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A BOUNDARY ELEMENT APPROACH FOR AN INTERFACE
VISCO-DAMAGE MODEL EXPOSED TO CYCLIC SHEAR
LOAD
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ABSTRACT

A computational model for analysis of rate-dependent interface damage which leads to interface crack
initiation and propagation in multi-domain structures exposed to shear type cyclic loading is presented.
Modelling of interface damage, accounting generally for various stress vs. separation relations of com-
mon cohesive zone models in this type of models, is restricted here to one with an exponential relation.
The model also includes viscosity and internal parameters for the interface damage to observe a fatigue-
like behaviour where a crack appears for smaller magnitudes of periodical loadings in comparison to
pure uploading.

The computational approach, physically based on evolution of stored and dissipated energies, behind
the model results in a kind of variational formulation. Moreover, solving the problem for variables charac-
terising the elastic state of the structure, the multi-domain symmetric Galerkin boundary element method is
advantageously used. Finally, the variational character of the solution requires implementation of (sequen-
tial-) quadratic programing solvers into the computer code which is fully implemented in MATLAB.

The presented numerical results for a rather academic structure demonstrate the properties of the
described model and enable to extend its applicability to more general problems of engineering practice.
Keywords: cohesive interface, fatigue life, interface damage, quadratic programming, quasi-static
delamination, symmetric Galerkin boundary element method.

1 INTRODUCTION

Cracks that appear between firmly connected parts of civil engineering constructions may
substantially modify the mechanical properties of such structures, therefore, development of
numerical approaches for solving such problems is highly demanded. In this paper, a model
for interface damage evolution is presented. It may simulate total damage at the interfaces for
displacement or force cyclic loading with a constant amplitude, which may occur for ampli-
tudes substantially smaller than for a purely increasing load. The interface is supposed to be
made of a very thin adhesive layer which may provide a stress-separation law as in a cohesive
zone model (CZM) under uploading conditions and which may also mimic fatigue processes,
including a rate-dependent damage evolution, similarly to cyclic CZMs introduced in [1-3].

The present solution approach introduces a model working with energy evolution, which
involves the stored elastic energy, energy of the external load and also dissipation due to damage.
To simulate the fatigue processes, the dissipation potential has a rate-dependent form with hys-
teresis associated to damage, see also [4-6]. The CZMs in the context of the energy evolution
were implemented in [7, 8] and a simple viscous term was also tested in [9]. In the present imple-
mentation, the viscous term and also the damage triggering term of dissipation are formulated as
state dependent in order to provide a better control of the hysteretic model so that the unloading
and reloading paths were non-coincident. Additionally, the model is capable of capturing varying
transferable force with increasing damage and to keep the interface undamaged for low stresses.
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For the proposed model, also a numerical approach is introduced. The solution evolution
is approximated by an appropriate time stepping algorithm which is capable of providing a
variational structure to the solved problem by two recursively solved minimisations with
respect to variables of deformation separated from damage variables as it was devised in
[10, 11]. Similar methodology was also described and implemented in the previous author’s
works [7, 8, 12]. The variational character of the solved problem requires algorithms of
energy minimisation. The properties of the proposed model permit one to use quadratic
programming (QP) algorithms based on conjugate gradient schemes of [13, 14], or, if the
functionals are not quadratic, a sequential modification of QP algorithms can be utilised
[15]. Finally, the numerical solution for spatial discretisation includes the symmetric
Galerkin boundary element method (SGBEM) [16, 17] with its multi-domain form of [18]
to provide the displacement and stress solutions for the solids. The advantage of this
approach in the present model is obvious as no nonlinear phenomena are considered in the
interior of solids.

The paper is structured as follows. Section 2 describes the interface damage model and the
relations which govern its evolution. Section 3 explains some aspects of the numerical solu-
tion and its particular implementation. Finally, Section 4 presents numerical results which
demonstrate the properties of the model and reveal its characteristic response to cyclic shear
type loading.

2 DESCRIPTION OF THE MODEL
The model considers a domain € consisting of two or more connected parts. Let us consider
a domain containing two subdomains Q" , 5 = A, or B, bounded by the respective Lipschitz
boundaries I'" as shown in Fig. 1. A common part of the boundaries (an interface) is denoted

I'c= ' NI Each of the boundaries is additionally split into disjoint parts according to
. . . 7 . .
boundary conditions: r];’ where displacements are prescribed, I'y where tractions are given,

ie. 17 = 1"1;7 U Fﬁ Ui.The normal and tangential vectors to the boundaries are denoted n”

and s”, respectively.

The model is governed by energy evolution. Its state is described by two variables: the dis-
placement field u and an internal variable { characterising the actual damage level so that (=1
pertains to the initial undamaged state and { = O reflects total damage when a crack appears.

The energy of the system describing the behaviour of the model includes the stored energy
and also dissipated energy. The stored energy functional is defined as

Figure 1: A scheme of a two domain problem with one interface.
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where we have taken into account the bounds of the damage variable and the time dependent
boundary condition on a part of boundary 1"];7 which restricts admissible displacement field.
The fourth-order tensor C” includes elastic constants for the domain Q" and e is the small
strain tensor. The interface integral defines stored energy of the adhesive, depending on the
initial undamaged interface stiffnesses k_ and k_, and on the actual state of damage controlled
by the degradation function ®({) as in [7, 8], e.g. an exponential law of softening can be

+ pa— —
A= PO i A ) = exp(=37 () and y being the
Aa+e)—ple) r
1
I'(r)
the model, usually set to three to be consistent with common cohesive zone models. Other

obtained by the function ®({) =

+oo
upper incomplete gamma function y, (x) J. £l ds, ris the principal parameter of
X

parameters a and ¢, satisfying the conditions p, (77) <a<1,0< &<1—a help to control

the damage initiation and termination, especially in the numerical solution, theoretically they
can be set to the values 1 and 0, respectively.

The terms [-],, and [, respectively, are the normal and tangential displacement gaps
between opposite interface points, i.e. [u]l = ut—u? (superscripts A and B refer to the bodies
adjacent to the interface from both its sides). The last term with [Il,, denoting the negative
part of the relative normal displacement, reflects the normal-compliance contact condition
being understood as a reasonable approximation of Signorini contact conditions due to asper-
ities of the contacting surfaces.

The potential energy of external forces (acting only along a part of the boundary denoted
FA'; ) is given by the relation

Fw=-Y [t @)-vdr, )

7=ABry

where f" are the prescribed tractions on the part of boundary 1"]3

The dissipated energy is introduced by the (pseudo)potential which reflects the
ratedependence and unidirectionality of the delamination process

] (O L ay(OF dT if £<0

RGO =4I 22 ' 7

+ oo otherwise,

3)

where a, is related to the instant of damage initiation and its dependence on the current
state of damage enables the endurance limit for fatigue life to be modified as long as dam-
age approaches the total rupture; and a, is visco-damage parameter which introduces
hysteresis into the damage evolution and again its dependence on the current state of
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Figure 2: The stress p vs. separation u diagram for pure uploading. The solid lines are
used for changing parameter r,, while the dashed lines correspond to
changing parameter r,. The values u, p, correspond to damage initiation
and inside the dashed lines (the endurance limit) there is no damage
evolution.

damage modifies the range of viscous effect. How these parameters affect the stress-sepa-
ration diagram is shown in Fig. 2, where the power relations were used for both o, and a.,:
a; (5) = a,,({+¢)", withg;=0.001 (set especially for the cases where p; < 0). The same power
rules will also be used below.

The relations which govern the elastic state evolution in the solid Q2 and damage evolution
in the interface I';. can be written in a form of nonlinear variational inclusions with initial
conditions.

0,€(1u,Q)+0,F (u)20, uf_o=u,,
IR(c J+a, w30, dy=d @)

where d denotes (partial) subdifferential of a convex non-smooth function which can be
replaced by Gateaux differential if the functional is sufficiently smooth, for e.g. . The initial
condition for damage is usually {, = 1, pertaining to the undamaged state.

The system provides also an energy balance relation which can be obtained by testing
Eqn. (4), respectively, by u, and { as follows:

d ; 0 L
Ee(t, wO+D(SH=-Ftu)+ 55 (t;u,{) (5)
where D((: () = <8 ; RGO, > = jr —al([)ﬁ + az(OZZ dI' denotes the overall dissipation

rate. The change of stored energy and the energy dissipated during a specified time interval
then sum to work done by the external force and displacement loads.
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3 DISCRETISATION
Numerical solution to the model described above requires both time discretisation and spatial
discretisation. In what follows, we separately provide some properties of both. Let us stress that
due to SGBEM being used to calculate elastic response of the solids, the numerical procedures
are expected to be expressed in terms of boundary data, unlike the stored energy in Eqn. (1).

3.1 A semi-implicit fractional-step time discretisation

The time discretisation which ensures convergence of the numerical solution includes decou-
pling of the system (4) by a fractional-step method: separation of variables then may be done
to guarantee separate convexity of the energy functional € and additive splitting of the dissi-
pation potential R.

The discretisation scheme is introduced by a semi-implicit algorithm with a fixed time step

. . . k
7 such that the solution is obtained at the instants t*=kz for k = L,...,T/z and denoted u for

displacements and {* for the damage variable. In order to obtain such an algorithm from Eqn.

(k _Zk—l
T

(4), the rate of damage is approximated by the finite difference (= . The differenti-

k
ation with respect to the rate is accordingly replaced by the differentiation with respect to ¢,

so that from Eqn. (4) we obtain

9, £ ut, 40 F(*ut) 50, (6a)

o = k.o k ok
R & T +0.E( ", {730, (6b)

which are solved separately to calculate u* and (¥, respectively. Let us notice that for

characterising the state we used ¥~/ in R, which is quite reason able while we consider non-
zero hysteretic term 0y-

The separation of variables provides a variational structure to the solved problem, containing
two minimisations in each time step: the first minimisation with respect to displacements of

H,’j(u)=€(t";u,£"_1)+f(fk’“) (7a)

provides u, and the second minimisation of
ekl
HE(O =6 ub, 0+ ﬂz(("‘l %J (7b)

provides (*.

The minimisation system (7) is solved recursively for k=1,..., T/z, starting from k=1 with ini-

tial conditions u’ = u,, 0= CO from Eqn. (4). In fact, the functional £ is quadratic with respect to

u so that various efficient numerical QP algorithms can be used in the solution, see e.g. [14]. On
the other hand, with respect to (it is quadratic if the function @({) is quadratic. Nevertheless, our
present choice is not covered so that the QP algorithm should be applied sequentially as in [7].
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3.2 Modification of functionals towards SGBEM

The SGBEM algorithm is used to calculate the elastic strain energy in Eqn. (7a), in fact from
Eqn. (1),and it provides the complete boundary-value solution from the given boundary data.

Therefore, it is convenient to change the domain integral to boundary integrals. First, we
introduce the linear mapping S:(g, f, w)+— u with u being the weak solution to the
transmission boundary value problem:

div(C”e(u”)) = 0 inQ”, (8a)
u’ =g’ onT%, (8b)
p’ =f7  with p”=(C"e(u”))-n” onT% g
c
[u = w (8c)
s 5 onlc,
p +p =0 (8d)

where w is supposed to be prescribed displacement gap at I'. and p denotes boundary (and
interface) tractions.

The functional ’HZ[‘ in Eqn. (7a) is converted, using also Eqn. (1), to Hﬁ as

1
Hyw = 3 [ p e ) w- g/ yar

7=A,B

- lf E7@")u” (g, 0" ), w)dD 9)
/FA,BZ X

+ %I:—pB (&), £), W) W+ k, D(Ow] + K DOW] +k, (w,)* ] dT,

where u”(g(¢*),£(¢*), w) and P” (g(t ).£(t*), W) are, respectively, displacement and tractions
obtained by Eqn. (8) through the (generalised) Poincaré—Steklov operator as described in
[19]. They are obtained by the SGBEM taking the known displacement gap w from the min-
imisation procedure in the same way as in [18, 19]. Once all the boundary data (displacements
and tractions) are obtained from the solution of the SGBEM code, the pertinent energy func-
tional in Eqn. (9) can be calculated.

The implementation of SGBEM uses the weighted system of BIEs written in the following
block form, cf. [18, 20]:

o) ry) (95"

V/l\? “1@ 5/1\? gA

¢é Pé ¢é A

v K MO ad || H* 0 —(MAB)_4 fB

- [MAB* KB] K . % | (10)
D 0 H 0 fB

e AP !

9% 9

ve ve
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with weighting functions  and ¢ defined by the element shape functions used for approxi-
mation of displacement u and traction p. The introduced matrices are defined as follows:

-Ufp Th Ul Tgc
T —Sin Tie —Slc ,
K’ = 1 W — -1 if 7=A,
-Ulp Ty -Ulc o’ 5 e +Te | 1 if 7= B,
=3 1 ok
T —Sin @’ Elgc +Tée  —Sic
1y 7 7
- E IDD - TDD UDN 00 0 0
1 o 00 0O
H” = Sho ElﬁN - Tin , MAB = Al dD
00 0 IR
- T Uly 00 0 0
S ~Téx

The above equations use the (weakly singular) Kelvin fundamental solution U g(x, y), and the
associated derivatives obtained by the differential traction operator used also in Eqn. (8c)—the
strongly singular function 77; ;(x, y) and the hypersingular function S7(x, y). The compact form of
BIEs in Eqn. (10) uses the notation

wVngrvf = ,/a}f(y)('l. ,Zi (y,x)w”(x)dr(x)) dI*(y), (12)

where w stands for ¢ or 1//, whlle v stands for u or p, further, ¢ and r stand for D,N, and C, and
eventually Z'stands for U", 7", T" or §", and where the inner integral can be regular, weakly
singular, Cauchy principal value or Hadamard finite part integral. In the previous relations, I
denotes the identity operator with the subscripts and superscripts specifying the part of the
boundary where it is restricted to.

4 NUMERICAL RESULTS
We use the model to find solutions for various amplitudes and various maxima of the same
load type applied to the domain shown in Fig. 3 (see also [6-8]). The model formulation is
implemented in a MATLAB computer code.
The material properties of both layers in our example are the same: E = 70 GPa, v = 0.35.
The upper layer is loaded either by a time-dependent displacement load with the maximum

vig = mg + ag

I’ﬂg

20 20

a.f pto = my+ ay
my

0 ty 2ty 3ty 4t !

Figure 3: The analysed domain with supports and loading and the time-dependent load.
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8max = V1, Or by a time-dependent force load with the maximum f =pt,, the respective mean
values m, m, and amplitudes a,, a,may vary, introducing a parameter p such that Ay = PEays
a;= Pl IUis also shown in Fig. 3, where as an example, the displacement loading function
uses p = 0.25 and the force loading function uses p = 0.5. The numerical values of the other
loading parameters used in tests are v = 0.1753 mm s~!, p = 100 MPa s~'. For 1> various val-
ues are used to obtain various upper limits of the load.

The characteristics of the interface needed for functionals in Eqns. (1) and (3) (and explan-
atory text below them) are a,,=21.5J m~2, ay, =100 T s m~2, the exponents r,, r, have
various values in the numerical tests to show their influence on the solution, the initial inter-
face stiffnesses are kn =2k = 3.88 TPa m~!and kg =14 TPa m™". Finally, for the degradation
function ®(¢), we used r =3, a =0.99, ¢ = 0.005.

The used boundary element discretisation is uniform such that the mesh size (the element
length) is 2 = 2.5 mm, the time-stepping is performed in steps of 7= 12.5 ms.

The first series of results presents a global response of the layered structure to both types
of loading. As a measure, we defined the stiffness K which relates the average force and aver-
age displacement applied or enforced at the same locus of load application at the right face of
the upper layer. We first fix the parameters p, r,, r, and let vary the maximum of the load
introduced by ¢,,. The graphs in Fig. 4 show how the stiffness decreases due to damage evolu-
tion. The larger ¢, is, the smaller number of cycles N is needed to form an interface crack. At
the end of the loading, the stiffness falls down to zero as the layers separate totally. The stiff-
ness decreases faster for force loading which is in close connection to the faster damage (and
crack) propagation in this case as we will see below.

The influence of the amplitude of the load, with the maximum of the load kept fixed, is
shown in Fig. 5. Here, the parameters r, and r, are the same as before and maximum of the
load corresponds to ¢, = 0.4 s. The parameter p, which controls the amplitude, varies. In any
type of loading, it is clearly seen that intermediate values of p provide almost the same curve,
which is in agreement with fatigue behaviour usually displayed by Haigh diagram, see [21].
For p close to unity the damage propagates not only around the maximum, but also close to
the minimum (negative) of the load which is relevant in the present shear type of loading.

Finally, for the displacement type of loading, we also intend to show how the parameters
r, and r, modify the stiffness changes in Fig. 6. The increasing parameter r, causes the

600

’ltoe {0.6,0.5,0.4,0.3,027} [s] ‘
__550 o

1,€10.6.05,0.4.03.027} [s] ‘
j!

%

"2 500
£ 450
< 400
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300 ;

1 35 10 3050100 500 1 35 10 3050100 500
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Figure 4: The stiffness K of the layered structure: considered as f'= Ku,, where
ufis the average displacement of the prescribed traction locus, or as
=K, where p ¢ isthe average traction at the prescribed displacement
locus; influence of the load maxima f, = pt, (left), and g, =Vt
(right), the loading parameter p set to 0.5 (see also the bottom load
curve in Fig. 3 (right)), and the model parameters are r, =0, r, = 2.
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Figure 5: The stiffness K of the layers as in Fig. 4, influence of the parameter p
of loading, keeping the maximum of loading constant with 7, = 0.4 s,
force (left) and displacement (right) loading.
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Figure 6: The stiffness K of the layers as in Fig. 4 for displacement load only
(i.e. p,= Kg), influence of the parameter r, (left) and influence of
the parameter r, (right), both for z, = 0.6 s and p = 0.5.

endurance limit to decrease as damage progresses so that the number of cycles needed to
make corresponding damage also decreases. The increasing parameter r, causes the decrease
of hysteretic effect and thus decreases the number of required cycles to cause a crack propa-
gation. Here, we also used negative values which may cause an opposite result. However, it
is important to see that it is necessary to adjust also the parameter ¢, to a positive value, for
the viscosity not to be infinite as { approaches zero.

Next, we show the speed of the crack length increase when the crack propagates. Table 1
summarises the number of time steps 7, needed to obtain cracks of specified lengths a in the
sense that {"at the pertinent nodal point of the interface falls below 0.1 for particular parame-
ters r|, r, and p. With given 7, the number of cycles AN which is needed to extend the crack
from the length a, to a, is AN = (”a2 —na]) 7/ (4af). In fact, we had solved the problem until we
reached a crack along the whole interface.

The data from Table 1 can be used to calculate the parameters of the crack-growth power

law known for fatigue processes, see [22]. Linearised regression is used to obtain
AalAN =2.71x1 08 : g,‘;gf (R2 =0.9903) for the displacement loading. Here, the load maximum

&nax 15 applied instead of stress intensity factor used in the aforementioned Paris law. Simi-
517

larly, the power relation for the force load reads A@/AN =7.25x107° - fo:l (R2 = 0.9946),
where the maximum of the applied force is used as the independent variable.
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Table 1: Number of time steps 7 to reach a crack length a, r; =0,
r,=2,p=0.5: (a) force loading, (b) displacement loading.

Force load Displacement load
n, ty[s] 025 03 04 05 =n, t,mm] 03 04 05 06
7.5 3220 1559 664 362 7.5 3672 1116 592 343
= 10 3340 1610 672 367 = 10 3960 1181 600 355
% 12.5 3459 1660 680 375 % 12.5 4248 1246 665 420
15 3541 1746 730 423 15 4488 1311 677 427
17.5 3623 1793 736 430 17.5 4680 1376 686 433

The damage evolution in Fig. 7 for one particular ¢, = 0.3 s and the same parameters can
be used to check some values from Table 1. Let us look, for example, at the force load. The
crack reaches the length of @ = 10mm (which corresponds to x, = 170 mm) after n, = 1610
time steps. For time span ¢, we have 24 time steps, therefore n,, in terms of load cycles makes
N = 33.29. Similarly, the length of @ = 17.5 mm (x, = 162.5 mm) is reached at the step
n, = 1780, which corresponds to N = 36.83. Both these values can be guessed from the left
picture in Fig.7.

Althought the evolution of deformation in Figs. 8 and 9 is not very interesting, at least, we
can compare the two loading types, here. We used the results for the same 7, = 0.3 s as before.
The figures show the maximal displacements at selected instants after N cycles, starting from
N =1, which are comparable. For the force load, the crack spreads along the whole interface
after N = 41 cycles, while in case of the displacement load, the structure withstands N = 118
cycles. These facts can be compared with the damage propagation in Fig. 7, too.

Finally, a local behaviour of the model can be represented by the traction-separation relation
and evolution of damage at a point of the interface. Both of these relations are shown in Figs. 10
and 11. A point in the middle part of the interface has been chosen: x, = 127.5 mm. The graphs
also show how the interface stiffness (the slope of the stress-separation relation) is decreasing
during the loading process. The number of cycles to provoke the total damage ({'= 0) is natu-
rally different for displacement and force loads. In the case of the smallest load maximum, the

0 30 60 90 120 150 180 0 30 60 9 120 150 180
21 [mm)] 21 [mm]

Figure 7: Interface damage evolution for both force (left) and
displacement (right) loads: each contour corresponds to the state
of damage after displayed number of load cycles, 7,=0.3 s.
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Figure 8: The deformation of the layers (magnified 1200x)
at four instants of the force load, 1= 0.3 s.
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Figure 9: The deformation of the layers (magnified 1200x) at
four instants of the displacement load, ty= 0.3 s.
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Figure 10: The stress-separation relation (left) and evolution of { (right) for a
point at the interface x; = 127.5 mm, influence of the load maximum
f max p tO'
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Figure 11: The stress-separation relation (left) and evolution

of { (right) for the point at x, = 127.5mm, influence
of the load maximum g_ = g,
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cycles cannot be easily counted in these graphs due to their large number. Nevertheless, for the
other maxima it is possible: the graph of { evolution provides at the instant £, = 0.3 s the total
time of rupturing at the selected point # = 24.85 s and ¢ = 69.3 s for the force load and for the
displacement load, respectively. These two values expressed in number of cycles N are respec-
tively N=41.42 and N = 115.5 and can again be checked by the graphs in Fig. 7.

5 CONCLUSION
A model for solving interface damage has been presented. Its parameters have been set to
such values that the model behaviour is sensitive to cyclic loading. The presented results
confirm that the model is capable of propagating the damage in the sense of fatigue life.
There are several parameters in the model which influence some aspects of the solution, and
which were also studied in the example.

From the computational point of view, to obtain the solution of an evolution problem,
semi-implicit time discretisation was implemented leading to a numerical approximation
model with a variational structure. The approximated model then utilises the method of
sequential quadratic programming with a space discretisation by SGBEM. The choice of the
latter mentioned numerical technique enables the formulation of the minimisation problems
only in terms of interface variables such as displacement gap and interface damage, if all
nonlinear processes in the model are accumulated only at the interface.

Of course, there are many parameters in the model, some of them were discussed in the
paper some have been kept fixed. All of them should be appropriately adjusted to follow
satisfactorily experimental observations. Nevertheless, it might be expected that the proposed
approach turns out to be useful in practical engineering calculations.
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