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ABSTRACT
The paper revisits the use of a surface equivalence theorem in deriving the surface integral equation 
(SIE) based formulation for a homogeneous bio-electromagnetics problem. The vector analog of 
Green’s 2nd identity is used to obtain the expression for the electric field representing the mathematical 
foundation of the equivalence theorem. The particular emphasis is put on the treatment of boundary 
integral when the observation and source points, respectively, coincide. The boundary conditions at 
infinity are taken into account via the Sommerfeld radiation conditions. The derived coupled SIE set 
can be used in problems involving biological body exposed to electromagnetic field radiation.
Keywords: Computational electromagnetics, Equivalence principle, Human exposure to electromag-
netic fields, Surface integral equation

1 INTRODUCTION
The human exposure to electromagnetic (EM) fields generated by different sources such as 
power and telecommunication installations has raised a number of questions regarding poten-
tially adverse health effects. In addition to unwanted exposure to artificially generated EM 
fields, some biomedical applications of EM fields in medical diagnostics and for therapy 
purposes, has recently become of particular importance. In order to address the concern 
regarding the potentially harmful effects, but also to aid in the design of a more efficient 
medical treatments using EM radiation, the knowledge of the accurate distribution of the 
electromagnetic fields inside the biological tissues is required. As it is rather difficult, if pos-
sible at all, to accurately measure the induced fields within the living biological body, the 
exposure assessment is carried out using a sophisticated computational bioelectromagnetics 
models [1–3].

From the early days, bioelectromagnetics models based on differential equation approach 
has become the de facto standard, although the integral equation approach, using the Green 
integral representation, is suitable for the exact treatment of open boundary problems such as 
the human head or the body exposed to incident EM field [4, 5]. Regardless of the fact that 
the numerical methods based on the solution of integral equations in computational electro-
magnetics (CEM) were developed during the sixties [6, 7], only recently has this approach 
seen a revival in bioelectromagnetics community [2, 4, 5, 8, 9].

One interesting approach to formulate bioelectromagnetics problem is similar to a classi-
cal scattering problem [4]. If one considers the biological body of an arbitrary shape, placed 
in the field of an incident EM wave, an EM model based on the integral equation can be posed 
by using the equivalence theorem and the appropriate boundary conditions. In the case of 
scattering from a homogeneous dielectric body, the surface integral equation (SIE), based on 
the application of surface equivalence theorem is used, while in the non-homogeneous case, 
the appropriate volume integral equation (VIE) is derived using the volume equivalence 
principle.
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This paper aims to revisit the applications of the surface equivalence theorem and the der-
ivation of electric field integral equation (EFIE) formulation applicable to bioelectromagnetics 
problem. The paper is organized as follows: The first part deals with vector analog of the 
Green’s theorem used to derive the expression for the so called Stratton-Chu expression. This 
is followed by a treatment of the limiting case when observation and source points, respec-
tively, coincide. The boundary conditions at infinity are taken into account via the Sommerfeld 
radiation conditions. Furthermore, the application of the equivalence principle is demon-
strated to result in the coupled integral equations set. The final part presents some illustrative 
numerical results obtained by using SIE formulation related to bioelectromagnetics 
application.

2 ON THE USE OF GREEN’S SECOND IDENTITY
Let us consider the problem depicted in Fig. 1. The lossy material body V2 of complex param-
eters (e2, μ2), bounded by surface S, is placed in an infinite region V1, with complex parameters 
(e1, μ1), bounded with S1, where S S S S1 = ∪ ∪

∞ε
, with electric and magnetic source currents 

( , )
 

J M1 1 . S∞ and Se represent the boundary at the infinity, and of infinitesimal space Ve required 
when 

 

r r→ ′, respectively. 
 

r r and ′ represent the observation and the source point, respec-
tively. Unit vector n̂ is directed from V2 to V1, while unit vectors n̂1 and n̂2, respectively, are 
outward directed for each region.

If no material body V2 is present, the field due to the currents induced by radiating source 
at an arbitrary point in V1 is relatively easy to determine. However, due to the presence of a 
material body V2, the field is perturbed, leading to a significantly complex problem, since it 
is necessary to satisfy the boundary conditions at the interface between two regions.

One way of solving such a problem is to link the field inside V1 with sources within that 
region, and the field on the boundary surface of S1. To facilitate this connection, the vector 
analog of Green’s theorem or Green’s 2nd identity is used:

 ( ) ( )
       

Q P P Q dV P Q Q P ndS
V S

⋅∇×∇× − ⋅∇×∇× = ⋅∇×∇× − ⋅∇×∇× ⋅∫ ∫  (1)

where 


P  and 


Q are vector functions with continuous first and second derivatives within V1, 
satisfying Helmholtz equation, selected as:

 


 

 



P aG r r Q E r= ′ =ˆ ( , ); ( ) (2)

Figure 1: Problem description with denoted regions and boundaries.
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where 


E  is the electric fields, â is the consatnty unit vector, while G r r t( , )
 

 denotes the free 
space scalar Green’s function

 G r r
e

R
R r r

jkR

( , ) ; | |
   

′ = = − ′

−

4π
 (3)

In (3), R is the distance from the observation point 


r  to the source point 


′r , and k = ω µω  is 
a wave number in free space.

2.1 Left hand side of the identity

Substituting (2) in (1), after some manipulation, the first term on the left side of (1) can be 
written as:

 ∇×∇× = ∇×∇× = ∇ ⋅∇ +



P aG a G k Gˆ ( ˆ ) 2  (4)

where μ and e are permitivity and permeability, respectively, and ω π= 2 f  is operating 
frequency.

Multiplying (4) with 


E  and integrating over volume V1, leads to the following expression

 I E a G ak G dV
V

= ⋅ ∇ ⋅∇ +



∫



( ) 2

1

 (5)

which, after performing some mathematical manipulations results in

 I E a G n dS a G dV E ak G dV
VVS

= ⋅ ⋅∇ − ⋅∇ + ⋅∫∫∫

 

( ) ( )
ρ

ε

2

111

 (6)

where r represents the electric charge density.
After some rearranging, the constant vector is moved outside the integrals, leading to the 

following expression

 I a G n E dS a k GE G dV
S V

= ⋅ ∇ ⋅ + ⋅ − ∇








∫ ∫ˆ ( ˆ ) ˆ

1 1

2
 

  
ρ

ε

 (7)

Repeating the same procedure, the 2nd term on the left side of (1) can be written as:

 
    

P Q a G k E j J M⋅∇×∇× = ⋅ − −∇×





ˆ 2
ωµ  (8)

where the following substitution has been used:

 ∇×∇× = − −∇×

   

E k E j J M2
ωµ  (9)

Integrating (8) over volume V1, after some rearranging, the following expression is obtained:

 II a G k E j J dV a G M dV
V V

= ⋅ −( ) − ⋅ ∇×∫ ∫ˆ ˆ ( )
1 1

2
  

ωµ  (10)

Partial integration of the last term in (10), followed by application of vector form of Stokes 
theorem, leads to:

 II a G k E j J dV a n GM dS a G M dV
V S V

= ⋅ −( ) − ⋅ × + ⋅ ∇ ×∫ ∫ ∫ˆ ˆ ˆ ( ) ˆ
1 1 1

2
   

ωµ  (11)



 M. Cvetković & D. Poljak, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 6 (2018) 1185

Finally, subtracting (11) from (7), left side of Green’s second identity (1) can be written as 
follows:

 

L.H.S. ( )≡ ⋅ ∇ ⋅ + ⋅ − ∇










− ⋅

∫ ∫a G n E dS a k GE G dV

a G k E

S V

 



1 1

2

2

ρ

ε

−−( ) − ⋅ ×

+ ⋅ ∇ ×

∫∫

∫

j J dV a n GM dS

a G M dV

SV

V

ωµ

 



ˆ ˆ ( )

ˆ

11

1

 (12)

which, after some rearrangement, results in:

 j JG G G M dV G n E n GM dS
SV

ωµ
ρ

ε

   

− ∇ −∇ ×










+ ∇ ⋅ + ×



∫∫ ( ) ( )

11

 (13)

2.2 Right hand side of the identity

Treatment of the right hand side of (1) is practically identical. The first term can be written 
as:

 
  

P Q aG E×∇× = ×∇×ˆ  (14)

Where the use of ∇× = − −

  

E j H Mωµ  will lead to:

 
   

P Q n a n j GH GM×∇×( ) ⋅ = ⋅ × +( )






ˆ ˆ ˆ ωµ  (15)

Repeating the same procedure, the second term from the right hand side of (1) can be 
written as

 
   

Q P n E aG n a n E G×∇×( ) ⋅ = ×∇×




⋅ = ⋅ ⋅( )×∇ˆ ( ˆ ) ˆ ˆ ˆ  (16)

Integrating (15) and (16), respectively, over the surface S1, followed by a subtraction, the 
following expression is obtained:

 
R.H.S. ≡ ⋅ × +( )






− ⋅ ⋅( )×∇ =

= ⋅

∫∫ ˆ ˆ ˆ ˆ

ˆ

a n j GH GM dS a n E G dS

a

SS
ωµ

  

11

−− ×( )×∇ + × + ×( )






ˆ ( ˆ ) ˆn E G j G n H n GM dS
 

ωµ

 (17)

Finally, by equating (13) and (17), after some additional mathematical manipulations, results 
in the following formula:

 
j JG M G G dV

j G n H n E G n

V
ωµ

ρ

ε

ωµ

 



+ × ′∇ − ′∇










′ =

= × − ×( )× ′∇ −

∫
1

( ) ⋅⋅( ) ′∇






′∫



E G dS
S1

 (18)

In (18), additional substitution between the source and the observation points, has been 
carried out.
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The expression (18) is in a suitable form, as the left side contains all the sources 
 

J M, ,ρ( ) 
within volume V1, while the right side includes electric and magnetic field, respectively, on 
the boundary S S S S1 = ∪ ∪ ∞

ε
 of the domain. Next, the behavior of the surface integral 

needs to be considered separately for each part of the boundary.

3 REGION AROUND SINGULARITY
In the limiting case when 

 

r r→ ′, it is necessary to determine surface integral of (18) for two 
special cases: when observation point is inside V1, and when on the boundary surface S1, 
respectively.

When former is the case, a small spherical region Se, radius of e, is excluded around the 
observation point, as shown on Fig. 2a).

Inserting (3) in (18), the first integral on the right side of (18) vanishes, when R → 0:

 lim sin
R S

jkR

j
e

R
n H d d

→

−

∫ ×( ) =
0

2

4
0ωµ

π

ε θ θ ϕ
ε



 (19)

Leaving

 lim
R S

n E G n E G dS
→

− ×( )× ′∇ − ⋅( ) ′∇





∫0

 

ε

 (20)

where the Green’s function gradient is inserted in the following form

 ∇ ′ = − +
′

G r r jkR
G r r

R
R( , ) ( )

( , ) 

 



1
4 2
π

 (21)

Leading to:

 
lim ( ) ( )
R

jkR

S
E n n n E n n E n jkR

e

R→

−

⋅ − ⋅( ) + ⋅( )






+ =

0 2
1

4

  

πε

∫∫

∫
→

−

=






+ = =lim ( ) sin ( )
R

jkR

E jkR
e

R
dS

E
d d E r

0 2
0

1
4 4









π π

θ θ ϕ

ϕ

π

θ ==

∫∫
0

2π

ε
S

 (22)

In the limiting case when 
 

r r→ ′, and the observation point is on the boundary surface S, the 
hemispherical region around the observation point needs to be excluded as shown in Fig. 2b, 

resulting in the following value for the above integral: 
1

2





E r( ).

4 BOUNDARY CONDITIONS AT INFINITY
The boundary conditions on the surface S∞, where R→∞, represents the so called Sommerfeld 
radiating condition. The surface integral of (18) vanishes on this surface, as easily showed if 

Figure 2: Special case when observation point is: a) in V1, b) on S1.
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the surface of infinite radius R is selected, with center placed at the source point 


′r , and radius 
vector R̂  pointing outwards from V1:

 lim
R S

j G R H
R

jk R E R R E R
→∞

×( ) + +
















×( )× + ⋅( )





∞

∫ ωµ

� � �1











=

= × +

−

→∞

�� ����� �����

� �
E

jkR

R

e

R
R d d

jkR R H E

4
2

π

θ θ ϕ

η

sin

lim (( )










 =

−

∞

∫
e

d d
jkR

S 4
0

π

θ θ ϕsin

 (23)

Where η µ ε= /  is the wave impedance of free space.

5 STRATTON–CHU EXPRESSION
Inserting (22) in (18), while replacing the surface integral designation (S1 changing to S), 
yields the integral relation for the electric field in V1:

 





 

E r j JG M G G dV

j G n H n

V
( )

( ) (

= + × ′∇ − ′∇










′ +

+ − × + ×

∫∫∫ ωµ
ρ

ε

ωµ

1

 

E G n E G dS
S

)× ′∇ + ⋅( ) ′∇






′∫∫

 (24)

The integral expression (24) is the so called Stratton–Chu [10] solution for the electric 
field. The first term from (24) represents the electric field due to the sources placed inside the 
region V1, while the second one is the integral representation of the sources placed outside 
this region expressed in terms of the field over the boundary surface S.

Thus, (24) enables one to consider the contribution of the sources placed outside the region 
of interest via their field components or the equivalent sources on the boundary surface, and 
represents the mathematical form of the equivalence principle [7].

6 ON THE USE OF THE EQUIVALENCE PRINCIPLE

Introducing the equivalent electric and magnetic current densities 


JS and 


MS, respectively, on 
the surface S

 
     

J n H n H M n E n ES S= × = − × = − × = ×ˆ ˆ ; ˆ ˆ
1 1 1 1 1 1 (25)

the electric field in region V1, can be expressed the following way:

 





 



E r j J G M G G dV

j J G

V

S

1 1 1 1 1 1
1

1
1

1

1

( )− = + × ′∇ − ′∇










 ′ +

−

∫ ωµ
ρ

ε

ωµ 11 1
1

1
1+ × ′∇ − ′∇











 ′∫



M G G dSSS

ρ

ε

 (26)

The last term of (26) featured the use of a continuity equation and the following 
substitution:

 ˆ ˆn E
j

n H1 1
1

1 1⋅ = ∇ ⋅ ×( )
 

ωε

 (27)
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According to (26), the electric field in V1 is due to the sources inside this volume 
 

J M1 1,( ), as 
well as due to the equivalent surface currents 

 

J MS S,( ), introduced to the surface S. Since the 
sources outside V1 are omitted in (27), the entire space is homogenized, facilitating the use of 
a free space Green’s function G1.

The left hand side of (26) results from integral (18) evaluated over the infinitesimal surface 
Se, while it is equal to zero when (18) is evaluated at S∞. When the observation point is on the 
boundary S, the expression needs to be modified, resulting in:

 

1

2 1 1 1 1 1 1
1

1
1

1

1





 



E r j J G M G G dV

j J

V
( ) = + × ′∇ − ′∇











 ′ +

+ −

∫ ωµ
ρ

ε

ωµ SS SS
G M G

S S
G dS1 1

1 1
1− × ′∇ + ′∇ ′∇











 ′∫

 ρ

ε

ρ

ε

  (28)

Finally, when the observation point is outside V1, i.e. inside V2, it can be readily shown that 
the left side of (26) vanishes [11]. Namely, when the source point and the observation point 
are in V1 and V2, respectively, it is not required to exclude the infinitesimal region around 
singularity, leading to:

 
j J G M G G dV

j J G M

V

S S

ωµ
ρ

ε

ωµ

1 1 1 1 1
1

1
1

1 1

1

 

 

+ × ′∇ − ′∇










 ′ =

= − − − × ′

∫

∇∇ + ′∇










 ′∫ G G dSS

S 1
1

1

ρ

ε

 (29)

Subsequently inserting (29) in (26), it follows 




E r1 0( ) = .
On the other and, electric field in V2 can be expressed as:

 





 



E r j J G M G G dV

j J G

V2 2 2 2 2 2
2

2
2

2 2

2

( ) = + × ′∇ − ′∇










 ′ +

+ −

∫ ωµ
ρ

ε

ωµ 22 2
2

2− × ′∇ + ′∇










 ′∫



M G
S

G dSSS

ρ

ε

 (30)

where equivalent electric and magnetic currents are introduced on the surface S

 
     

J n H n H M n E n ES S= × = × = − × = − ×ˆ ˆ ; ˆ ˆ
2 2 2 2 2 2 (31)

and using ˆ ˆn n1 2= − .
Again, (30) states that electric field in V2 is due to sources inside this region 

 

J M2 2,( ), as 
well as some external sources taken into account via equivalent surface currents. Moreover, 
the whole region is homogenized again.

Similar to region 1, it is easily shown that left hand side of (30) vanishes when observation 
point is outside region 2 [11], while the observation point is on surface S, it follows:

 

1

2 2 2 2 2 2 2
2

2
2

2

2





 



E r j J G M G G dV

j

V
( )− = + × ′∇ − ′∇











 ′ +

+ −

∫ ωµ
ρ

ε

ωµ JJ G M G
S

G dSS SS 2 2
2

2− × ′∇ + ′∇










 ′∫

 ρ

ε

 (32)
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The boundary conditions for the electric field on the surface S require the tangential com-
ponents of vector 



E  to be continuous. One can assume there are no field sources inside region 
2, while sources inside region 1 (volume integral over V1) can be taken into account via inci-
dent field vector 



Einc. The electric field at point 


r , on the boundary surface S, from the 
viewpoint of region 1 and expression (28) becomes

 1

2 1 1 1 1
1

1





  

E r E j J G M G
S

G dSinc
S SS

( ) = + − − × ′∇ + ′∇










 ′∫ ωµ
ρ

ε

 (33)

The electric field at the same point 


r , on the boundary surface S, from the viewpoint of region 
2 and expression (30) is:

 1

2 2 2 2 2
2

2





 

E r j J G M G
S

G dSS SS
( ) = − − × ′∇ + ′∇











 ′∫ ωµ
ρ

ε

 (34)

Equating the left sides of (33) and (34), i.e. satisfying the boundary conditions at surface S, 
ˆ ˆn E n E× = ×

 

1 2, the right hand sides are

 
− × − − × ′∇ + ′∇











 ′ = ×

− × −

∫ˆ ˆ

ˆ

n j J G M G
S

G dS n E

n j

S SS

inc
ωµ

ρ

ε
1 1 1

1
1

  

ωωµ
ρ

ε
2 2 2

2
2 0

 

J G M G
S

G dSS SS
− × ′∇ + ′∇











 ′ =∫

 (35)

Furthermore, substituting the continuity equation into (35), yields the coupled set of SIEs, 
representing the EFIE formulation, which can be solved by a Moment Method (MoM) 
scheme, as reported in [4]:
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1 1
1

1 1

20 22
2

2 2dS
j

J G dS M G dSSSS S
− ′∇ ⋅ ′∇ + × ′∇∫∫ ∫
ωε

 

 (36)

7 BIOELECTROMAGNETICS APPLICATION
Some computational examples obtained using SIE formulation (36) related to the assessment 
of the induced field in the human brain are presented in this section.

The first example is related to the induced electric field in the brain of adult, 10-year old, 
and 5-year old child, respectively, exposed to horizontally polarized incident plane wave of 
900 MHz, as shown in Fig. 3 [12].

It can be seen that at horizontally polarized incident wave, the higher values of induced 
electric field are obtained in smaller brain models in the frontal lobe areas.

The second example gives the comparison of the induced electric field in the same models, 
due to a transcranial magnetic stimulation (TMS) coil positioned 1 cm over primary motor 
cortex [13], as shown on Fig. 4.

Although the rapid decrease in the induced electric field is evident in all brain models, 
Fig. 4 shows that for smaller ones, the place where electric field falls to half its maximum 
value is moved closer to the surface.
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8 CONCLUSION
The paper revisits the application of surface equivalence theorem in the derivation of the 
EFIE formulation. The resulting coupled SIE set, although known for some problems arising 
in the CEM community, has only recently begun to appear in the bioelectromagnetics, offer-
ing a powerful, accurate and efficient alternative to the de facto standardly used differential 
equation based methods. Some computational examples obtained using the SIE based method 
are presented in the paper. The proposed method could be found useful in the initial assess-
ment of the human brain exposed to EM radiation, while more realistic scenarios would 
require the use of a non-homogeneous models, resulting in the appropriate volume integral 
equation based formulation and the application of the volume equivalence principle.
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