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ABSTRACT
various factors such as speed, variability of speed, traffic flows and the proportion of trucks 
affect the probability of truck-involved crashes. Numerous attempts have been made to iden-
tify the causal factors of truck-involved crashes, such as traffic volume, speed characteristics 
and geometric characteristics. most of the research focused on identifying the causal factors 
or establishing models to represent the relationship between crashes and the identified fac-
tors. however, few studies have compared the differences in the impact of a coefficient by 
the type of region. This study aims to analyse the differences in the causal factors of truck-
involved crashes in rural and urban areas. The applicability of the count models is examined 
owing to the low number of trucks involved in the crashes. The models for each area type are 
established using zero-inflated Poisson regression and negative binomial regression model 
for rural and urban areas, respectively. Our results indicate that sight distance is the single 
factor responsible for truck-involved crashes in rural areas, whereas annual average daily 
traffic, shoulder width and alignment are the contributors to truck-involved crashes in urban 
areas.
Keywords: count model, Poisson regression, truck-involved crashes, zero inflated regression.

1 INTRODUCTION
various factors affect the probability and consequences of a crash. Over the past several 
years, considerable efforts have been made in the search for causal factors and in explor-
ing the relationship among these causal factors. The findings of many studies conducted to 
investigate the causal factors of vehicle crashes enable us to categorize these factors into 
three types: driver, vehicle and operating environmental factors. Each category includes the 
following details:

vehicle characteristics:

•	 vehicle configuration [1];

•	 Size and weight [2];

•	 vehicle design [3];

•	 mechanical condition [4].
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Operating environment:

•	 Traffic characteristics [5];

•	 Adverse weather [6];

•	 Roadway characteristics [7,8].

Driver related:

•	 Fatigue [9];

•	 Alcohol [10].

most vehicle crashes can be linked to either one factor or a combination of these factors. 
however, special attention needs to be paid to the trucks involved in the crashes owing to the 
uniqueness of their characteristics.

The manoeuvrability of trucks is significantly different from that of other vehicle types. 
Trucks can be significantly heavier than other vehicles in the traffic. They are less manoeu-
vrable, start more slowly, and take a longer time to stop [10,11]. The driver seats in trucks are 
much higher than those in passenger vehicles; therefore, truck drivers can see much further 
down the road. In addition, trucks are mostly used in work settings as part of a job. various 
relationships among the causal factors that characterise the truck-involved crashes have been 
identified. 

Craft [12] observed that in addition to vehicle characteristics, the roadway is a factor that 
is linked to 14% of trucks and 16% of other vehicles involved in two type crashes. In terms 
of the operational environment, many studies have attempted to identify the causal factors 
such as the traffic volume, speed characteristics and geometric characteristics to distinguish 
the countermeasures of truck-involved crashes from those of other types of crashes. however, 
most of the studies focused on identifying the causal factors or establishing models to deter-
mine the relationship between the crashes and the identified factors. Furthermore, few studies 
have compared the differences in the impact of the causal factors according to the region. If 
the dominant causal factor in a specific type of roadway or region can be identified, effective 
and cost-efficient countermeasures can be implemented on the roadway, and better informed 
decisions on transportation safety policy for truck drivers can be made. For instance, if speed 
is determined to be the more dominant factor in truck-involved crashes in urban areas than 
in rural areas, the safety of the roadway in urban areas can be improved by implementing 
countermeasures different from those implemented in rural areas.

The purpose of this study is to investigate the differences in the causal factors of truck-
involved crashes between rural and urban areas. In Section 2, an overview of truck-involved 
crashes is presented. Section 3 presents a review of studies on various causal factors affect-
ing truck-involved crashes. We also analyse the relationship between the causal factors and 
truck-involved crashes by the type of area (rural and urban areas), as presented in Section 4.

2 OvERvIEW OF TRUCk-INvOLvED CRAShES
In general, the consequences of a crash are more severe when a truck is involved than when 
other types of vehicles are involved [13]. Approximately 5,200 trucks were associated with 
fatal traffic accidents in the U.S. each year from 2001 to 2005; this number is larger than that 
of truck-involved crashes from 1998 to 2002 by a factor of more than 200 per year [14,15]. 
The proportion of large trucks involved in fatal crashes (11.2%) was the highest compared 
with that of other vehicle types, whereas other crash types and injury and property damage 
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only (PDO) crashes comprised 4.4% and 6.9% of all vehicle cases, respectively. This means 
that large truck crashes have the highest risk of fatality. The characteristics of a truck, such 
as its heavy weight and slow manoeuvrability, can contribute to the unusual high record of 
fatal crashes. 

moreover, when a fatal accident involving a truck occurs, the probability of having victims 
of the fatal accident from the other vehicle is significantly higher than that of victims from 
the truck. In 2005, 74.5% of the total fatalities of truck-involved accidents were the occu-
pants of other vehicles. however, the fatality rate of the occupants of trucks is approximately 
15%. The study by khorashadi et al. also reported similar findings [16]. They noted that 
approximately 4,700 people are killed nationwide in accidents involving large trucks and 
approximately 85% of the fatalities are the occupants of non-truck vehicles. Data gathered 
over several years show a steady increase in this phenomenon.

The spatial distribution of truck-involved fatal crashes corresponds to the level of expo-
sure of truck traffic to possible crashes. General Accounting Office [17] reported that rural 
roads account for approximately 40% of the total vehicle mile travelled (vmT); however, 
more than 60% of all fatalities occur on rural roads. Truck crashes follow the same pattern; 
over 60% of the total fatal crashes occurred in rural areas in 2005, whereas 35.1% occurred 
in urban areas. The level of exposure of truck traffic seems to have a dominant effect on 
truck-involved crashes, but it can be proved that it is not. Additional causal factors of truck-
involved crashes are discussed and compared through systematic analysis in this paper.

3 LITERATURE REvIEW
 most studies on the causal factors of truck-involved crashes focused on the characteristics 
of the driver, working conditions, and size of the truck companies. The ease of data acces-
sibility, ease of data quantification and recognisability of the causal relationship are possible 
reasons for the extensive research on the relationship between the characteristics of the driver 
or working conditions and truck-involved crashes. In addition, many studies also focused on 
the operating environment under which truck-involved crashes occur.

According to previous studies, truck-involved crashes are mainly influenced by the socio-
demographic and behavioural characteristics of the drivers. It is known that socio-demo-
graphic factors such as gender and age have different effects on truck-involved crashes. male 
drivers are less likely to experience severe crashes than female drivers [18]. It is known that 
older truck drivers are more involved in severe crashes than younger drivers [19]. In terms 
of behavioural characteristics, as one might expect, speeding and driving under influence are 
among the most influential factors that contribute to truck-involved crashes with severe inju-
ries [16,18,20]. The severity of truck-involved crashes varies depending on the driving envi-
ronment. It is easy to guess that the severity of truck-involved crashes under snow, fog and 
icy conditions can be high. In addition to weather conditions, the effects of types of roads are 

Table 1: Police-reported motor vehicle traffic crashes in 2006.

Crash type Large trucks (A) All vehicles (B) Percentage (A/B) × 100

Fatal 4,321 (1.2) 38,588 (0.6) 11.2

Injury 77,000 (20.9) 1,746,000 (29.2) 4.4

Property damage only 287,000 (78.0) 4,189,000 (70.1) 6.9

Total 368,000 (100) 5,974,000 (100) 6.2
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also different. It is known that the severity of truck-involved crashes in interstate highways is 
much higher than that in local street crashes [21].

 however, only few studies [22,23] have compared the differences in the impact of the 
causal factors according to the type of area. The traffic characteristics in rural and urban areas 
are different and can be used to distinguish the causal factors of truck-involved crashes based 
on the type of area [24]. This section reviews two studies that investigated the differences in 
the causal factors of truck-involved crashes based on the type of area.

khorashadi et al. [16] investigated the differences in the scale and direction of the impacts 
of explanatory variables when considering urban and rural large truck crash occurrences. 
Using a multinomial logit model, the authors computed the impact of various causal factors 
on the severity of the injury of the driver using four years of California accident data. A com-
parison of the estimated results for the models revealed notable differences and similarities, 
and variables that obtained the statistical significance in both the urban and rural models 
varied significantly in terms of their impact on the outcome of the severity of the injury of 
the driver. 

Unlike the above study, Golob [25] focused on the relationship between traffic conditions 
and truck-involved crashes using crash data obtained from records of accidents on six free-
ways in Orange County, California for over 2 years. The study found that the truck traffic 
mix has a positive impact on the increasing trend of trucks involved in crashes, whereas the 
number of lanes and section traffic volume per lane have a negative impact on truck crashes. 
In addition, the temporal distribution of truck-related crashes and the impact of the number of 
lanes were evaluated in the study. Table 2 presents the estimated model coefficients.

Table 2: Logit model specification of truck involvement by Golob (2004).

Independent variable Coefficient t-Statistic

Percentage of section AADT that is truck 0.106 7.63

Percentage of section truck traffic that is 5+ axles 0.027 10.565

Number of lanes on accident side of freeway -0.075 -2.354

Section traffic volume (AADT) per lane (106) -8.087 -3.025

Time period 12 Am to 2:59 Am weekdays 0.747 4.321

Time period 3 Am to 6:59 Am weekdays 0.92 8.992

Time period 7 Am to 7:59 Am weekdays 0.611 5.583

Time period 8 Am to 8:59 Am weekdays 0.702 6.592

Time period 9 Am to 1:59 Pm weekdays 1.196 15.806

Time period 2 Pm to 3:59 Pm weekdays 0.642 7.188

Time period 4 Pm to 4:59 Pm weekdays 0.392 3.461

Day is a Saturday -0.311 -2.712

Day is a Sunday -0.601 -4.058

Road surface is wet or slippery -0.352 -3.384

Constant -3.063 -9.382

Sources : Golob [25].
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4 CASE STUDY
The two studies reviewed in the previous section examined the impact of various causal fac-
tors on truck-involved crashes. The first study analysed the different impacts of the causal 
factors of truck-involved crashes by the area type. however, the impacts of some independent 
variables could not be easily compared owing to the different selection of independent vari-
ables in the urban and rural models. Further, some general causal factors of truck-involved 
crashes were not considered in the model. The second study investigated the relationship 
between causal factors and truck-involved crashes by applying appropriate forms of vari-
ables. however, a method of comparing urban and rural models, which distinguishes the 
impact of the causal factors by the type of area, is lacking.

The crash data used in this study were obtained in the period 2001–2006 from selected 
high-risk locations on multi-lane highways in the state of virginia, US. The crash data were 
obtained from FR300s, the Police Crash Report from the state of virginia, US.

4.1 Brief description of the crash data

The total number of non-truck-involved crashes observed in the period in rural and urban 
areas was 3,951 and 11,104, respectively, whereas the number of truck-involved crashes in 
rural and urban areas was 77 and 183, respectively. The distributions of the number of crashes 
by speed, truck percentage and annual average daily traffic (AADT) are similar for non-
truck-involved crashes and truck-involved crashes within one area type. however, the distri-
bution of the number of crashes differs in urban and rural areas. For instance, when the speed 
is between 55 and 60 mph, approximately 60% of crashes occurred in rural areas and 13% 
in urban areas. It should be noted that an increase in the number of crashes does not signify 
its dominant impact on crashes. Instead, it could be related to an increase in traffic exposure. 

4.2 methodology

In this study, we applied different models including Poisson, negative binomial regression 
[26] and zero-inflated regression models. The description of zero-inflated regression models 
[27], [28] begins by pointing out the limitations of the Poisson model. 

The Poisson regression model explicitly considers the nonnegative integer-value of the 
dependent count variable.

The probability of an event count yi for a given vector of xi  is given by the Poisson distri-
bution:

   P Y y x
e

y
yi i i

i
y

i
i

i i

( | )
!

, , , ,= = =
−µ µ

0 1 2                  (1)

where,µi is the conditional mean.
The Poisson regression model assumes that the data are equally dispersed, which implies 

that the conditional variance should be equal to the conditional mean. however, the condi-
tional variance rarely equals the conditional mean in real-life data, which are often overdis-
persed, with the variance exceeding the mean. 

The motivation for zero-inflated models is designed to reflect real-life data that frequently 
shows overdispersion and excess zeros. Zero-inflated count models enable the modelling of 
the excess zeros while allowing for overdispersion, which assumes two types of individuals 
producing zeros; (1) Those who produce a zero count with a probability of 1 (group 1) and (2) 
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those who have counts predicted by the standard Poisson (group 2). When ‘zero’ is observed 
it could be from either of two groups.

The probability of zero from group (1):

            P Y x hi i i i i=( )= × =0 1| , ,τ τ                                (2)

where τ θi iG k= ( ), ,  ki refers to the vector of zero-inflated covariates, and θ is corresponding 
coefficients.

Thus, probability of zero from group (2) is as follows:
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The probability of non-zero from group (2) is as follows:
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The function that relates the x hi i, to the probability τi is known as the zero-inflated link 
function, and it can be specified as either a logistic function or a probit function.

4.3 model specifications

The data of locations of the crashes are merged into the corresponding site data comprising 
information of the geometric and traffic characteristics of the sites. The following attributes 
comprise the geometric information merged with the traffic characteristics for each site:

•	 Speed limit;

•	 Alignment;

•	 Shoulder width;

•	 Sight distance;

•	 AADT;

•	 85th percentile speed (operational speed);

•	 Truck percentage.

In the model specifications, these attributes act as independent variables, whereas the number 
of accidents involving trucks is the dependent variable. All the count models introduced are 
examined to determine how well they represent the observed data based on the type of area. The 
best model specification is determined by evaluating the performance measures, such as the 
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p-value for the model specification and t-statistics for the coefficients. The model specification 
is used to determine the best model for each area type, and the associated model coefficients are 
identified. Tables 6 and 7 present the model specifications for the rural and urban models. For 
the rural model, the zero-inflated model exhibits the best performance for fitting the observed 
data, whereas the negative binomial model represents the data from urban areas.

4.4 Results

According to the final model, sight distance seems to be an important factor that determines 
the number of crashes involving trucks in the rural model. Because the sight distance has 
been taken by log, we can interpret the coefficient for sight distance that a unit change (km) in 
the sight distance reduces crashes by around 8.22 in the rural area. however, insufficient data 
on the number of crashes involving trucks limits the significance of the model. The p-value 
of the model is not desirable. 

The urban model is well represented by the negative binomial model. The model specifica-
tion measures have desirable values. Three attributes, namely AADT, alignment, and shoul-
der width, were determined to be the significant factors affecting truck-involved crashes in 
urban areas. The model indicates that AADT increases the number of truck-involved crashes. 
This result agrees with the interpretation of AADT from other causal factor studies. Because 
the AADT indicates the level of exposure of traffic to possible accidents, it generally has a 
positive sign as a causal factor of crashes. An increase in the alignment and shoulder width 
seems to decrease the number of truck-involved crashes. This means that failure to guide a 
vehicle within lanes could be due to insufficient shoulder width. This is important for trucks. 
The large width of trucks needs sufficient lane width, particularly in urban areas where lane 
width is sometimes compromised due to the need to realize more lanes. Because the driving 
performance of trucks is sensitive to the grade of the road, alignment has a greater impact 
than that of the shoulder width.

Table 4: Rural model specification: zero inflated Poisson model.

model part Coefficients Estimate p-value Signif. Chisq Pr (> Chisq)

Count model
(Intercept) 16.1053 1.25E-02 0.05

0.1429
Sight distance -2.1067 0.00321 0.01

Zero model
(Intercept) 28.842 3.10E-03 0.01

Sight distance -3.191 0.00502 0.01

Table 5: Urban model specification: negative binomial model.

Coefficients Estimate P-value Signif. Chisq Pr (> Chisq)

(Intercept) -6.63484 0.0002 0.001

0.0094**
AADT 0.38362 0.03933 0.05

Alignment (%) -0.11997 0.0685 0.1

Shoulder width -0.04183 0.04869 0.05

Signif. codes: ‘**’, 0.01, the dispersion parameter is 1.3108.
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The model specification results indicate that completely different attributes affect truck-
involved crashes in each area type. According to the results, ensuring sufficient sight distance 
is the most important task for transportation safety engineers in rural areas. This implies that 
a location with a short sight distance in rural areas might be a hot spot for truck-involved 
crashes. A road section with a short sight distance could be curved, and truck drivers need to 
drive carefully. Countermeasures for preventing truck-involved crashes in urban areas should 
focus on managing low AADT as well as ensuring a sufficient shoulder width and stable 
alignment. 

5 SUmmARY AND CONCLUSIONS
This study investigated the different causal factors of truck-involved crashes in urban and 
rural areas. Fundamental differences between the two types of crashes (truck-involved 
crashes and other types of crashes) were identified through descriptive statistics of truck-
involved crashes. The difference in the severity of truck-involved crashes, the distribution of 
victims according to demographic factors, and the difference in fatal accidents according to 
the type of area were also identified.

 various count models such as Poisson regression, negative binomial regression and zero-
inflated Poisson regression were examined to determine the best model representing the 
observed data for the two area types. The best-fitted models for each area type indicate that 
the causal factors of truck-involved crashes are different for different area types. For rural 
areas, which are represented using the zero-inflated Poisson regression model, sight distance 
was determined as the single contributor to truck-involved crashes. For urban areas, a few 
attributes including the shoulder width, AADT, and alignment were identified as contributors 
to truck-involved crashes.

These conclusions contribute to policy making to prevent truck-involved crashes. For 
example, first, the conclusions imply that the method of preventing truck-involved crashes 
between rural and urban areas should be approached fundamentally differently. Second, in 
rural areas, road sections where sight distance is compromised have a high probability of 
truck accidents. To avoid crashes, the roadways must be designed such that the sight distance 
is not compromised. In the case of urban areas, it has been shown that truck accidents can be 
reduced by installing a dedicated lane that guides only truck traffic.
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