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abSTracT
convenience is an important requirement of a scheduled transit system. The authors proposed a new 
method to evaluate a train schedule by using entropy of the information theory. by the aspect of 
 statistical mechanics, the randomness of a schedule is associated with the convenience of the schedule. 
however, the way of using entropy requires special conditions. In this paper, we show that we can relax 
the conditions by interpreting the entropy as information.

first, we explain the representation of a schedule by a tree structure. Introducing the tree structure, 
we recognize the more composite construction of schedules. The tree structure leads to the concept of 
conditional entropy. using the concept of conditional entropy, we can evaluate schedules of the states of 
different places or times. Secondly, we can understand what the information of the schedule is. We can 
grasp that the information is the benefit of knowing the schedule. The increase of the entropy corre-
sponds to the increase of the benefit. moreover, it becomes possible to express an unexpected disbenefit 
by the entropy with the loss of information. In other words, the benefit is a positive entropy and the 
disbenefit is negative entropy. finally, we show that we are able to deal with an influence of wasteful 
time in a schedule, such as an unnecessary waiting time and an extra duration by using the entropy. It is 
very important that we can evaluate negative effects, namely the discrepancy of supply and demand 
from the point of view of time.
Keywords: entropy, evaluate timetable, loss of information, tree structure.

1 INTrODucTION
The schedule of a transit system, such as a railway network, has a great influence on the 
convenience of the transit system. We sense the transit system is convenient in that a great 
number of trains run and the distribution of departures is even. In other words, we can get a 
train in a short time at anytime we come in a station. moro and Sugai [1] presented the method 
of evaluating schedules from the viewpoint of the number of trains and the  distribution of 
departures. This method uses Shannon’s entropy [2] of the information theory.  Nevertheless 
it assumes that each passenger chooses his/her train. It does not cope with a case that a 
 passenger cannot select any train.

In this paper, we introduce a method that deals with such cases, in which some passengers fail 
to select their trains, not only in cases in which passengers are able to select their trains. first, 
we show a way of expressing a schedule by a tree structure. Employing this structure we will 
be able to evaluate various states of schedules together by using entropy. Secondly, we explain 
what the information of the schedule is. by using the information of the schedule, we will be 
able to evaluate the adverse influence of the schedule according to its entropy. finally, we show 
that we are able to deal with the influence of wasteful time in a schedule, such as unnecessary 
waiting time and an extra duration by the entropy.

This paper is part of the proceedings of the 15th International Conference on Railway 
 Engineering Design and Operation (COMPRAIL)
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2 ENTrOPy aND INfOrmaTION Of ThE INfOrmaTION ThEOry
In the beginning, we will explain Shannon’s entropy and information of the information 
theory [2].

2.1 Definition

let X be a discrete random variable on a finite set � …X x x, , n1{ }= , with probability distribu-
tion function p x Pr X x:( ) ( )= = .

2.1.1 Information
We introduce information as a means to measure a rarity of an event. Information of the event 
�x X∈  with probability p(x) is defined as

    I x p x: log .( ) ( )= −  (1)
2.1.2 Shannon’s entropy
The entropy H(X) of X is defined as

   H X p x p x: log .
x X
∑( ) ( ) ( )= − ⋅
∈

 (2)

The convention 0 log 0 = 0 is adopted in the definition. The logarithm is usually taken to the 
base 2, in which case the entropy is measured in ‘bits’. This definition shows that we can 
calculate entropy only if we define the probability.

2.2 Implications of entropy

Shannon’s entropy of X corresponds to the expected value of the information of X.

3 ExPrESSION Of SchEDulE by ThE TrEE STrucTurE
In this section we introduce the expression of a departure schedule at a station by a tree 
structure.

3.1 Definition

let S be a schedule consisting of trains as

    �S tr tr tr, , , .n1 2{ }=  (3)

r

tr1

p1

tr2 trn−1 trn

pn

figure 1: Tree structure of a schedule.
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S leads a graph T N A,S S S{ }= . N
S
 is the set of trains and root node r. A

S
 is the set of arcs. 

for every a r tr,i i( )= ∈ A
S
 is a pair of nodes of N

S
 with probability p

i
. The tree structure of the 

schedule is represented in fig. 1. In addition, we call the node described at the upper parent 
and at the lower child.

3.2 Nested schedule

Now, we think about integrated plural schedules. consider the integrated schedules of the 
days of week for example. Suppose that the trains trk

i{ }  are scheduled in the ith day of the 
week d

i
. moreover, the pj

i( ) is the probability of train tr trj k
i{ }∈ ( )
 in the day d

i
. furthermore, 

we assume that 
iπ  is the ratio of ridership on the day d

i
 to the ridership of whole term. Namely, 

the set of trains trk
i{ }  nests under the day d

i
, and the set of days makes an intermediate class.

Specifically, we can say that D is a discrete random variable on the finite set � �D d d, , n1{ }=  
with probability distribution function Pr D di iπ ( )= = . besides, we can think of d

i
 as the set 

of the trains trk
i{ } . additionally, pj

i( ) is the conditional probability under d
i
, and what is more, 

if trj is not a member of d
i
, then p 0j

i =( ) .

figure 2 indicates a nested schedule. The intermediate class E contains two elements: 1η  and 

2η . The elements 1η  and 2η  are formed as follows:

   e e e e e, , , , .1 1 2 3 2 4 5η η{ } { }= =  (4)

The entropies of E, 1η  and 2η  are

     H E log ,i i

i 1,2
∑ π π( ) = − ⋅
{ }∈

 (5)

    H p plog ,j

j

j1
1

1,2,3

1∑η( ) = − ⋅( )

{ }

( )

∈

 (6)

    H p plog .j

j

j2
2

4,5

2∑η( ) = − ⋅( )

{ }

( )

∈
 (7)

Then the entropy of the entire system S becomes as follows:

    H S H E H .i

i

i

1,2
∑ π η( )( ) ( )= + ⋅
{ }∈

 (8)

r

η1

π1

η2

π2

e1

p1
(1)

e2

p2
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figure 2: Nested schedule.



 K. Moro & Y. Sugai, Int. J. Transp. Dev. Integr., Vol. 1, No. 3 (2017) 463

4 INTErPrETaTION Of ThE INfOrmaTION Of a SchEDulE
We will discuss the relation between the convenience of a schedule and the information.

4.1 relation between convenience and information

moro and Sugai asserted that the entropy increases when the convenience of schedule 
increases [1]. That is, the entropy of the useful schedule is larger than that of the less-useful 
schedule. moreover, the entropy means the expected value of the information in information 
theory. from this viewpoint, one may say that the more convenient the schedule of transit 
system is, the more its information grows.

4.2 missing information

In a previous study [1], only the case in which all passengers can select their trains was 
explained. however, some passengers fail to catch a train occasionally, e.g. the passenger 
arrives at the station after the last train has departed.

We take it for granted that the fact that some passengers miss their trains reduces the 
benefit provided by the transportation system. In other words, when some passengers miss 
their trains, the entropy must decrease compared to the case when all passengers catch trains 
successfully. Therefore, we propose an interpretation that the event which is disbenefit has 
negative information, i.e. the system loses information by worthless events.

4.2.1 general definition
how shall we calculate the loss of information? We consider the schedule as in fig. 3. There 
are n trains planned in this schedule. The probability of train tri is pi. and a child node labelled 
failure exists. This node corresponds to the passengers who catch no train. Its probability is pf .  
When we suppose that the all-child nodes are useful choices, the entropy is as follows:

    ∑= − ⋅ + ⋅
=

H p I p I .F i i f
i

n

f
†

0

 (9)

The value Ii denotes information of an event with probability pi as

    = −I plog .i i  (10)

however, the information of failure is added in eqn (9), i.e. the disbenefit choice improves 
the convenience. hence, we define that we do not add the information of unusable choices 
when we calculate the entropy of a schedule; namely, we dismiss the information of worth-
less choices. for instance, the entropy of the schedule as in fig. 3 is as follows:

    H p I .F i i

i

n
*

1
∑= ⋅
=

 (11)

4.2.2 representation by nested tree
We will represent a schedule which is the same as fig. 2 by a nested tree structure as in fig. 4.

There is an intermediate class consisting of success and failure. The probability of success 
is π s and the probability of failure is π f . The conditional probability under success of the 
train tri is p̂i.
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4.2.3 Example of calculation
We will calculate the entropy as follows in Table 1. Probabilities of the event of success and 
failure are as follows: 

Table 1: Number of passengers: with failure.

tr
1

tr
2

tr
3

tr
4

tr
5

tr
6

tr
7

tr
8

Failure Total

Number of 
passengers

250 255 235 246 242 253 257 234 17 1,989

Subtotal of success 1,972

     π = 0.9915,s  (12)

     π = 0.0085.f  (13)

Then the conditional probability p̂i of tri under success and information Ii of tri calculated by 
p̂i are as in Table 2.

The entropy of success is

   H p Iˆ 2.9992.s i

i

i

1

8

∑= ⋅ =
=

 (14)

The entropy of the whole is obtained as

   

π π π= − ⋅ + ⋅
= + ⋅ =

H Hlog

0.0123 0.9915 2.9992 2.9860.
s s s s

 (15)

r

failure

pn pfp1

tr1 tr2 trn

figure 3: Tree structure with failure.

r

success
πs πf

tr1

p̂1

tr2 trn

p̂n

failure

figure 4: Nested tree structure with failure.
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Table 2: Probabilities and information: success.

Probability

p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 p̂8

0.1268 0.1293 0.1192 0.1247 0.1227 0.1283 0.1303 0.1187

Information

I
1

I
2

I
3

I
4

I
5

I
6

I
7

I
8

2.9797 2.9511 3.0689 3.0029 3.0266 2.9625 2.9398 3.0751

Probability × Information

∗p Iˆ1 1 ∗p Iˆ2 2 ∗p Iˆ3 3 ∗p Iˆ4 4 ∗p Iˆ5 5 ∗p Iˆ6 6 ∗p Iˆ7 7 ∗p Iˆ8 8

0.3777 0.3816 0.3657 0.3746 0.3714 0.3801 0.3831 0.3649

Including disbenefit phenomena reduces entropy.

5 EValuaTION Of WaSTEful TImE
Nobody expects to waste time. unexpected unuseful occurrences must reduce the entropy 
of a transit system. In this section, we explain the influence of wasteful time on the entropy.

5.1 assumption

Previous studies of the evaluation of a transit system by its entropy have focussed only on the 
case in which the capacity of each train is infinity. Now, we would like to focus on a case in 
which the limited capacity of a train creates unexpected wasted time.

We consider that all passengers arrive at the station according to uniform distribution. We 
suppose some trains are closely packed before their departure.

5.2 amount of waiting time

under the conditions as stated above, we can calculate the amount of waiting time as in fig. 5.  
We denote c is the capacity of the train. an empty train fills up with term l* > 0. This train 
leaves station with term l later after filling up. The total waiting time of each passenger before 
the train fills up becomes w* and after filling up becomes w. The value w is just equivalent 
to an idle time.

Now we can express w, w* and ∃β > 0 as follows:

    β= ⋅ = ⋅ ⋅w l c l c* ,  (16)

which denotes β= ⋅l l *. Similarly, there exists α > 0 such that

     α= ⋅ ⋅w l c* * .  (17)
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5.3 ratio of effective time

We define the effective time rate r as

    
=

+
r

w

w w
:

*

*
.
 (18)

If the train left before filling up, then we define =r : 1. for the following discussions, we con-
sider the condition to be limited to the prior condition.

Due to eqns (16) and (17), we can modify the effective time rate as follows:

   

α
α β

α
α β

=
⋅ ⋅

⋅ ⋅ + ⋅ ⋅
=

+
r

l c

l c l c

*

* *
.
 (19)

5.4 Information of train with unexpected wasted time

We can express the part of train tr
i
 in a tree structure of schedule with probability p

i
 as in fig. 6.  

The information of tr
i
 without useless time is

     = −I plog .i i  (20)

c

l∗ l

w∗ w

time

passengers

figure 5:  amount of waiting time.

pitri

valuable

ri

valueless

1 − ri

figure 6: Example: with wasteful time.
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We define that the information-reflected wasted time is calculated as

    = −I p: log ,i i
† †  (21)

which denotes = ⋅p r p:i i i
† . furthermore, we define the entropy-reflected wasted time as

    H p I: .i i

i

† † †∑= ⋅  (22)

5.5 Influence of wasted waiting time

We calculated entropy of schedules with some variations of wasted waiting time.

5.5.1 Preconditions
We assume some preconditions to calculate entropy.

•	 Three trains are planned. The capacity of each train is the same.

•	 all passengers arrive at the origin station for first 15 min.

•	 The number of passengers equals 3 times the capacity of a train.

•	 Distribution of passengers arriving at the origin station is uniform, i.e. α =
1

2
.

We will calculate the entropy about the schedules (a) to (f) as in fig. 7.

5.5.2 case (a): optimal schedule
The times of departure are {5, 10, 15} and the rates are {1, 1, 1}. all trains planned in (a) 
depart immediately when each train fills up. That is the optimal schedule.

The entropy is as follows:

    = − ⋅



 ⋅ = =H

1

3
log

1

3
3 log3 1.585.a( )  (23)

5.5.3 case (b)
The times of departure are {5, 10, 20} and the rates are { }1,1,

1

2
.

The entropy is as follows:

   = − ⋅



 ⋅ − ⋅



 ⋅ ⋅





= ⋅ =

H
1

3
log

1

3
2

1

3

1

3
log

1

3

1

3
8

9
log3 1.409.

b( )
 (24)

5.5.4 cases (c) to (f)
The entropies of case (c) to (f) are as follows:

   
= =
= =

H H

H H

1.371, 1.266,

1.141, 1.049.
c d

e f

( ) ( )

( ) ( )

 
(25)
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5.6 conclusions concerning the influence of wasted waiting time

comparing with the results of (a), (b), (c) and (d), the entropy diminishes as the waiting time 
increases. furthermore, comparing with the results of (d) and (e), when more passengers 
have to wait, the entropy decreases when the total waiting time equals each other. Thus we 
conclude that the proposed method is reasonable to evaluate the unexpected wasted time of 
a schedule.

5.7 Nested schedule with loss of information

We show a calculation example of a nested schedule with loss of information. We will con-
sider the root with transfer at a station. Three trains are planned on each section. all passen-
gers boarding tr

i
 of the predecessor section transfer to 

�
tri of the successor section as in fig. 8.

(a) l1 = l2 = l3 = 0 (b) l1 = l2 = 0, l3 = 5
0 10 20 30 40 50 60 min. 0 10 20 30 40 50 60 min.

(c) l1 = l2 = 0, l3 = 10
0 10 20 30 40 50 60 min.

(e) l1 = 0, l2 = 5, l2 = 10
0 10 20 30 40 50 60 min.

(f) l1 = 0, l2 = 10, l3 = 10
0 10 20 30 40 50 60 min.

(d) l1 = l2 = 0, l3 = 15
0 10 20 30 40 50 60 min.

tr1 tr2 tr3tr1

tr1

tr1 tr1 tr2 tr3tr2 tr3

tr2

tr2

tr3

tr3 tr1 tr2 tr3

figure 7: Timetables, for example.
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5.7.1 assumptions
We assume some conditions of the schedule.

•	 The minimum transfer time at the station is 1 min, i.e. l* = 1.

•	  The value α in eqn (17) is 
1

2
.

•	  The number of passengers on each train is equal, i.e. 
1

3iπ = .

5.7.2 Optimal transfer
We consider the schedule (a) in fig. 8 as the optimal connection. That is, all passengers 
retain at the station for only the minimum transfer time. The entropy is

   = − ⋅



 ⋅ = =H

1

3
log

1

3
3 log3 1.585.A( )  (26)

5.7.3 With wasted waiting time
See the schedule (b) in fig. 8. Suppose the transfer time from tr

2
 to tr

2
 has a valueless time 

that equals the minimum transfer time, i.e. l = l*. The value β in eqn (16) becomes 1 and the 

effective time rate r
2
 becomes 

1

3
.

We calculate the entropy of wasted time as

   H r r

r r r

r I r I

log( )

( log ) ( log )

( ) ( ),

w w w

w w w

w w r

2 2

2 2 2

2 2 w2

π π
π π π

π π

= − ⋅ ⋅ ⋅
= ⋅ − ⋅ + ⋅ − ⋅
= ⋅ ⋅ + ⋅ ⋅π

 

(27)

r

tr1 → t̃r1

π1

tr2 → t̃r2

π2

tr3 → t̃r3

π3

(A) No wasted time

r

tr1 → t̃r1

π1
tr2 → t̃r2

π2

valuable

r2

valueless

1 − r2

tr3 → t̃r3

π3

(B) With wasted time

figure 8:  Nested tree structure with wasteful time.
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which denotes = −r r: 1w 2. The entropy is

  
H H H

log3
2

3

1

3
log

1

3

1

3

2

3
log

2

3

log3
2

9
log3

2

9
log3 1

5

9
log3

2

9
1.103.

B A w( ) ( )

( )

= −

= − ⋅ ⋅ −

 − ⋅ ⋅ −




= − ⋅ − ⋅ −

= ⋅ + =

 

(28)

This result shows that we must not forget reduction in the entropy of the predecessor trains.

6 cONcluSIONS
In this paper, we propose the interpretation that the entropy of a schedule is a metric of the 
usefulness of the schedule. moreover, we can evaluate the disutility of schedule by using 
the proposed concept. In other words, we can express the benefit of a schedule as positive 
entropy and the disbenefit as negative entropy. In addition, the interpretation of a schedule 
as information raises the possibility that the techniques of the information theory are appli-
cable to the evaluation of schedules and timetable planning. for instance, we will be able to 
identify the disruption of a schedule with erasure rate in a channel in information theory. and 
this identification leads to the explanation that we can consider the recovery of a schedule as 
correcting errors of received message.
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