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ABSTRACT
It is well known that the original 3D elasticity problem in plate structures subjected to transversal load-
ing can be converted to a 2D problem. In addition to in-plane displacements, we need to introduce the 
deflection and/or rotation field variables in the plate mid-plane, in order to describe displacements and 
deformations within the plate structure. Thus, one can develop unified formulation for bending and in-
plane deformation modes within the classical Kirchhoff-Love theory for bending of thin elastic plates 
and the shear deformation plate theories (the first order – FSDPT, and the third order - TSDPT). In this 
paper, we extend the derivation of the 2D formulation for coupled problems of thermoelasticity in plate 
structures. Three material coefficients play the role in stationary problems, namely the Young modulus, 
coefficient of linear thermal extension and the heat conduction coefficient. The influence of continuous 
gradation of these coefficients on the response of the plate subjected to thermal loadings is investigated 
in numerical simulations. The element-free strong formulation with using meshless approximations for 
spatial variation of field variables is developed.
Keywords: functional gradations of material coefficients, MLS approximations, Plate bending theories, 
strong formulation, thermal loading, unified formulation of 2D coupled problems

1 INTRODUCTION
Functionally graded materials (FGM) refers to the new class of advanced composite materi-
als utilized in modern engineering structures and frequently studied [1, 2] because of their 
superior properties. It is a well-known elimination of delamination effect in plate-like struc-
tures if the sandwich composite structures are replaced by FGM composite ones. From the 
physical point of view as well as from the view of engineering applications the transversal 
gradation of material properties is more interesting than the in-plane gradation in plate prob-
lems. The transverse gradation of Young modulus (YM) gives rise to coupling between the 
deflections and in-plane deformations [3, 4] even in the case of thin plate theory and static 
problems. However, it is interesting to study also the plate structures with combined grada-
tion of material coefficients in transversal and in-plane directions because new physical 
effects can arise [5] in multi-graded plates.

In this paper, we shall deal with the plate problems considered within classical thermoelas-
ticity. The unified 2D formulation is developed for FGM plates with taking into account the 
assumption of classical Kirchhoff-Love theory for bending of thin elastic plates as well as 
assumptions of the shear deformation plate theory. The material coefficients are allowed to be 
functionally dependent in both the transversal as well as in-plane directions. An efficient 
formulation is developed for numerical solution of coupled multi-field problems and some 
interesting effects are illustrated in numerical simulations.

2 UNIFIED FORMULATION FOR FGM COMPOSITE PLATES UNDER 
THERMAL LOADING

In the unified formulation for all three plate bending theories (KLT, FSDPT and TSDPT), the 
displacements can be expressed in terms of the in-plane displacements u

α
( )x , transversal 

displacements (deflections) w ( )x and rotations of the normal to the mid-surface ϕ
α

( )x  by
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in x∈Ω, x h h3 2 2∈ − 
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f y( ) : ( )x x c x3 3 2 3= − , ψ ( ) : / /x h x h3 3

3
4 3= ( )  with

c1

0

1
=






,

,

KLT

SDPT
, c2

0

1
=





,

,

FSDPT, KLT

TSDPT

being two key factors for switching among the three theories (KLT, FSDPT, TSDPT). Hav-
ing known the dependence of displacements onx3, we also know the dependence of strains 
and elastic stresses onx3and the original 3D thermo-elastic problem can be recast into 2D 
thermo-elastic plate bending problem. The total and thermal strains are given as

 e z v v c x x w c xab a b b a ab abe f f( , ) : / ( ) ( ) ( ) (, , ,x x x= +( ) = + −  +2 1 3 3 1 33 ) ( )hab x  (2)

ε
αβ α β β α
= +( )u u, , / 2, η ϕ ϕ

αβ α β β α
= +( ), , / 2

 e zkl kl
θ

α θ θ δ( , )x = −( )0  (3)

and the elastic stresses in isotropic elastic plate are given as
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in which α  is the linear thermal extension coefficient, H = −1 2ν , with ν  and E  being the 
Poisson ratio and Young modulus (YM), respectively, and τ

αβ

( )  stand for particular strain 
contributions

 τ ε νδ ε
αβ αβ αβ γγ

( ) ( ) : ( ) ( )u Hx x x= + , τ η νδ η
αβ

ϕ

αβ αβ γγ

( ) ( ) : ( ) ( )x x x= +H ,  (5)

 τ νδ
αβ αβ αβ γγ

( )
, ,( ) : ( ) ( )w Hw wx x x= + , τ ν θ δ

αβ

θ

αβ

( ) ( , ) : ( ) ( , )x xx x3 31= + . 

In the case of FGM plate, we assume the material coefficients to be continuous functions of 
Cartesian coordinates as

E x E E E xH V( , ) ( ) ( )x x3 0 3= , E x
x

hV

p

( )3
31

1

2
= + ±









ζ , E xH

b( ) ( )x = +1 0 1
0

κ
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with k  being the heat conduction coefficient.
It is well known that the governing equations as well as the boundary conditions in unified 

formulation for bending problems can be derived from the principle of virtual work

 δ δU We− = 0, δ σ δU x e x dx dij ij

h

h

=




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Ω

Ω (7)

provided that the plate is subjected to transversal loading. In order to derive the semi-integral 
2D formulation, we need to perform the integration with respect to x3 in closed form. There-
fore, we need to know the dependence of the whole intengrand in (7) on x3. Up to now, we 
presented the dependence of elastic fields on x3 and in what follows we assume the expansion 
of temperature on x3 as

 θ θ ϑ ϑ ϑ( , ) ( ) ( ) ( )x x x xx z z3 0 0 1
2

2≈ + + + , z x h= ∈ −3 0 5 0 5/ [ . , . ] (8)

with ϑa ( )x  for (a = 0 1 2, , ), being new field variables. Such an expansion is consistent with 
assumptions made in plate structure problems formulations when h L . Then,

 τ τ
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If we inserted (8) into the governing heat conduction equation, we would obtain the PDE
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which is still dependent on x3. Therefore, Eq. (10) will be considered in the averaged sense 
over the plate thickness. Introducing dimensionless coordinates and temperature fields

 x x L
β β

∗

=: /  , x x h h z3 3 0
∗ ∗

= =: / ( )x , ϑ ϑ θa a
∗

=( ) : ( ) /x x 0 (11)

the averaged heat conduction equation becomes
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Eq. (12) should be supplemented with thermal boundary conditions on the top and bottom 
surface of the plate. Usually, we distinguish three kinds of boundary conditions:
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In view of prescribed boundary conditions, one can eliminate ϑ1 and ϑ2 form (12) and 
ϑ θ θ0 3 00∗

= =( ) ( , ) /x x x is the dimensionless temperature at the mid-plane of the plate. For ϑ0
∗

, we need to prescribe also boundary conditions on the edge of the plate.
In order to proceed in the derivation of the variational formulation, we define certain 

semi-integral fields
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where T3β ( )x  is the Reissner modification of the shear stresses T3β ( )x  by the shear correction 
factor as

 T c c T3 2 2 31
β β

κ( ) : ( )x x= −( ) +





. (16)
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being the generalized shear force and the twisting moment defined on the plate edge. Further-
more, the jump at a corner on the oriented boundary edge ∂Ω is defined as
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u w, ,{ } are arbitrary in Ω and variation of particular fields are arbitrary on that 
part of the boundary where the field variable is not prescribed by the boundary conditions, 
one can deduce the governing equations and boundary conditions from the variational formu-
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The explicit expressions for the semi-integral fields are given as
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where

τ νδ τ
αβ α β β α αβ γ γ αβ

∗ ∗ ∗ ∗

= +( ) + =
( )

, , ,
( )( ) ( ) ( ) ( )u uH

u u u
L

h
x x x x

2 0

   τ ϕ ϕ νδ ϕ τ
αβ

ϕ

α β β α αβ γ γ αβ

ϕ∗ ∗ ∗ ∗

= +( ) + =
( )

, , ,
( )( ) ( ) ( ) ( )x x x x

H
L

2
 (25)

 τ νδ τ
αβ αβ αβ αβ

∗ ∗ ∗

= + ∇ =
( )

,
( )( ) ( ) ( )w wHw w

L

h
x x x2

2

0

  τ ν ϑ δ τ θ
αβ

ϑ

αβ αβ

ϑ∗ ∗

= + =
( ) ( )( ) ( ) ( ) /a a

ax x1 0

 D h EjH

j

H( ) : ( ) ( )x x x= ( )
∗  , B h EjH

j

H H( ) : ( ) ( ) ( )x x x x= ( )
∗

α ,

D
E h

0
0 0

3

212 1
=

−

( )

( )ν

 , p
L

D h
p∗

=( ) : ( )x x
4

0 0

.

3 NUMERICAL IMPLEMENTATION
The MLS-approximation belongs to mesh-free approximations, since no predefined connec-
tivity among nodal points is required [6]. The nodal points are freely distributed inside the 
analyzed domain and on its boundary. Beside the standard MLS-approximation, one can 
utilize also the Central Approximation Node (CAN) concept [7, 8] which enables to utilize 
the local support character of the approximation efficiently. In the case of strong formula-
tions, however, the advantages of the local support approximation are utilized immediately 
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[9, 10]. The MLS-approximation of a field variable g( )x  is expressed in terms of the shape 
functions ψ a ( )x  and certain nodal unknowns ˆ ag  as

 y
Ω

=

= ∑
1

ˆ( ) ( )
q

q

N
a a

a
g gx x  , Ω Ω⊃ ∋

q qx , (26)

where the central approximation nodal point xq can be selected as the nearest nodal point to 
the point of approximation x , and a n q a: ( , )=  is the global number while a is the local num-
ber of the node from the support domain of the nodal point xq.

In order to eliminate the 3rd and 4th order derivatives of field variables in the governing 
equations, we propose to utilize the decomposition of the derived system of the PDE into a 
set of PDE with derivatives not higher than second order [3] by introducing new field 
variables

 m w∗ ∗

= ∇( ) : ( )x x2 , s u
α α

∗ ∗

= ∇( ) : ( )x x2 , f
α α

ϕ
∗ ∗

= ∇( ) : ( )x x2  in Ω Ω∪∂  (27)

4 NUMERICAL EXAMPLES
Let us consider the square plate L L×  ( )L =1  with clamped edges and constant thickness
h h L= =0 50/ . The plates are either homogeneous or FGM with power-law gradation of mate-
rial coefficients according to (6) and constant Poisson ratio ν = 0 3. . In presentation of numerical 
results, we focus on the study of the deflection response to thermal loading with prescribed tem-
peratures on the bottom and top of the plate, θ ∗

− =( , / )x h 2 0, θ ∗

=( , / )x h 2 20, and vanishing 
heat flux on the lateral sides kn

α α
ϑ( ) ( ),x x0 0∗

∂

=
Ω

.
The first conclusion is that there is no deflection response to the prescribed thermal loading 

neither in the homogeneous nor in FGM plates even if any one of the coefficients E k, ,α{ } is 
graded non-linearly in the transversal direction. Neither the combination of gradations of 
material coefficients in transversal direction gives rise to finite deflections in both the KLT 
and TSDPT.

Another observation is that the deflections are independent on the heat conduction 
coefficient gradation.

It can be seen from the analysis of governing equations that there is a coupling between 
deflections and thermal fields in the KLT only if ∇ ( ) ≠

2 0EH H( ) ( )x xα . The numerical results 
(Fig. 1) confirm this finding. Really, finite deflections appeared when at least one of the coef-
ficients EH H( ), ( )x xα( ) was graded non-linearly, or both of them were graded at least 
linearly.

In contrast to the KLT, finite deflections occur in the TSDPT even if ∇( ) ≠EH H( ) ( )x xα 0
because of coupling between rotations ϕ

α
 and temperature and another coupling between 

deflections and rotations in TSDPT. This indirect coupling between deflections and tem-
perature is significantly weaker than the direct ( )w −ϑ0  -coupling occurring in FGM 
plates with such an in-plane gradation of material coefficients that ∇ ( ) ≠

2 0EH H( ) ( )x xα  
(see Fig. 2).

The additional transversal gradation of the YM and/or linear heat extension coefficient has 
an influence on finite deflections in FGM plates with combined in-plane gradations of EH ( )x
and αH ( )x . The additional transversal gradation of the heat extension coefficient increases 
the deflections in both the KLT and TSDPT, while the gradation of the YM has an opposite 
effect on deflections. Note that in the case of TSDPT, the deflections change the sign when 
the transversal gradation of YM is applied additionally (Fig. 3).
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Figure 1: Deflections in FGM plates with in-plane gradation of material coefficients; results 
by KLT.
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Figure 2: Deflections in FGM plates with in-plane gradation of material coefficients; results 
by TSDPT.

Figure 3: Deflections in FGM plates with combined in-plane gradation of material coefficients 
and transversal gradation of YM; results by KLT and TSDPT.
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Figure 3: (Continued)
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