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AbstrAct
nowadays, the use of gearboxes in the mechanical sector has significantly increased due to the various 
possible applications and new materials available on the market. moving through each application, 
from robotics to the automotive sector, the use of gearboxes ensures high efficiency with a compact 
structure. generally, gearboxes are composed by gears, shafts and bearings, and each of these compo-
nents can be subjected to failures. therefore, in the analysis of each mechanical component it is central 
to let the system operate properly. in fact, the presence of a damage can lead to a slight variation of 
system properties (e.g. stiffness). to design even more reliable gearboxes, it results fundamental to 
monitor the system’s health state and the damage progress. to better understand these phenomena, 
a numerical study is here presented. A back-to-back gear rig (fixed-axis two-stage test rig) is used as 
reference. it was developed an effective multibody dynamic model that exploits a combination of two 
different approaches – the lumped Parameter method (lPm) and the finite element method (fem). 
in this work, the effect of different operative and loading conditions was studied. in particular, the effect 
of damages on the eigenfrequencies and on the vibrational spectra was investigated based on numerical 
simulations. the stiffnesses of the gear train components, used in the lPm, were estimated by means of 
dedicated fem simulations. the results of the lPm were validated with experimental data acquired on 
a real healthy back-to-back rig. moreover, the effect of a tooth root damage on the vibrational spectra 
was analysed. the stiffnesses of the system’s components affect considerably the eigenfrequencies. As 
predicted by the fem simulations, in presence of damage, the stiffness of the teeth varies significantly, 
affecting the vibrational spectra. therefore, this work can be an effective starting point to setup a moni-
toring strategy of gearboxes.
Keywords: dynamic modelling, finite element method (FEM), gear trains, gearboxes, gears, lumped 
parameter method (LPM), multibody modelling (MBM), multibody systems.

1 introduction
generally, gearboxes are used to transmit mechanical torque from a system to another. they 
are composed by at least two gears which have usually different dimensions. in addition, 
gearboxes are characterized by high efficiencies and their performances are fundamental in 
the transmission of mechanical energy due to their versatility and applicability to any rotating 
system. however, these mechanical solutions are subjected to intense working conditions, 
which may cause failures and damages within the system. 

the multibody modelling (mbm) approach represents a powerful tool to investigate the 
dynamic of a geared system. it can be an effective tool to study/optimize the vibrational 
behaviour of a system [1] relying on lumped parameters [2]. moreover, bodies can be consid-
ered flexible and/or rigid. this type of analysis is based on physical models that describe the 
characteristic vibrations in terms of amplitude, frequency and phase modulation, providing 
important results that can help to better understand the failure modes [3].

vibration can be referred to as a physical movement or motion of a rotating machine. to 
measure it, the frequency and amplitude must be converted into electric signals by means of a 
transducer. An acceleration measure shows how fast (frequency) and how much (amplitude) 
the analysed system vibrates. While a frequency variation is a key effect to identify the type 
of the problem, the amplitude shows the relative severity of the damage [4]. in addition, vibra-
tions generate oscillatory motions that produce forces that can affect the systems behaviour [5].



 R. P. Monteiro et al., Int. J. Transp. Dev. Integr., Vol. 5, No. 3 (2021) 265

A gearbox system is made of interacting bodies such as gears, bearings, shafts and housing 
(supporting structure). gears rotate around fixed (or moving) axes transmitting the power via 
meshing teeth [6]. generally, a gear train can be modelled as a flexible multibody system that, 
owing to the interaction of deformable bodies [7], leads to the identification of the system 
response.

the mbm can be created through the lPm where components are schematized with con-
centrated masses and inertias, and the interactions between bodies are modelled via springs and 
dampers. masses and inertias can be estimated by means of computer Aided design (cAd) 
software. for the evaluation of elements’ stiffnesses, analytical formulations and/or numerical 
approaches should be employed. indeed, for components having complex geometries such as 
the ones of a gearbox (e.g. gears, shafts and bearings), numerical approaches – such fem – are 
required. such a lPm is helpful to identify the eigenfrequencies of the system. Any variation in 
the lumped parameters (for example, related to the nucleation of cracks) reflects directly on the 
frequency spectra. this property can be exploited to identify possible problems that occur in a 
mechanical system during operation.

2 dynAmic model
to validate the results of numerical simulations, a back-to-back rig was tested experimen-
tally (fig. 1). the rig is composed by 2 shafts, 12 bearings and two gear pairs (test and slave 
gearboxes). each gear pair has the same centre distance and the same gear ratio. the gears 
are connected to each other via compliant shafts (shafts 1 and 2). the shaft 2 is composed by 
a servo-hydraulic torque actuator (coupler) that decouples the two semi shafts (positive shaft 
2 and negative shaft 2). this mechanism, arranged in a closed mechanical loop, applies a 
rotation to the two semi-shafts to induce equals and opposite torques in the tested gears. this 
configuration of the system can be used to test gearing at varying speed.

the mechanical response of the real system was reproduced numerically [8]. in this regard, 
a combination of a lPm and a fem was used to describe the test-rig with a lean model. this 

figure 1: gear train system.
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combined approach can simulate the effect of different operative conditions considering the 
eigenfrequencies of the system. equivalent masses and inertias were calculated knowing the 
size and material of gearboxes components while the stiffnesses were determined through 
the fem simulations.

2.1 lumped parameter method (lPm)

the lumped parameter method approximates the real system exploiting discrete entities that 
are close to the real behaviour of the analysed component. the lPm method is based on 
lumped masses and inertias concentrated in specific points [9–10]. in this research, damping 
was neglected, since the objective of this paper was to determine the eigenfrequencies of the 
system.

the physics-based model provides a framework based upon physical laws. it describes the 
behaviour of the system using the principles of mass, momentum, energy conservation, and 
newton’s laws of motion. the model can be described with the following equation:

               mx t cx t kx t F t ( )+ ( )+ ( )= ( ) ,                  (1)

where the system parameters are mass m, damping c and stiffness k; the system responses 
are acceleration x , velocity x and position x, while F(t) is the time-dependent external force. 
equation (1) is recognizable as the equation of motion for a damped and forced system with a 
single dof. having the analysed system n dof, equation (1) should be rewritten in matrixial 
form:

   M x t C x t K x t F t  ( ){ }+   ( ){ }+   ( ){ }= ( ){ }  ,                (2)

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix that repre-
sent the state variables for a given system. F(t) is the forcing function providing input to the 
system, and x(t) is the overall displacement vector that represents the output of the model. 
Assuming no forces and no damping equation, (2) is reduced to:

    M x t K x t  ( ){ }+   ( ){ }= 0 .                 (3)

the corresponding eigenvalue problem of the undamped free system is numerically solved 
through the following equation (4) in order to find the undamped eigenfrequencies ωλ and the 
corresponding mode shapes Qλ λ ∈ 


( )1, Ndof :

             KQ MQ= ω2 .               (4)

2.1.1 vibration differential equation of the gear train system
figure 2 represents the virtual model of the fixed-axis two-stage back-to-back test rig. the 
system was modelled with 3 dof on each gear, assuming translation along x and y axis as 
well as rotation around the z axis. stage 1 consists of gears 1 and 2 (helical gear pair), while 
stage 2 consists of gears 3 and 4 (spur gear pair). these assumptions lead to a model having 
12 dof. gears were reduced to lumped masses/inertias. the mating teeth and the bearing 
reduced to linear springs. the two shafts were modelled as torsional springs. Additionally, 
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the input speed of the gear train was set to 3,000 r/min, the maximum power transmitted to 
314.16 W, and the resistant torque resulted therefore 1 nm 

the gear train parameters of the system are shown in table 1. the lPm is shown in 
fig. 2, where k
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table 1: gear train parameters.

Parameters symbol stage 1 stage 2 units
helical 
gear 1

helical 
gear 2

spur  
gear 1

spur | 
gear 2

no. of teeth N 34 36 17 18 –
module M 2.5 2.5 5.0 5.0 –
mass m 3.1 3.3 3.1 3.3 Kg
moment of inertia J 0.0122 0.0146 0.0122 0.0146 Kg m2

Pitch circle diameter d 0.0888 0.0941 0.0888 0.0941 m
Pressure angle γ 20 20 20 20 deg
helix angle β 12 12 0 0 deg
contact ratio ε 1.0588 1.0588 1.0588 1.0588 –
young’s modulus E 200 200 200 200 gPa
Poisson’s ratio ν 0.3 0.3 0.3 0.3 –

figure 2: lumped parameter model of the fixed-axis two-stage test rig.
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m = 9–10, n = 11–12). r
i
 is the circumference radius of the gears, where r di = / 2 (i = 1–4). 

K
m1

 and K
m2

 are the meshing stiffness of gear pairs of stage 1 and 2, while K
t13

 and K
t24

 are 
the torsional stiffnesses of the shafts 1 and 2, respectively. the torsional stiffness of shaft 1  
(K

t13
) was increased by approximately three times the value of shaft 2 (K

t24
) to simulate the pres-

ence of the hydraulic actuator. by using the lPm, the vibration differential equations for stages 
1 and 2 were established by the following motion equations.

•	 stage 1 – helical gears 1 and 2.

  m k x k x k x k x Ix e1 1 1 1 2 1 3 1 4 1 1 1 1 0 + + + + − =sin cosγ β ,                (5)

  m k y k y k y k y Iy e1 1 1 1 2 1 3 1 4 1 1 1 1 0 + + + + − =cos cosγ β ,                (6)

   J Kt r I cose1 1 13 1 3 1 1 1 0θ θ θ β+ −( )− = ,                 (7)

  m k x k x k x k x Ix e2 2 5 2 6 2 7 2 8 2 1 1 1 0 + + + + + =sin cosγ β ,                (8)

  m k y k y k y k y Iy e2 2 5 2 6 2 7 2 8 2 1 1 1 0 + + + + + =cos cosγ β ,                (9)

   J Kt I cose2 2 24 2 4 1 1 0θ θ θ β+ −( )+ = .               (10)

•	 stage 2 – spur gears 3 and 4.

   m k x k x I sin cosx e3 3 9 3 10 3 2 2 2 0 + + − =γ β ,               (11)

   m k y k y I cos cosy e3 3 9 3 10 3 2 2 2 0 + + − =γ β ,               (12)

   J K r I cost e3 3 13 1 3 3 2 2 0θ θ θ β− −( )− = ,               (13)

   m k x k x I sin cosx e4 4 11 4 12 4 2 2 2 0 + + + =γ β ,                (14)

   m k y k y I cos cosy e4 4 11 4 12 4 2 2 2 0 + + + =γ β ,                (15)

   J Kt r I cose4 4 24 2 4 4 2 2 0θ θ θ β− −( )+ = ,               (16)
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where Ie1 and Ie2 represent the internal excitation of the helical and spur gear pairs, respec-
tively, and can be defined by the following equations:

    I R cose MD1 1 1= β ,                (17)

    I R cose MD2 2 2= β ,               (18)

where RMD1  and RMD2  are the relative mesh displacements of the helical and spur gear pairs, 
respectively, which can be expressed as:

    R cosMD Km1 1 1=∆ β ,                (19)

    R cosMD Km2 2 2=∆ β ,               (20)

where β β1 2and  are the helix angles of the pitch circle of the helical and spur gear pairs, 
respectively. ∆Km1 and∆Km2 are the elongation and compression of the springs, representing 
the mating teeth along the line of action of the helical and spur gear pairs, respectively.

  ∆ = −( ) + −( ) + −
 )Km x x y y r r1 2 1 1 2 1 1 2 2 1 1sin cosγ γ θ θ ,             (21)

  ∆ = −( ) + −( ) + −
 )Km x x y y r r2 4 3 2 4 3 2 4 4 3 3sin cosγ γ θ θ ,             (22)

where x
i
 and y

i
 are the translational displacement of the gears in the x and y directions; θ

i
 is the 

rotational displacement in the direction of θ; r
i 
is the base circle radius of the gears (i = 1–4); 

and γ
1
 and γ

2
 are the normal pressure angle of the helical and spur gear pairs.

2.2 finite element method (fem)

the fem method relied on the discretization of a generic system (continuum) into several 
small volumes. for each of these elements the meshing procedure assigns a set of points 
(depending on the type of mesh created), also called nodes, in which the solution is computed 
thanks to the solution of partial differential equations (Pdes) describing the equilibrium of 
the forces on each element. the total systems response is obtained by reconstructing results 
of each nodes of the structure [11]. each component of the gear train was modelled thanks to 
a cAd software and simulated by an open-source fem software to estimate the stiffnesses 
of the system. A three-dimensional (3-d) fe model was realized to analyse the gears (fig. 3) 
and shafts (fig. 4). the geometries of each helical gear were simplified to reduce the compu-
tation effort, while the geometries of each spur gear were entirely simulated due to its lower 
complexity. in addition, a two-dimensional (2-d) fe model was developed to simulate bear-
ings (fig. 5) to decrease their simulation complexity. the mesh stiffnesses of the stages 1 and 
2 were found by simulating the mesh contact between the teeth of helical and spur gear pairs, 
respectively. the torsional stiffnesses of the shafts were defined by fixing the bearings position 
of stage 1 and rotating the corresponding gear position of stage 2. the bearings were simu-
lated by imposing forces on the outer rings. to compute the stiffness average values, several 
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simulations in different positions were performed; 16 simulations for the helical gear pair, 17 
for the spur gear pair, 17 for each shaft and 1 for each bearing type were conducted.

2.2.1 mesh stiffness of the spur gear pair
in this work, the approach used to find the mesh stiffness of the spur gear pair is called “aver-
age slope approach” [12]. using this method, the mesh stiffness is calculated as the total 
mesh force divided by the mesh deflection, and it can be defined combining the in-contact 
teeth stiffnesses [13]. the spur gear pair mesh stiffness of a single tooth contact pair can be 
calculated as:

    K

k k

ms

g g

1

1 2

1
1 1

=
+

,                  (23)

where k
g1

 is the tooth stiffness of the gear 1 and k
g2

 is the tooth stiffness of the gear 2. for 
double tooth contact, the spur gear pair mesh stiffness K

ms2
 can be written as:

   K

k k

ms

g t g t

2

1 1 2 1

1
1 1

=
+

+
1

1 1

1 2 2 2k kg t g t

+

,             (24)

figure 3: 3-d fe model of the (a) helical gear pair and (b) spur gear pair.
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where k
g1t1

 is the tooth stiffness of the first pair tooth (gear 1) and k
g2t1

 is the tooth stiffness of 
the first pair tooth (gear 2). k

g1t2
 is the tooth stiffness of the second pair tooth (gear 1) and k

g2t2
 

is the tooth stiffness of the second pair tooth (gear 2). the components of the teeth stiffness 
of gears 1 and 2 are expressed as:

       k
F

=
δ

,              (25)

where k is the tooth stiffness, F is the normal applied force on the tooth profile and δ is the 
tooth deflection in the direction of the applied force. the tooth deflection can be established 
by the following equation:

        δ δ δ= +x ysin cosγ γ ,                (26)

where δx and δy are the displacements of the tooth contact element in the x and y direction, 
respectively, and γ is the pressure angle.

2.2.2 mesh stiffness of the helical gear pair
the method used to calculate the mesh stiffness of the helical gear pair is the same used to 
calculate the mesh stiffness of the spur gear pair. the following equations express the method 
used to determine the mesh stiffness of the helical gear pair for 4 (27) and 5 (28) teeth in 
contact.

 K

k k k k k k

mh

g t g t g t g t g t g t

4

1 1 2 1 1 2 2 2 1 3 2 3

1
1 1

1
1 1

1
1 1

1
1

=
+

+
+

+
+

+

kk kg t g t1 4 2 4

1
+

,             (27)

K

k k k k k k

mh

g t g t g t g t g t g t

5

1 1 2 1 1 2 2 2 1 3 2 3

1
1 1

1
1 1

1
1 1

1
1

=
+

+
+

+
+

+

kk k k kg t g t g t g t1 4 2 4 1 5 2 5

1
1

1 1
+

+
+

, (28)

where k
g1t1

, k
g1t2

, k
g1t3

 and k
g1t4

 are the teeth stiffnesses of 4 teeth in contact (gear 1), and k
g2t1

, 
k

g2t2
, k

g2t3
 and k

g2t1
 are the teeth stiffnesses of 4 teeth in contact (gear 2). When the helical gear 

pair has 5 teeth pair in contact, equation (28) is required, adding the fifth term, where k
g1t5

 is 
the tooth stiffness of the fifth pair tooth (gear 1), and k

g2t5
 is the tooth stiffness of the fifth pair 

tooth (gear 2).

2.2.3 torsional stiffness of the shafts 1 and 2
the torsion along each shaft was analysed to verify the systems behaviour and to obtain 
the torsional stiffnesses. the linear relationship between the free end rotation angle and the 
applied torque can be observed in equation (29). the torsional stiffness k

ti
 can be defined as:

     k
T

ti
i

i

=
θ

,                 (29)

where T
i
 is the applied torque and θ

i
 is the twist angle. since the twist angle is required to 

calculate the torsional stiffness of each shaft, it can be computed thanks to the following 
equation.
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          θ
δ

i
si

i

sin
L

=










,                (30)

where δsi is the deflection due to torsion and L
i
 is the distance between the load application 

point and the fixed end (i = 1–2 for shafts 1–2).

2.2.4 stiffness of the bearings
to evaluate the stiffnesses of the bearings and study their dynamics, the fem approach was 
used. since contact forces influence the dynamic behaviour of the bearing elements [14, 15], 
also the interaction of bearings and shafts was considered. the effect of the inner and outer 
rings, as well as the rolling elements, were included in the simulations. to analyse the dis-
placement of each bearing, forces were applied on the outer ring, in the x and y directions. 
both gears 1 and 2 are supported by 4 bearings, and gears 3 and 4 are supported by 2 bearings 
as shown in fig. 1. therefore, the system [16] is composed by 4 different types of bearings, 
totalling 12. to analyse properly the different bearing behaviours, one simulation for each 
bearing type was performed (fig. 5). the displacements found via fem were used to estimate 
the stiffness of each bearing through the following equation:

             k
F

bi
i

bi

=
δ

,                     (31)

where F
i
 is the resultant force and δbi is the displacement caused by the applied force. the 

resultant force F
i
 can be defined as:

      F F Fi ix iy= +2 2 ,                (32)

where F
ix
 and F

iy
 are the forces in the x and y directions.

to be used, the lPm approach requires the stiffnesses of the bearings in the x (k
bix

) and  
y (k

biy
) directions. therefore, the stiffness of the bearings used in the lPm can be defined as:

             k
F

bix
ix

bix

=
δ

,               (33)

             k
F

biy
iy

biy

=
δ

,                              (34)

where k
bix

 and k
biy

 are the stiffnesses of the bearings in the x and y directions (i = 1–4 for bear-
ings 1–4).

3 results
the numerical results of the fem simulations and the criterions adopted according to litera-
ture can be found in table 2 (helical gear pair mesh stiffness), table 3 (spur gear pair mesh 
stiffness), table 4 (torsional stiffnesses of the shafts) and table 5 (bearing stiffnesses).
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table 2: mesh stiffness of the helical gear pair (stage 1).

mesh stiffness
Average value

symbol mesh stiffness stage 1 units

K
m1

3,283,349.660 n/m

table 3: mesh stiffness of the spur gear pair (stage 2).

mesh stiffness
Average value

symbol mesh stiffness stage 2 units

K
m2

1,1456,269.020 n/m

table 4: torsional stiffnesses of the shafts 1 and 2.

torsional stiffness
Average value

shaft 1 (K
t13

) shaft 2 (K
t24

) units

2,493,959.718 1,253,852.805 nm/rad

figure 4: 3-d fe model of the (a) shaft 2 and (b) shaft 1.
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figure 5: 3-d fe model of the bearings (a) nJ306, (b) nJ308, (c) 33208 and (d) 33210.

the responses of the gear train system were numerically computed through a mAtlAb 
code. As output, the script returned the eigenvectors with the corresponding eigenvalues. the 
vibration analysis can be completed by using time domain and frequency domain techniques.

to better visualize the behaviour of the system, a fast fourier transform (fft) was used to 
convert the results from the time domain into the frequency domain.

once all parameters of the gear train were set, the lPm was used to determine the eigen-
frequencies of the entire system and to describe and analyse the vibration characteristics of 
the gear train. simulations were validated with the elaboration of signals acquired during 
experimental tests, performed on the real system.

the vibrational behaviour of the coupled gear train system can be found in fig. 6. it shows 
the comparison between the tested and simulated signals expressed in table 6.
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table 5: stiffnesses of the bearings of the (a) stage 1 and (b) stage 2.

(a) bearing stiffnesses of stage 1

component direction bearing 33208  
(k

i
; i = 1 – 4)

bearing 33210  
(k

i
; i = 5 – 8)

units

(x
i
; i = 1 – 2) 787,759,199.076 531,759,186.147 n/m

(y
i
; i = 1 – 2) 827,287,972.741 558,442,198.594 n/m

(b) bearing stiffnesses of stage 2

component direction bearing nJ306 ecJ  
(k

i
; i = 9 – 10)

bearing nJ308 ecJ  
(k

i
; i = 11 – 12)

units

(x
i
; i = 3 – 4) 773,557,239.628 332,779,262.285 n/m

(x
i
; i = 3 – 4) 812,373,376.689 349,477,710.433 n/m

figure 6: charts of the (a) tested and (b) simulated eigenfrequencies of the system.

table 6: tested and simulated eigenfrequencies of the system.

coupled gear train system eigenfrequencies

mode symbol tested signal simulated signal units

1 ω1 0.00 0.00 hz

2 ω2 478.07 475.71 hz

3 ω3 2,259.01 2,262.00 hz

4 ω4 2,334.09 2,333.70 hz

5 ω5 3,580.81 3,556.90 hz

6 ω6 3,655.80 3,655.10 hz

7 ω7 4,049.51 4,041.00 hz

8 ω8 4,143.24 4,143.20 hz

9 ω9 4,180.74 4,183.50 hz

10 ω10 5,099.38 5,074.50 hz

11 ω11 5,202.49 5,202.10 hz

12 ω12 8,286.49 8,281.80 hz
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4 conclusion
based on the analysis performed in this research, the developed fem models seem to prop-
erly predict the stiffnesses of the components of the gear train. masses and stiffnesses of each 
component can considerably affect the eigenfrequencies of the system since they are based 
on material and geometrical properties. by changing these parameters, it is possible to pre-
vent unwanted vibrations that can degrade the total system. this might affect positively the 
operational condition of the machine if the system is unstable. the damping was neglected 
since the aim of this research was to determine the eigenfrequencies. the lPm results were 
validated with experimental data acquired from a real healthy back-to-back rig. the simu-
lated eigenfrequencies were considered adequate and their estimation results in line with the 
experimental data. in conclusion, this work can be an effective starting point to setup a moni-
toring strategy of gearboxes and it can be a powerful tool to predict failures [17].
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