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ABSTRACT
We present results on the isothermal laminar flow of a thin fluid layer over a sphere as it exits from a 
small hole at the top of the sphere. Such a flow can be observed in a globe fountain. The fluid is taken to 
be viscous, incompressible and Newtonian while the flow is assumed to possess azimuthal symmetry. 
The governing Navier-Stokes equations are solved subject to no-slip and impermeability boundary con-
ditions on the surface and the dynamic and kinematic conditions along the free surface. An approximate 
analytical solution for the steady-state flow has been derived by expanding the flow variables in powers 
of a small parameter, d, which represents the shallowness parameter. The leading and first-order terms 
in the series have been determined and the findings demonstrate that for thin flows the approximate 
solution is indeed accurate. Various results and comparisons are presented and discussed. Lastly, the 
analysis was also extended to solve the problem of thin flow over a cylinder and the fundamental dif-
ferences between the flow over a sphere and that over a cylinder have been identified and explained. 
The technique and the approach adopted can be used to model and understand similar thin flows that 
occur in other settings.
Keywords: analytical, incompressible, thin flow, viscous.

1 INTRODUCTION
The globe fountain consists of a sphere with a hole at the top whereby water is pumped out 
at a constant rate. These can be found at garden centers and are sold for decorative purposes. 
A typical globe fountain is illustrated below in Fig. 1. The diagram shows a pillbox formed 
at the top of the sphere as a result of the water flowing out of the hole. Although the fluid 
mechanics associated with the formation of the pillbox is very interesting, our focus in this 
study is in the subsequent thin layer flow following the pillbox; we will model the flow as it 
spreads over the sphere.

Another interesting fountain, known as the “kugel fountain”, involves a massive granite 
sphere which floats and spins on a thin film of flowing water which is pumped out of a hole 
at the base of the fountain. The dynamics of this fountain have recently been analyzed by 
Snoeijer & van der Weele [2] using lubrication theory.

Related to the globe fountain is the study conducted by Takagi & Huppert [3] whereby a 
constant volume of fluid was released at the top of a sphere. Lubrication theory was used to 
show that the fluid thickness remains constant along the surface of the sphere but decreases 
with time (t) according to √t. Analytical solutions were found to agree well with their exper-
iments. They also investigated the onset of instability of the advancing front as it split into a 
series of rivulets.

Since the globe fountain flow involves a thin fluid layer, this property will be exploited in 
our analysis. Because thin fluid layers occur in a variety of settings [4,5], they have received 
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Figure 1: A typical globe fountain [1].

considerable attention over the years. In our investigation, we derive an approximate solution 
for the steady-state flow based on the assumed smallness of a parameter related to the char-
acteristic thickness of the fluid layer. The study is organized as follows. In section 2 we 
present the governing equations and the corresponding boundary conditions. When cast in 
dimensionless form a small parameter, defined as the ratio of the fluid layer thickness to the 
radius of the sphere, naturally appears. In Section 3, we then construct an approximate ana-
lytical solution for the steady-state flow based on the small parameter. The analytical results 
are then discussed in Section 4 and a summary is given in Section 5.

2 GOVERNING EQUATIONS
We consider the laminar steady flow of a viscous incompressible isothermal Newtonian fluid 
exiting a small hole at the top of a sphere and spilling over the surface. Formulated in spher-
ical coordinates (r, q, f) with the hole oriented about the polar axis q = 0 and assuming 
azimuthal symmetry, the governing steady-state Navier-Stokes equations become
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Here, the flow variables u, v denote the velocity components in the q and radial directions, 
respectively, while P refers to the pressure. The fluid property µ/r represents the  kinematic 
viscosity while µ is the dynamic viscosity and r is the fluid density whereas g is the acceler-
ation due to gravity. To cast the equations in dimensionless form, we scale the thickness of 
the fluid layer by the Nusselt thickness, H, which for a vertical incline (i.e. q = π/2 where q is 
the angle of inclination) is given by

H
Q

g
3 3

=
m
r

,

where Q is the constant flow rate exiting the small hole. For a fluid layer having a width of 
unity Q = U H where U is the velocity scale.

We next introduce the coordinate y which is related to r through the relation r = R + y with 
R referring to the radius of the sphere. This can be scaled as

r

R

y

H
= + 



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1 d ,

where the dimensionless parameter d = H/R « 1 denotes the shallowness parameter. With 
this scaling the dimensionless flow variables and coordinate y are given by

( , , , ) ( , , ,
~

),u v P y U U U P Hy→ u~ vd r~ 2 ∼

where the tilde denotes a dimensionless quantity. In dimensionless form eqns (1)–(3) become
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where Re = Qr/m denotes the Reynolds number, and the tildes have been suppressed for 
notational convenience.

Along the air-fluid interface, we apply dynamic conditions which ensure the continuity of 
normal and tangential stress. In dimensionless form, these conditions along the steady free 
surface y = h(q) become
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where W e = sH/(rQ2 ) is the Weber number with s denoting surface tension, Pa the con-
stant ambient air pressure, h = h/H with h being the thickness of the fluid layer, and the prime 
denotes differentiation with respect to q. In addition, we apply the kinematic condition along 
the free surface y = h(q) given by
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We also apply the following no-slip and impermeability conditions on the surface of the 
sphere

 u v at y= = =0 0.  (10)

3 APPROXIMATE ANALYTICAL SOLUTION
For small d, an approximate analytical solution can be constructed by expanding the flow 
variables in the following series

u(y,q) = u0(y,q) + du1(y,q) + · · · ,

v(y,q) = v0(y,q) + dv1(y,q) + · · · ,

P(y,q) = P0(y,q) + dP1(y,q) + · · · ,

h(q) = h0(q) + dh1(q) + · · · .

Substituting these expansions into the equations of motion and expanding the dynamic 
conditions in powers of d leads to a hierarchy of problems.

The leading-order problem is governed by the system
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P y P ya0 0

3
( , )

cos
( ),q q h= + −

Re
 (14)

 
u y y y0 0

3

2
2( , ) sin ( ),q q h= −  (15)

 
v y

y
y0

2

0 02
6 3 2( , ) ( cos sin cos ).q h q h q q= − + ′ −  (16)

Thus to leading order, the pressure is hydrostatic and the velocity in the q direction, u0, has 
a parabolic profile in y which is consistent with flow down an inclined surface at an angle of 
q with the horizontal. Further, the velocity component u0 is symmetric about the plane 
q = p/2. The leading order term for the unknown free surface can be determined by applying 
the kinematic condition which when transferred from y = h to y = h0 takes the form

v0 = u0 h¢0 at y = h0 .

This leads to the differential equation

′ = −h
h q
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,

which can be solved to yield 
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In order to determine the arbitrary constant C a boundary condition must be provided. We 
note that the solution for h0 is singular at q = 0, p.

As fluid flows out of the hole at the top of the sphere, a pillbox will be formed. Since our 
focus is in the subsequent flow following the pillbox, we propose the generic boundary con-
dition

h0 = h0 at q = q0,

and will treat h0 and q0 as free dimensionless parameters. Thus, C = h0 sin2/3 q0 and the sin-
gularity at q = 0 is removed. Since we expect the flow to separate from the surface before 
reaching the bottom of the sphere, the singularity at q = p is also resolved.
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The O(d) problem satisfies the system
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Lastly, the kinematic condition applied at y = h0 furnishes the following differential equation 
for the free surface correction, h1
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The solution to the O(d) problem is significantly more complicated and was obtained using 
the Maple Computer Algebra system. The solution for u1 is

given by
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4 RESULTS AND DISCUSSION
Figure 2 shows the leading-order and first-order correction to the free surface using Re = 1, 
d = 0.1, q0 = 0.2 and h0 = 0.5 while Fig. 3 illustrates the free surface for q0 < q < p/2 in Car-
tesian coordinates. We have intentionally chosen a thicker fluid layer in these plots to 
demonstrate that the impact of the correction term is relatively small. For thinner fluid layers, 
the difference between the leading-order and first-order correction is much smaller and hardly 
noticeable. The fluid thickness decreases as q increases from q0 and attains a minimum near 
the equator, q = p/2, and then increases again almost symmetrically. The reason for this is 
simple. As the fluid flows over the sphere toward the equator, it is spreading over a larger 
surface area. In fact, the rate at which the surface area is increasing is such that the average 
streamwise speed decreases. This can be seen by computing the dimensionless flow rate per 
unit width, Q̂, and dimensionless average streamwise velocity, Û, using the leading-order 
solution as follows

Q̂ = = = =∫ u y dy U Q
00 0

3

0
0
30

( , ) sin , ^ ^
sin .q h q

h
h q

h

Substituting h0 = C/sin2/3 q yields Q̂ = C3/sinq and Û = C2/sin1/3 qwhich shows that both 
the flow rate and average speed decrease as q increases from q0 to p/2, and hence, a decrease 
in fluid thickness. We note that Q̂ sinq is constant as it should be since this represents the total 
flow rate over the entire sphere at a given angle q.

Plotted in Fig. 4 is the leading-order, u0, and first-order correction, u1, to the streamwise 
velocity profile using Re = 1, d = 0.1, q0 = 0.2 and h0 = 1 at q = p/4 while Fig. 5 compares the 
velocity profile u = u0 + du1 at q = p/4 with that at q = p/2. Again, we have intentionally 

Figure 2: The leading-order, h0, and first-order correction, h1, to the free surface with 
Re = 1, d = 0.1, q0 = 0.2 and h0 = 0.5.
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Figure 4:  The leading-order, u0, and first-order correction, u1, to the velocity profile with  
Re = 1, d = 0.1, q0 = 0.2 and h0 = 1 at q = p/4.

Figure 3:  The free surface h = h0 + dh1 shown in Cartesian coordinates with Re = 1, d = 0.1, 
q0 = 0.2 and h0 = 0.5.
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 chosen a thick fluid layer to illustrate the relative size of the correction term. In general, the 
velocity profiles are very similar. The only differences are in the maximum velocity and 
thickness of the fluid layer. As previously noted, the fluid thickness decreases as it flows over 
the sphere, and Fig. 5 demonstrates that the maximum velocity, which occurs at the free 
 surface, also decreases, and hence, the average speed decreases.

One method of estimating where the fluid separates from the surface is to use the zero-
stress condition at the surface, that is, set

∂
∂

= =
u

y
y0 0at .

Using u = u0 leads to 3h0(q) sinq = 0 and solving this yields the separation angle qs = p 
which supports the claim made earlier. Including the first-order correction u = u0 + du1 
requires solving the equation

3
40

00h q q d q( )sin ( ) ,+ =F

to determine the separation angle qs where F (q) was previously defined. Our calculations 
revealed that qs occurs near the bottom of the sphere and the dependence on Re and d is neg-
ligible. There was some dependence on h0 and q0 . For example, with h0 = 1 and q0 = 0.2 we 
obtained qs ≈ 3.045 whereas with h0 = 0.5 and q0 = 0.3 we obtained qs ≈ 3.085. The observed 
trend was that for a fixed value of h0 (q0) the value of qs approached p as q0 (h0) decreased.

When the calculation was repeated for the problem of thin flow over a cylinder, very sim-
ilar stream-wise velocity profiles were obtained. However, the free surface variation was 

Figure 5: The velocity profile u = u0 + du1 using Re = 1, d = 0.1, q0 = 0.2 and h0 = 1 at q = p/4 
and q = p/2.
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noticeably different. Contrasted in Fig. 6 are the free surface plots for the cylinder and sphere 
using Re = 1, d = 0.1, q0 = 0.2 and h0 = 0.5. We see that the free surface varies more rapidly 
with q for the sphere than it does for the cylinder. Since the surface area remains constant as 
the fluid spreads over the cylinder, the decrease in fluid thickness must be a result of an 
increasing average speed. Indeed, for flow over a cylinder, we find that Q̂  = D3 and Û = Q̂/h0 
= D2 sin1/3 q where D = h0 sin1/3 q0 . This confirms that the flow rate remains constant and the 
average speed increases. Expressions for h0 (q) and h1 (q) for the cylinder are given by

h q
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5 CONCLUSIONS
Discussed in this work was an analytical investigation of the steady flow of a thin fluid 

layer over a sphere resulting from a constant discharge from a small hole at the top of the 
sphere. An approximate analytical solution was derived which for thin flows is judged to be 
accurate. The fluid thickness decreases as it flows over the sphere due to the increasing sur-
face area and then increases almost symmetrically for q > p/2. The leading-order stream-wise 
velocity profile is parabolic and bears a close resemblance to that of the well-known problem 

Figure 6: The free surface h = h0 + dh1 for the cylinder and sphere with Re = 1, d = 0.1, 
q0 = 0.2 and h0 = 0.5.
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of flow down an incline. The calculation was repeated for the case of thin flow over a cylin-
der, and the velocity profiles obtained were similar in the form to those for the sphere. 
However, noticeable differences in the free surface occurred where it was discovered that the 
change in fluid layer thickness was much greater for the sphere than it was for the cylinder. 
This is because the average stream-wise velocity increases as the fluid flows over the cylinder 
and since the flow rate is independent of the angle q the thickness must decrease accordingly. 
For the sphere, on the other hand, both the flow rate and the average streamwise velocity 
decrease as the fluid flows over the surface which leads to a more rapid decrease in fluid layer 
thickness. Although the derived solutions break down as q → p, according to our predictions 
the flow separates from the surface before reaching the bottom, and hence, the solutions are 
not valid near q = p.

ACKNOWLEDGMENTS
Financial support for this research was provided by the Natural Sciences and Engineering 
Research Council of Canada and the Faculty of Mathematics at the University of Waterloo.

REFERENCES
 [1] http://www.ebay.com/sch/i.html?_nkw=sphere+water+fountain
 [2] Snoeijer, J.H. & van der Weele, K., Physics of the granite sphere fountain. American 

Journal of Physics, 82, pp. 1029–1039, 2014.
http://dx.doi.org/10.1119/1.4886365

 [3] Takagi, D. & Huppert, H.E., Flow and instability of thin films on a cylinder and sphere. 
Journal of Fluid Mechanics, 647, pp. 221–238, 2010.
http://dx.doi.org/10.1017/S0022112009993818

 [4] Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M.G., Falling Liquid Films, 
Springer-Verlag: London, UK, 2012.
http://dx.doi.org/10.1007/978-1-84882-367-9

 [5] Craster, R.V. & Matar, O.K., Dynamics and stability of thin liquid films. Reviews of 
Modern Physics, 81, pp. 1131–1198, 2009.
http://dx.doi.org/10.1103/RevModPhys.81.1131


