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ABSTRACT
A computational tool that integrates a Radial basis function (RBF)-based Meshless solver with a Lumped 
Parameter model (LPM) is developed to analyze the multi-scale and multi-physics interaction between 
the cardiovascular flow hemodynamics, the cardiac function, and the peripheral circulation. The Mesh-
less solver is based on localized RBF collocations at scattered data points which allows for automation 
of the model generation via CAD integration. The time-accurate incompressible flow hemodynamics are 
addressed via a pressure-velocity correction scheme where the ensuing Poisson equations are accurately 
and efficiently solved at each time step by a Dual-Reciprocity Boundary Element method (DRBEM) 
formulation that takes advantage of the integrated surface discretization and automated point distribution 
used for the Meshless collocation. The local hemodynamics are integrated with the peripheral circulation 
via compartments that account for branch viscous resistance (R), flow inertia (L), and vessel compliance 
(C), namely RLC electric circuit analogies. The cardiac function is modeled via time-varying capacitors 
simulating the ventricles and constant capacitors simulating the atria, connected by diodes and resistors 
simulating the atrioventricular and ventricular-arterial valves. This multi-scale integration in an in-house 
developed computational tool opens the possibility for model automation of patient-specific anatomies 
from medical imaging, elastodynamics analysis of vessel wall deformation for fluid-structure interaction, 
automated model refinement, and inverse analysis for parameter estimation.
Keywords: Lumped-Parameter Model, Multi-scale CFD, Meshless Methods, DRBEM

1 INTRODUCTION
Multidimensional hemodynamics analysis of the cardiovascular system usually couples two 
types of computational models: a 2- or 3-dimensional section of interest where a full-detail 
hemodynamic analysis can be performed, and a 0-dimensional lumped-parameter model 
(LPM) of the peripheral circulation [1–4], as shown in Fig. 1. Current state-of-the-art cou-
ples, either loosely or strongly, the solution from in-house or commercial fluid solvers, for 
example, StarCCM+ or Fluent, with a LPM using in scripts to carry information about the 
boundary conditions back and forth. This is done at every iteration until the resultant param-
eters reach convergence [5–9]. Solutions such are typically sought for the pressure and flow 
dynamics, pulmonary artery pressure and flow, coronary artery flow and pressure, and the 
ratio of pulmonary blow flow and systemic blood flow [4].

The analysis of the full hemodynamics of the aortic arch is proposed using a meshless 
methods solver. A localized Radial-Basis Function Collocation Meshless Method (LRC-MM) 
addresses the high computational expense issue that would occur if a global RBF interpola-
tion were to be used [10–12]. When decoupling of the incompressible governing equations of 
fluid flow, the resultant Poisson-like equations that arise from the solution of the pressure 
field at every time step are solved by a Dual Reciprocity Boundary Element Method 
(DR-BEM) which ensures high stability and accuracy. DR-BEM transfers the generation 
term of the resultant Poisson equation to the boundary via an RBF expansion [13, 14]. 
Since there is an existing point distribution from the LRC-MM, it can be used again when 
solving the boundary-only integration and determining the internal solution [15].
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Beyond the region of interest where the details of the hemodynamics are to be resolved, the 
aortic bed for instance, the peripheral circulation can be simulated using a 0D lumped parameter 
model based on an electric analogy to fluid flow. Utilizing the Windkessel compartment model, 
the LPM is used to reproduce the impedance that the peripheral bed presents to the inlet and 
outlets of mutli-dimensional region of interest via a combination of effective viscous resistance 
to flow, compliance, and convective acceleration or inertance experienced by the flow in the 
peripheral vasculature [16]. In this instance, the multi-compartment model used is an RLC 
(resistance, inductance and capacitance) arrangement that can be used to flexibly model the 
entire network. Instead of treating the entire network as a single block, the different segments 
allow for the flow and pressure in different sections to be calculated [17]. The heart is also rep-
resented in this system though a combination of diodes that model heart valves, resitances and 
inductances, as well as a time-varying elastance function (inverse of the compliance) that drives 
the circuit. The latter serves as the analogue of the elastance of the myocardium [18].

2 3-D MESHLESS SOLVER APPROACH
The hemodynamics of the aorta will be solved using a 3-D meshless solver for the 
 Navier-Stokes equations [10].
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Figure 1: Visual representation of the integrated LRC-MM and LPM.

Figure 2: Single RLC compartment used in LPM.
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For this incompressible case, the density, ρ , is constant [10]. The field variables of interest 
are the velocity, 



V x t( , ) and the pressure p x t( , ). Therefore, the velocity advances as:
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Given that there is no explicit pressure equation, a pressure correction field is introduced:

 p x p x xn n n+

= +
1( ) ( ) ( )φ  (3)

Substituting (3) into (2), eventually leads to a Poisson equation whose solution results in 
the pressure correction, φ , from (3) [10]:
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2.1 Dual Reciprocity Boundary Element Method (DR-BEM)

Given the need to solve (4) for the field variable, the pressure correction φ( )x , a boundary 
element method (BEM) approach is proposed through the formulation of a boundary integral 
equation (BIE). The purpose of the BIE, obtained through an RBF expansion, is to obtain a 
BEM solution to the necessary domain integration that results from Green’s free-space solu-
tion [10]. For the Poisson equation in (4), the right hand side is known and non-homogeneous, 
B x( ). Considering a weight function, G x,ζ( ), applying Green’s 2nd identity to the resultant 
equation while letting G x,ζ( ) be Green’s free-space solution of the Laplace equation that 
solved the adjoint equation, ∇ = −

2G x x( , ) ( , )ζ δ ζ , where δ ζ( , )x  is the Dirac Delta function. 
For example, in 2D the free-space solution is G x r s( , ) ln /ζ π= − ( ) 2 , and there results an 
integral equation in terms of the field variable:
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This solution still contains terms that require a domain integral:
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However, the parameter c ζ( ) is 1 inside the domain and 0.5 at the boundary. b( )ζ  still 
contains a domain integral but with an RBF expansion of B x( ), using polyharmonic RBFs, 
eventually leads to its boundary form of:
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And the BIE can be fully written in terms of boundary integrals:
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From the boundary solution, the field variable can be calculated at point inside the domain 
without the use of domain integrals. In addition, any derivative of the field variable can now 
be determined through the discretized form of the BIE.

3 LUMPED-PARAMETER MODEL
In the RLC compartment used to simulate the state of a set of vessels each component repre-
sents a physical characteristic: a resistance (R), accounts for viscous drag, an inductance (L), 
for flow inertia, and a capacitance (C), for vascular wall compliance. In the case of relevant 
variables, pressure (P) is voltage (V) and flow rate (Q) is current (I) [19], [20]. A time-varying 
capacitance, C t( ), represents the contractile behavior of the ventricle. A diode acts as the cor-
responding cardiac valve and insures unidirectional flow over the relaxation and contraction 
phases of the cardiac cycle [18, 21].

Given the incompressible Navier-Stokes equation from (1) and assuming fully developed 
axial flow and neglecting the external body force, the pressure gradient results in:
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The axial velocity profile in the circular cross-section of radius ℜ, assuming laminar flow, is:
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Where u t( ) is the time-varying cross-section-averaged mean axial velocity. After evaluating 
and integrating over the cross-section:
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Figure 3: Electrical compartment containing the time-varying compliance.
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Where Ac is the cross-section and Q t( ) is the volumetric flow rate. The resultant pressure 
drop, Dp, along a distance, Dp, is:

 ∆ =

ℜ











 +










p t
l

A
Q t

l

A

dQ t

dtc c

( ) ( )
( )8

2

µ ρ
 (12)

The analogy of the cardiovascular behavior and the electrical components is given in Table 1 
[20]. The heaviside step function is used to represent the behavior of the heart valves, where 
the pressure drop controls the valve opening or closing depending on a pressure difference DP 
thus allowing the blood to flow in only one direction.

Since the total voltage drop through a resistor-inductor is:

 ∆ = +v t R i t L
di t

dt
( ) ( )

( )
 (13)

Yielding the actual resistance and inductance in hydraulic flow terms from (12):
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3.1 The Heart in LPM

Elastance is related to the ventricle pressure and volume according to [18]:
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Where V0 is the volume of the ventricle at zero pressure. Mathematically, the time varying 
elastance is given by:

 E t E E E t En n( ) = −( ) ( ) +max min min (16)

The ventricular function can be simulated using the “double hill function” that represents 
the normalized elastance E tn n( ) [21]:

 E t

t

t
n n

n

n

( ) =











+





































+

1 55
0 7

1
0 7

1

1

1 9

1 9
.

.

.

.

.
ttn

1 17

21 9

.

.






































 (17)

Table 1. Cardiovascular behavior and corresponding electrical analogy.

Cardiovascular Behavior Electrical Component Relationship

Vessel Resistance Resistor ∆P QR=

Blood Vessel Compliance Capacitor Q CdP dt= /
Flow Inertia Inductor ∆P LdQ dt= /
Heart valve Diode Q P R H Pvalve= ( )∆ ∆/ ( )
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Where: t t Tn = max  and T tcmax . .= +0 2 0 15  such that tc  is the cardiac cycle interval in 
seconds.

For a healthy adult left ventricle: E mmHg mlmax /= 2  and E mmHg mlmin . /= 0 06 , [21]. 
The time-dependant elastance is the reciprocal of the time-varying capacitance, E t C t( ) ( )= 1  
and are shown in Fig. 4 for a heart rate, HR, of 60 beats per minute (bpm).

4 COUPLING OF LRC-MM AND LPM
The multi-scale analysis requires the full system to be integrated such that the LPM is con-
nected to the LRC-MM in order to have a closed-loop system. At points of coupling, relevant 
flow information will have to be converted from 3D- to 0D-analysis and back to 3D in order 
to complete the close-loop as in Fig. 1. The concept behind this coupling process is illustrated 
in Fig. 5.

The proposed approach is different on whether coupling is from the meshless solver to the 
LPM or vice versa. The two relevant parameters used are the local pressure and the volumetric 
flow rate.

•  3D-0D connection: the average values from the nodes at the cross-sectional surface used 
as input for the 0D compartment(s).

•  0D-3D connection: due to the assumption of Poiseuille flow, as mentioned earlier, the 
velocity from the LPM, umean, can be used to calculate the parabolic shape of flow field 
across the nodes on the surface. The local pressure from the LPM is transferred uniformly 
across the surface.

5 PRELIMINARY RESULTS
RBF-based Meshless solvers have been able to provide reliable simulations for several appli-
cations [11, 12, 15]. As a preliminary test to the multi-scale algorithms, a simplified model of 

Figure 4. Elastance, E t( ) and ventricular compliance, C t( ), for a healthy heart at 60 bpm.

Figure 5: Coupling between an RLC compartment and 3D LRC-MM analysis.
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a bulging and bifurcating vessel is configured to be loosely coupled with the LPM. The volu-
metric flow rate resulting from the LPM is passed at very time step as the inlet condition to 
the meshless model. The fluid properties of blood are used with the density ρ = 1 060 3, / Kg m  
and the viscosity µ = ⋅ ⋅

−3 5 10 3. /Kg m s .
The LPM is tested using a simplified model of the cardiovascular system, accounting for 

the compliance of the left atrium (CA), mitral valve (DM ,RM ), left ventricle, driving the sys-
tem with the time-varying capacitance (C t( )), aortic valve (DA,RA), aorta compliance and 
characteristic resistance and inductance (CAO , RAO, LAO), and systemic circulation compli-
ance and resistance (CS ,RS ) [18, 21]. The values associated with each of the resistances, 
compliances, or inductances, are well documented in the literature [21–23]. The arrangement 
using RLC compartments and a variable capacitance for the left ventricular compliance is 
shown in Fig. 6.

The LPM is solved for a healthy adult at 60 bpm over a period of 5 seconds. The resultant 
pressures at different locations: the left atrium (LA), PLA, the left ventricle (LV), PLV , the aorta 
(AO), PAO, and the systemic pressure, PSYS are shown in Fig. 7.

The meshless model consists of a bulging and bifurcating vessel with an inlet hydraulic 
diameter of 3cm bulging to 5cm after 10cm of entry length. Bifurcation occurs after 30cm 
and the outlets have hydraulic diameters of 1.5cm and 2cm. The overall length of the model 

Figure 6: Simplified Cardiovascular circuit model [18].

Figure 7: Pressure and Volumetric Flow after 5 cycles in LPM.
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is 50cm. The resulting LPM flow rates yield an average representative Reynolds number 
around 1,200. Representative locations throughout the cardiac cycle, as shown in Fig. 8 for 
the LPM-generated flow rates, are selected to plot the corresponding velocity contours as 
shown in Fig. 9, for the last of the 5 generated cardiac cycles.

Figure 8: Volumetric flow rate for a single cycle of LPM.

Figure 9: Velocity contour plots at representative locations throughout heart cycle: (a) onset 
of systole, (b) peak systole, (c) end of systole, and (d) diastole.
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6 CONCLUSION
The proposed approach to address the multi-scale analysis of cardiovascular flow utilizes a 
Localized Radial-Basis Function Collocation Meshless Method (LRC-MM) solver aided by 
a stable and robust Dual-Reciprocity Boundary Element Method (DR-BEM) solver to address 
the pressure field at every time step of the solution for the local hemodynamics at a 3D scale. 
The coupled LRC-MM/DR-BEM approach is implemented over the same boundary discreti-
zation and internal point distribution which is automatically generated and allows for direct 
CAD integration. The peripheral circulation and heart function is represented in a 0D scale 
by electrical circuit analogies of the Lumped Parameter Models (LPM) where the viscous 
drag is represented by a resistor (R), the flow inertia is represented by an inductor (L), the 
wall compliance is represented by a capacitor (C), and the heart valve is represented by a 
diode (D). This electrical elements are lumped together in compartments representing the 
different branches of the cardiovascular circuit. The LRC-MM/DR-BEM and 0D LPM are 
effectively coupled to form a multi-scale closed circuit of the cardiovascular system. The 
in-house computational tool will further enable analysis of patient-specific geometry, flu-
id-structure interaction analysis of vessel wall deformation, automated model refinement. 
LPM model parameters can be obtained on a patient specific basis given measured pressure 
and flow waveforms on the basis for inverse analysis.
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