXAMPLE
Here, an example of the corrosion–stress coupling simulation is shown. A small hemi-elliptic 
surface defect was considered, as shown in Fig. 7. The stress concentration factor is 2.38. The 
solid material is 316 stainless steel, and the electrolyte is 1 mass% NaCl solution at room 
temperature. Young’s modulus is 212 GPa, Poisson’s ratio is 0.3, and the electroconductivity 
of the electrolyte is 1.76 S/m. The atomic parameters were averaged by considering all of the 
main alloy elements and determined as z = 2.17, ρ = 7.864 g/cm3, M = 55.47 g/mol. A nomi-
nal tensile stress of 150 MPa is applied and held parallel to the surface. The surface stress is 
calculated by Cauchy’s formula based on the normal vector and stress tensor at the node, and 
the polarization is determined from this surface stress by using eqns (13) and (17). In other 
words, the stress-dependent polarization curve was used as the first trial calculation. The time 
step was fixed to 2 h. The repassivation of damaged passive film and precipitation of corro-
sion products were completely neglected. The discontinuous and quadratic curve element 
was used for discretization and the total number of elements was 360.

X X0 ΔX s0 sw

B (mV) 1.95 67.6 486 73.3

C (S/mm2) 1.46 × 10−7 2.71 × 10−5 626 82.9

D (S/mm2) 6.91 × 10−5 1.04 × 10−3 566 74.3

E1 (mV) 103 0 0 1

E0 (mV) −293 −231 361 39

Table 2: Stress dependency parameters for anodic polarization curve.

Table 3: Stress dependency parameters for cathodic polarization curve.

X X0 ΔX s0 sw

B (mV) 1.26 239 412 −41.4

C (S/mm2) 4.47 × 10−6 8.27 × 10−7 393 37.4

D (S/mm2) −5.50 × 10−6 3.15 × 10−5 449 32.1

E1 (mV) −500 0 0 1

E0 (mV) −293 −231 361 39
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The result of moving interface is depicted in Fig. 8, where the notch root is magnified. 
Until around the point of 100 h, the corrosion developed almost uniformly and after it, the 
corrosion suddenly concentrated to the centre of notch root. The shape is gradually sharpened 
and after the point of 120 h at which the shape reached a completely sharp V-notch, the cal-
culation diverged. At this point in time, the stress at the edge of V-notch will be infinity 
similar to the crack tip and this stress singularity leads to unstable development of the edge 
of notch. Therefore, we need to modify the moving boundary method, so as to consider the 
refinement of mesh, inclusion of stress singularity and stabilization of corrosion development 
in our future works. The above result shows that the surface defect of stress concentration 
factor of 2.38 is locally corroded and initiates a stress corrosion crack around 120 h after the 
corrosion begins if the repassivation never happened. The stress-dependent polarization curve 

Figure 8: Development of pitting corrosion evaluated by the coupling analysis.

Figure 7: Stress–corrosion coupled model with a small surface defect (unit: mm).
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also accelerated the corrosion development. Of course, this is not true and the repassivation 
definitely happens. Hence, we have to further introduce a repassivation model in the strain-de-
pendent polarization curve.

4 CONCLUSION
A method of stress–corrosion coupling simulation was proposed and a BEM code was devel-
oped. Based on the results of the open-circuit tensile test, the normal polarization test without 
stress and the BEM simulation with the damaged passive film model, we found the stress- 
and strain-dependent polarization curve of austenitic stainless steel. Using this curve, the 
interaction between stress and corrosion was formulated and the moving boundary method to 
predict the development of corrosion front was proposed. The numerical example using the 
small surface defect model demonstrates the availability of the proposed formulations and the 
possibility to predict the transition from the pitting corrosion to crack. At the same time, the 
numerical instability of the moving boundary was confirmed. 
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