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ABSTRACT
The contents of this paper reflect work that was conducted in the early 1960s in preparation of class 
notes for a graduate course on Elastic Stability taught in the Civil Engineering Department of MIT. This 
material is now well known and the presentation is not submitted as a new or original contribution but 
rather as a reflection of some work done that is related to the teachings of Professor Jerry Connor when 
he started at MIT. It is intended as an example of Jerry's impact since his early years on generations of 
students and young colleagues and an acknowledgement of our debt to him.

1 INTRODUCTION
When Jerry Connor started teaching at MIT, I had already completed all my course work and 
I was working on my doctoral thesis. I did not therefore take any courses from him. I bene-
fited greatly, however, from his advice and support both as a graduate student and as an 
assistant professor, my conversations with him and my contacts with the graduate students 
he was supervising.

Until then we had learned matrix Structural Analysis through a rather complicated elec-
trical analogy that did not make much physical sense to a structural engineer. One had to 
form an incidence matrix A, a matrix K and multiply the transpose of A by K and A in order 
to form the total stiffness matrix of the structure. Jerry started teaching it using the direct 
stiffness method, much simpler and much more logical, forming the stiffness matrix of 
each member and then assembling them. While everything presented in this paper is well 
known now and there is no claim of any original material, in the early 1960s a distinction 
was made between eigenvalue, or bifurcation buckling, and nonlinear or limit point insta-
bility. It was postulated that these two different phenomena required entirely different 
formulations. Jerry showed me that both of them could be derived from a unique general 
formulation although one may later make different assumptions and simplifications to 
determine the buckling load. I used this in writing my class notes for the graduate course 
on Structural Stability that I taught at MIT. The simplest case, where one can actually 
obtain explicit closed form expressions for the secant and tangent stiffness matrices of each 
member and thus the complete structure is that of an ideal truss. This paper reproduces the 
general formulation of the equilibrium and stability problems for a three dimensional ideal 
truss, something I had not seen published anywhere at that time, with application to the 
well-known and very simple case of a two bar truss., showing that both types of instability 
can be obtained from the same formulation. The objective is to study the overall stability 
of ideal space trusses such as lattice towers or truss domes, without consideration of the 
local stability of the individual members and with all the classical simplifying assumptions 
of ideal trusses.

2 GENERAL CONSIDERATIONS
The equilibrium equations for a truss structure can be derived directly enforcing at each joint 
the equilibrium of internal bar forces and the applied loads in the deformed position of the 
structure or making stationary the first variation of the total potential energy. Whether the 
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equilibrium is stable, unstable or indifferent will depend on the sign of the second variation. 
Buckling is normally defined as the case when this second variation is null. Whether the 
equilibrium is stable or unstable will depend then on the value of the third variation along the 
direction of the buckling shape [1]. This may require in some cases looking also at the fourth 
variation.

Calling D the vector of bar elongations for an ideal truss, U the vector of joint displace-
ments, P the vector of applied joint loads and K a diagonal matrix with the stiffness (EA/L) 
of each bar as the diagonal elements, the first variation of the total potential energy can be 
written as

 d d dΠ = −D KD U PT T  (1)

and thus the equilibrium equations will result from

 d dD KD U PT T=  (2)

Expressing the elongations in terms of the displacements, U the equations can be rewritten as

 δUT Ssec(U)U = δUT P (3)

or

 Ssec(U)U = P (4)

where Ssec would be the secant stiffness matrix of the structure whose terms are functions of 
the unknown displacements U.

Since these are nonlinear equations, there is an infinite number of ways in which terms can 
be reordered to form equivalent secant stiffness matrices. Since it is not unique, the secant 
stiffness matrix will not be symmetric in general but one can always find an equivalent form 
that is symmetric.

The second variation of the total potential energy is given by

	 δ2Π  = δ2UTSsec(U)U + δUT(δSsec(U)U + Ssec (U) δU) − δ2UTP − δUTδP (5)

At an equilibrium position, Secc(U)U = P and therefore the two terms with the second 
 variation of the displacements cancel each other. As a result, the incremental (tangent) 
 equilibrium equations become

	 δSsec(U)U + Ssec (u)δU = δP (6)

Or rearranging the terms involving the first variation of the displacements

 Stan(U)δU = δP (7)

where Stan(U) is the tangent stiffness matrix at an equilibrium position. The terms of this 
matrix are functions of the displacements in the deformed equilibrium position but the 
unknowns are the incremental or differential displacements from that position. The stabil-
ity condition is then for the tangent stiffness matrix to be positive definite (all eigenvalues 
positive). Indifferent equilibrium or buckling is reached when the tangent stiffness matrix 
becomes singular, or what is the same when it is positive semi definite with a zero eigen-
value. The eigenvector corresponding to that null eigenvalue would then be the buckling 
shape.

It has been said that the tangent stiffness matrix will not be symmetric in general. This 
would be so if it were evaluated at a position that does not correspond exactly to an equilibrium 
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condition between the internal forces and the applied loads. This would happen if one were to 
perform an incremental analysis without iterating at each step to reach exactly a position of 
equilibrium. On the other hand if the tangent stiffness matrix is defined at an exact equilibrium 
position, it will be symmetric.

The secant and tangent stiffness matrices of a truss member can be written in the form

 

S S

S S

−
−











 
(8)

where S would be a 3 by 3 matrix for a space truss and a 2 by 2 matrix for a plane truss. In the 
following, the derivation of the secant and tangent stiffness matrices will be concerned only 
with the matrix S. The total stiffness matrices of each member will result from the above 
expression and those of the complete structure would be obtained assembling the member 
matrices with the direct stiffness method.

3 3D IDEAL TRUSSES
Consider a bar of an ideal space truss in the original and in the deformed position. Calling 
xi (i = 1–3) the coordinates of a point (joint) in a system of 3 orthogonal coordinate axes, and 
ui (i = 1–3), the displacements of a joint along the same direction if the member connects 
joints m and n of the truss defining

	 ∆xi = xi,n − xi,m    ∆ui = ui,n − ui,m (9)

The director cosines of the bar in the original position are

 cos αi = ∆xi/L (10)

where L is the original length of the bar, and in the deformed position

 cos βi = (∆xi + ∆ui)/(L + e) (11)

where e is now the bar elongation.

 e = Σ ∆ui (cos αi + cos βi)/(1 + cos θ) (12)

with

 cos θ = Σ cos αi · cos βi (13)

Then

 de = Σ cos βi · d (∆ui) (14)

and

 d(cos βi) = (d (∆ui) − Σ cos βi · cos βj · d(∆ uj))/(L + e) (15)

The forces at the end of a member are Xi = F, cos βi = EA, cos βi/L
The terms of the secant stiffness matrix are then given by

 Ssec i,j = EA cos βi (cos αi + cos βj)/(L(1 + cos θ)) (16)

Clearly this matrix is not symmetric because of the terms cos βi · cos αj. Noticing however 
that

 cos βi · cos αj · ∆uj = (L cos αi + ∆ui) cos αj · ∆uj / (L + e) (17)
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The terms can be rearranged so that
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(18)

and in this equivalent form, the secant matrix is symmetric. The summation in the expression 
for the diagonal terms extends over values of the subscript j different from i.

The incremental, differential, forces at the ends of the member are

 dXi = dF cos βi + Fd (cos βi) = EA(de cos βi + ed (cos βi))/L (19)

and substituting the expressions for de and d(cos βi), the terms of the tangent stiffness matrix 
for the member become
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EA

L
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L et i ii i,
cos sin= +
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(20)

These expressions can be written alternatively as
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cos sin= +
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(21)

In this form the tangent stiffness matrix can be considered as the sum of 2 matrices: one 
corresponding to the normal stiffness matrix of a truss member but using the rotation terms 
(director cosines) in the deformed position, the second proportional to the force in the bar. It 
should be noticed that for elastic buckling of structures made of usual structural materials, the 
value of the elongation e should always be very small compared to the length of the bar and 
therefore the original length L can be used in these final expressions instead of the length in 
the deformed position L + e.

The rigorous determination of the buckling load requires then the solution of the nonlinear 
equilibrium equations to define the deformed geometry and the forces in the bar i that config-
uration, then the verification of whether the tangent stiffness matrix is positive definite in 
order to find the condition under which it becomes singular. This formulation will yield both 
the eigenvalue or bifurcation buckling and the limit point buckling. In each case however the 
simplifying approximations that can be used for the solution will be different. In a linearized 
stability analysis, the initial geometry or the deformed geometry obtained from a linear anal-
ysis will be used and the forces in the bars will be those resulting from the linear equilibrium 
solution. They will then be proportional to the applied loads. If one assumes that the loads are 
increased proportionally, the buckling load can be considered to be some initial value of the 
loads multiplied by a factor. The second part of the tangent stiffness matrix would be then 
proportional to this factor and the determination of the buckling load would involve the solu-
tion of a linear eigenvalue problem. The smallest eigenvalue would be the value of the factor 
corresponding to the buckling load. This approximate formulation will produce reasonable 
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when the change in geometry due to the deformations under the buckling load is very small. 
It will produce erroneous results when the changes are relatively large. This tends to be the 
case for limit point, or snap through cases.

4 APPLICATION TO A 2 BAR PLANE TRUSS
Consider a symmetric 2 bar truss subjected to only a vertical load at the top. In this case

 For bar 1 cos α1 = cos α	 cos α2 = sin α	 cos β1 = cos β	 cos β2 = sin β	
(22)

 For bar 2 cos α1 = cos α	 cos α2 = sin α	 cos β1 = −cos β	 cos β2 = sin β	

The total secant and tangent stiffness matrices of this case would then be 2 by 2 diagonal 
matrices because the off diagonal terms that correspond to the 2 bars cancel each other. Under 
a purely vertical load there would be only a vertical displacement v and the horizontal 
 displacement u would be null. The vertical nonlinear secant equilibrium equation becomes

 

2

1 2 2
EA

L
X

( cos )
sin (sin sin )u

+
+ =

q
b a b  (23)

The tangent stiffness matrix of the complete truss is in this case a diagonal matrix because 
the contributions of the 2 bars to the off diagonal terms cancel each other while there are only 
vertical displacements. The 2 tangent equilibrium equations in the deformed position are
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L e
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(24)

The first equation represents the incremental (differential) horizontal equilibrium. If the 
coefficient of the du1 term vanishes, there would be a horizontal displacement without any 
horizontal load representing a bifurcation type buckling. This case could control if the angle 
α were close to 90 degrees. Assuming then that β = α (writing the equation in the undeformed 
original position, implying a negligible change in geometry prior to bucking, one would 
obtain the linearized solution

F
EA

cri = − cos

sin

2

2
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a

and (25)
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If the coefficient of the second equation vanishes, the instability would occur in the vertical 
direction. This would occur for very small values of α. In this case, the change in geometry 
prior to buckling would be relatively important and the linearized solution would not be valid.

F EA
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and (26)
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In the elastic range for most materials L + e can be considered equal to L.
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5 CONCLUSIONS
The objective of this paper was to present a set of derivations developed as class notes in the 
early 1960s when the author was a starting assistant professor at MIT and a colleague of Jerry 
Connor. With no attempt to present them as new or original material, the paper is intended as 
recognition of the influence of Jerry on his students and young colleagues. Jerry is a man of 
great vision who has cared only about his teaching, his research, and doing the best job at 
them, rather than his recognition, his number of publications, or the many other ways of 
counting beans devised by bureaucrats. The country and the world would greatly benefit from 
more Jerry Connors.
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