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SIMULATION OF SOUND STRUCTURE INTERACTIONS 
BY THE COUPLED FEM/BEM
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ABSTRACT
Sound transmission through thin elastic shell with different fluids on the inside and outside is simulated 
using the in-house program based on the coupled finite element and boundary element method. The 
structure dynamics is simulated using the finite element method and the acoustic fields are simulated 
using the boundary element method. To avoid the non-uniqueness problem existing in the exterior 
acoustic boundary element method, Burton and Miller formulation is employed. The hyper-singular 
boundary integral is dealt with a regularization relationship. To validate this approach, a case with 
analytical solutions is simulated.
Keywords: boundary element method, Burton and Miller’s formulation, finite element method, sound 
structure interaction

1 INTRODUCTION
Acoustic radiation and scattering from fluid-loaded elastic shells may be encountered in 
the aeronautical and naval industries as well as in underwater acoustics. It is well known 
that the presence of fluid modifies considerably the resonance characteristics of the struc-
ture. In the mean time, the propagation of sound in fluids is altered by the presence of the 
elastic structure, which causes serious noise problems. The radiated noise from a vibrating 
structure is important for underwater-related applications. The scattering of acoustic waves 
from such structures contains information relating to the geometry and composition of the 
structure, which makes it possible to identify the structure by the remote sensing. There-
fore, it is of considerable interest to predict the acoustic fields both radiated and scattered 
by a submerged vibrating structure.

Acoustic radiation and scattering from submerged elastic structures have been studied by 
many researchers over the past seventy years. Numerous popular textbooks and monographs 
[1–3] have been devoted to this important subject. The overwhelming majority of investiga-
tions dealing with problems in structural acoustics have focused on the steady state response 
of the fluid-structure-coupled system. Therefore, it is natural that solutions have been carried 
out primarily in the frequency domain. Most of the problems addressed are about structures 
of revolution immersed in an unbounded acoustic fluid medium. The problem of sound radi-
ation and scattering from shells of arbitrary shape with different fluids on both the inside and 
outside has been investigated very few. Analytical approaches to fluid-structure interaction 
problems are almost invariably concerned with spherical or infinite circular cylindrical shells 
subjected to axisymmetric excitations for which the classical method of separation of varia-
bles is available. For example, Junger [4] investigated the scattering of plane acoustic waves 
by air-filled, immersed in fluid elastic spherical and cylindrical shells. Goodman and Stern 
[5] investigated a submerged elastic spherical shell excited by plane acoustic waves using the 
exact theory of three-dimensional elasticity.

When analyzing the sound radiated or scattered by submerged elastic shells of more com-
plicated shapes, it is almost indispensable to use numerical codes that can handle the 
complexity of the structure in question. For a complex structure subjected to known applied 
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forces, the finite element method (FEM) has become an accepted, well-proven, and highly 
successful analysis tool. Therefore, for the sound/structure interaction model, it is almost 
consistent to formulate the structural dynamic equations via FEM techniques. When applying 
to the case of interior problems where the fluid is inside the structure, FEM also gives satis-
factory solutions. However, in the case of exterior problem in which fluid occupies an 
unbounded domain, the FEM is inefficient. When FEM has been applied to unbounded exte-
rior problems, the domain has to be truncated and radiating boundary conditions have to be 
enforced. In addition, they are limited by computer memory and runtime considerations as 
well. To deal with unbounded exterior acoustic field problems, the boundary element method 
(BEM) based on the utilization of the Helmholtz integral equation (HIE) has been the most 
popular numerical tool. Boundary integral formulations have long been recognized as an 
elegant and computationally economical method of modeling infinite fluid loading upon an 
elastic shell. The BEM method has several advantages over a FEM treatment of the acoustic 
problem, including a reduction of dimensionality of the problem by one, and an automatic 
satisfaction of the radiation condition. The elegance of this method is the mathematical sim-
plicity of the resulting integral expressions. In the past few decades, numerical methods 
based on BEM had been employed to address the general acoustic radiation and scattering 
from elastic bodies.

One potential shortcoming of the classical BEM in acoustics is that the exterior boundary 
integral formulation shares the well-known difficulty of nonuniqueness of solution at certain 
characteristic frequencies. A well-known formulation to overcome the nonuniqueness problem 
is the method proposed by Burton and Miller [6].

To deal with the fluid-structure interaction problems, many researchers have developed 
FEM/BEM coupled schemes, using various boundary integral equations (BIEs) for the 
unbounded fluid domain together with a FEM to model the elastic target. The use of the same 
elements in both the FEM and BEM allows one to match the continuity at the fluid structure 
interface. Now, coupled FEM/BEM method is the most popular numerical tool for sound/struc-
ture interaction problems. Luke and Martin [7] gave a mathematical investigation about the 
coupled FEM and BEM method. They proved the existence, uniqueness theorems and so on. 
The first reference about coupled FEM/BEM method dated back to the late seventies. In 1977, 
Zienkiewicz et al. [8] proposed the coupled of the standard FEM to those derived from the 
BIEs. Subsequently, Wilton [9] formulated a coupled FEM/BEM system in terms of the acous-
tic variables. A comparison between the two different approaches for the coupled FEM/BEM, 
i.e. removal of the structural variables versus removal of the acoustic variables was made by 
Mathews [10]. Also using the submerged spherical shell, Mathews concluded that combining 
the equations in terms of the acoustic variables was both computational efficient and more 
accurate. Wu and Dandapani [11] used the coupled FEM and multi-domain boundary element 
method to model sound transmission through thin structures with different fluids on the inside 
and outside. As an example, they calculated the sound transmission through thin elastic spheri-
cal shell, which was submerged in water, filled with air, and subjected to a sound point source 
located at the center of the shell. Jeans and Mathews [12] presented a unique coupled FEM/
BEM method for the elastoacoustic analysis of fluid-filled thin shells. They concluded that 
except for problems having a significant density difference between the internal and external 
acoustic fields, for example, air and water, their formulation was suitable.

This paper numerically investigates the sound transmission through thin elastic shell with 
different fluids on both the inside and outside using numerical method. To deal with such kind 
of structural-acoustics coupled problems, a numerical model based on the coupled finite/
boundary element method (FEM/BEM) is developed, in which the elastic target is modeled 
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using the finite element method and the acoustic equations are solved using the boundary 
element method. Finally, the finite element model and the boundary models are completely 
coupled through the continuity conditions on the fluid structure interfaces. Example with 
analytical solution is simulated to verify the developed method.

2 FINITE ELEMENT MODEL FOR SHELLS
The general shell element employed here had been described in Ref. [13]. The elements are 
eight-nodded isoparametric quadrilateral elements. Strains normal to the midsurface are 
neglected, and lines originally normal to the midsurface are constrained to remain straight 
during deformation. The effect of transverse shear deformation has been included. Therefore, 
the rotation of the midsurface normal vector is an independent variable.

According to Hamilton’s principle, the finite element governing equation [10] for the 
dynamic fluid-structure interaction system is given by

 [ ]{ } { } { }− − + = +ω ω
2M i C K U F FI A  (1)

where M, K and C are the mass, stiffness and damping matrices, respectively. U  denotes the 
displacement and ω  is the circular frequency. FA  represents the known applied excitation 
forces and FI  represents the interaction forces generated by the acoustic fluid acting on the 
fluid-structure interaction surfaces. The vector of interaction force can be defined through the 
structure coupled matrix Ls(Ls

i  and Ls
e ) and the nodal acoustic pressures ϕ i

{ } and ϕ e
{ }, that is

 { } { } { }F L LI s
i i

s
e e

= −ϕ ϕ  (2)

where ϕ i
{ } and ϕ e

{ } are the interior and exterior surface acoustic pressures, respectively. Ls
i  

and Ls
e  are the structure coupled matrices on the interior surface and exterior surface. The 

coupled matrix of element is defined as

 L N n N dSs f
T

S

= ∫∫[ ] { }[ ]


 (3)

where N
f

T
 

 is the shape function matrix about displacement in the finite element method. 
N 

 is the shape function matrix about acoustic pressure in the boundary element method and 


n{ } is the vector of the direction cosines of normal vector. Detail discussion of the coupled 
matrix will be presented in Ref. [14].

Previous to describe the general shell element, eight-node isoparametric element displayed 
in Fig. 1 will be introduced first. Isoparametric elements are formulated using an natural 
coordinate system ξη , which is defined by element geometry and not by the element orienta-
tion in the global coordinate system xy . Coordinates ξη  (and ζ , if the element is 
three-dimensional) are attached to the element and are scaled so that sides of a quadrilateral 
element shown in Fig. 1 are defined by ξ = −1, ξ =1, η = −1 and η =1, as shown in Fig. 2. 
Shape functions [14] for quadratic eight-node isoparametric curvilinear quadrilateral ele-
ments are given as follows:

N 1

1

4
1 1 1= − − − + +( )( )( )ξ η ξ η , N 2

21

2
1 1= − −( )( )ξ η

N 3

1

4
1 1 1= + − − −( )( )( )ξ η ξ η , N 4

21

2
1 1= − −( )( )ξ η
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N 5
21

2
1 1= + −( )( )ξ η , N 6

1

4
1 1 1= − + − − +( )( )( )ξ η ξ η

N 7
21

2
1 1= − +( )( )ξ η , N 8

1

4
1 1 1= + + + −( )( )( )ξ η ξ η

Therefore, the shape function matrix [ ]N  can be expressed as follows

 [ ] [ ]N N N N N N N N N= 1 2 3 4 5 6 7 8  (4)

For thin shell, the solid element can be reduced to an eight-node isoparametric surface ele-
ment, as shown in Fig. 3. Note that the mid-surface normal needs not to be kept normal during 
deformation; it may take angles of other 90 degrees with the deformed mid-surface. In this way, 
the ability to model transverse deformation is retained. Consider a local curvilinear coordinate 
system oξηζ  on each element. Let ξ  and η be curvilinear coordinates on the middle surface. 
ζ =1 represents upper surface Su and ζ = −1 represents lower surface Sl.

Figure 1: Curvilinear quadrilateral element.

Figure 2: Parent element.
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A unit normal vector on middle surface through node i is given by
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where, l i3 , m i3  and n i3  are the direction cosines of 


V i3  in the global coordinate system and hi  
is the thickness of the shell structure.

Then, the global coordinates of arbitrary point in the solid element (see Fig. 3) can be 
obtained using the shape functions eqn (4) as
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Suppose the mid-surface normal line rotates about two different axes, which are perpen-
dicular to each other and parallel to the mid-surface. Let 



V i1  and 


V i2  are the unit vectors of 
these two axes respectively.

The corresponding rotation angles of normal vector 


V i3  around the axes 


V i1  and 


V i2  are β i 
and α i. Then the rotation vector can be expressed by

 


 

ω β αi i i i iV V= +1 2  (7)

Consequently, the displacements of arbitrary point on the normal vector 


V i3  can be expressed 
using the mid-surface nodal displacements ui, v i, w i and rotation vector 



ωi of mid-surface 
normal line. By the shape function interpolation, the displacements of arbitrary point in the 
solid element are
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where φi is defined as follows
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Figure 3: Eight-node isoparametric mid-surface element.
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Equation (8) can be expressed in standard form as
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where { } [ ]δ α βi i i i i i
Tu v w=  is the vector for degrees of freedom at node i. The 

matrix [ ]N f  is defined as the shape function matrix for displacements.

[ ]N

N N N N N N

N N Nf =

1 1 111 1 121 8 8 118 8 128

1 1 211 1 2

0 0 0 0

0 0
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0 0
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






×

 (11)

The element stiffness matrix can be written in block form. That is each element stiffness 
matrix, [ ]k 40 40×

, can be partitioned into sixty-four [ ]k ij 5 5×  element sub-matrices. These sub- 
matrices will be calculated in terms of the following integral equation [14]

 [ ] [ ] [ ][ ]k B D B J d d dij i
T

j=
−−−
∫∫∫ 1

1

1

1

1

1
ξ η ζ  (12)

The expressions for the matrices B  and D  can be found in the reference [14]. J  represents the 
Jacobian matrix.

The element consistent mass matrix can be expressed by using the shape functions for 
displacements as

 [ ] [ ] [ ]m N N J d d df
T

f=
−−−
∫∫∫ 1

1

1

1

1

1
ρ ξ η ζ  (13)

The structure damping matrix C  is implemented numerically through the use of the following 
hysteric relationship [12].

 C K= γ  (14)

Here γ  is assumed as the structural loss factor and K  is the structure stiffness matrix. In  
general, γ  is chosen to be 0.01.

3 BOUNDARY ELEMENT MODEL FOR ACOUSTICS
An elastic thin shell is defined on the closed surface S . The shell submerged in an infinite 
fluid with density ρ e  in the exterior domain E  and contains a fluid with density ρ i  in the 
interior domain D . The fluids on the inside and outside are assumed to be inviscid and com-
pressible. The surface of the shell is assumed smooth. The normal vector is defined to point 
into the exterior domain, as shown in Fig. 4.

A harmonic time dependency term of ei tω  is assumed and the wave number k  can be 
defined as

 k c= ω  (15)

where ω  is the circular frequency and c  is the sound velocity
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Assuming there are a point sound source in the interior domain and a plane acoustic wave 
in the exterior domain. Then, the acoustic pressure ϕ e in the exterior domain satisfies the 
homogeneous reduced wave equation

 ( ) ( )∇ + =
2 2 0k pe

ϕ  (16)

The point sound source with strength Ω is located at the point p0 in the interior domain. Then, 
the incident acoustic pressure ϕI

i produced by the point sound source can be expressed as

 ϕ

π
I
i

ikr

r
e

r
( ) =

−

Ω

4
 (17)

The acoustic problems are defined using the reduced wave equations and boundary condi-
tions on the surfaces of the shell. The partial derivatives of the exterior surface acoustic 
pressure ϕ e and interior surface acoustic pressure ϕ i with the surface normal displacements  
un

e and un
i  satisfy the following relations.

 
∂

∂

=
ϕ

ω ρ

e
e

n
e

n
u2  (18)
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=
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ω ρ

i
i

n
i

n
u2  (19)

Besides the above boundary continuity conditions, the pressure difference between the exte-
rior acoustic pressure ϕ e and the incident plane acoustic wave pressure ϕI

e is subjected to the 
Sommerfeld radiation condition.

The Helmholtz integral equation for exterior acoustic pressure ϕ eis

 c p p q
G p q

n
G p q

q

n
dSe e e
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Figure 4: Notation for submerged fluid-filled shell.
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And the interior acoustic pressure ϕ i can be expressed in the form of boundary integral 
equation as

 c p p q
G p q

n
G p q

q

n
dSi i i

q

i

qS

q( ) ( ) ( )
( , )

( , )
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

−∫∫ II
i p( ) (21)

where c pe ( ) and c pi ( ) are the dimensionless solid angles on the exterior and interior surfaces 
respectively.

In operator notations, the surface Helmholtz integral equations can be given as,

 − +
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1
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I M L
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where the integral operators M k  and Lk  are defined as

M
G

n
dSk

S

µ µ=
∂

∂
∫∫ , L GdSk

S

µ µ= ∫∫

Burton and Miller [6] had shown that a combination of the surface Helmholtz integral equa-
tion (22) and its differentiation will provide a unique solution for the entire frequency range. 
It can be represented in operator notation as

 − + +
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where α , the coupling constant, is chosen to be strictly complex. Generally, α  is taken to be 
−i k/ . i is an imaginary unit. The integral operators N k  and M k

T  are defined as

N q
G p q

n n
dSk

q pS

qµ µ=
∂

∂ ∂
∫∫ ( )

( , )2

, M q
G p q

n
dSk

T

pS

qµ µ=
∂

∂
∫∫ ( )

( , )

The hypersingular integral in the operator N k  is dealt with the regularization relationship 
developed in Refs. [14, 15]. Since this regularization relationship reduces the hyersingular 
integral to weakly singulars, C 0 element is enough to compute the hyersingular integral.

4 THE COUPLED FEM/BEM MODEL
There are two kinds of continuity boundary conditions on the fluid structure interfaces. One 
is the kinetic boundary condition and the other is the dynamic boundary condition.

4.1 Kinetic continuity boundary condition

The partial derivatives of the surface acoustic pressures ϕ e and ϕ i with the surface normal 
displacements un

e and un
i  satisfy eqns (18) and (19). The nodal values of normal displacements 

{ }un  and displacements { }U  have the following relationship

 u Q Un{ } = { } (25)

φ φ φ
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where Q  is defined as the kinetic coupled matrix. It can be explicitly expressed as
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where t  is the total number of node. Matrix Q  is not a square one. It can be stored using 
one-dimensional compacted storage.
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Then, the kinetic continuity boundary condition can be expressed as
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4.2 Dynamic boundary condition

For problems of sound transmission through a fluid-filled, submerged shell structure, 
the coupled nodal forces { }FI  satisfy the eqn (2). The element-coupled matrix L  can be 
partitioned into 64 sub-matrices Lij  of 5 by 1.

 L N n N dSij i f
T

S

j= ∫∫[ ] [ ]
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 (29)
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and

a l m nj j j j= + +3 11 3 21 3 31φ φ φ  , j =1 2 8, , ,

b l m nj j j j= + +3 12 3 22 3 32φ φ φ , j =1 2 8, , ,

The structure-coupled matrix Ls  is not a square one. Assuming the total node number is t , 
because there are five degrees of freedom at each node, the dimension of structure matrix Ls  
is 5t t× . The matrices Le and Li  with the matrix L  satisfy the following relation
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L
L

L

e

i
=

=

= −









ζ

ζ

1

1

Then, combing the eqns (1), (2), (21) and (24), sound transmission through thin elastic shell 
with different fluids on both the inside and outside can be solved.

5 NUMERICAL EXAMPLE
In order to validate the correctness of the present coupled FEM/BEM method, a fluid-filled 
submerged elastic spherical shell excited by a point sound source located at the center is 
analyzed. In this example, the fluid mediums inside and outside the spherical shell are air and 
sea water, respectively. The spherical shell is discretized 96 surface element. The external 
radius of the spherical shell is 1.01 m and the internal radius is 1.0 m. Therefore, the relative 
thickness of the spherical shell is 1%. It is a thin shell. The density of the spherical shell is 
ρ = ×7 81 103 3. /kg m . The elasticity modulus is E = ×2 07 1011. Pa  and Poisson’s ratio is 
µ = 0 3. . The air density is ρ a kg m=1 21 3. /  and sound velocity in air is c m sa

= 346 / . While, 
the sea water density is ρw kg m=1030 3/  and sound velocity in sea water is c m sw

=1500 / .
The frequency range is from 50 to 2000Hz . Figure 5 shows the comparison of the 

exterior surface acoustic pressure amplitude obtained using the coupled FEM/BEM and 
the corresponding analytical solutions [11]. The numerical results agree with the corre-
sponding analytical solutions throughout the frequency range. Figure 6 shows the 

Figure 5: Frequency response of exterior surface acoustic pressure amplitude.

Figure 6: Frequency response of interior surface acoustic pressure amplitude.
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comparison of the interior surface acoustic pressure amplitude obtained using coupled 
FEM/BEM and the corresponding analytical solutions. Clearly, the numerical results 
agree with the corresponding analytical solutions.

6 CONCLUSIONS
A coupled finite element method and boundary element method are developed to model 
sound transmission through thin elastic shell with different fluids on the inside and outside of 
the shell. Burton & Miller’s composite formulation is employed to avoid the nonuniqueness 
problem existing in the exterior acoustic boundary element method. To validate the present 
method, sound transmission through an air-filled and submerged in sea water spherical shell 
is simulated.

ACKNOWLEDGEMENT
This project was supported by NSFC (11172132) and NSFC (51405225); the Priority 
Academic Program Development of Jiangsu Higher Education Institutions.

REFERENCES
 [1] Junger, M.C. & Feit, D., Sound Structure and Their Interaction, 2nd ed., MIT, 

Cambridge, MA, 1986.
 [2] Mason, W.P. & Thurston, R.N., Physical Acoustics, Vol. XV, London: Academic Press, 

INC, pp. 191–285, 1981.
 [3] Ciskowski, R.D. & Brebbia, C.A., Boundary Element Methods in Acoustics, Southamp-

ton Boston: Computational Mechanics Publications, pp. 61–74, pp. 109–129, 1991.
 [4] Junger, M.C., Sound scattering by thin elastic shells. The Journal of the Acoustical 

Society of America, 24, pp. 366–373, 1952.
https://doi.org/10.1121/1.1906905

 [5] Goodman, R.R. & Stern, R., Reflection and transmission of sound by elastic spherical 
shells. The Journal of the Acoustical Society of America, 34, pp. 338–344, 1962.
https://doi.org/10.1121/1.1928120

 [6] Burton, A.J. & Miller, G.F., The application of integral equation methods to the 
numerical solution of some exterior boundary value problems. Proceedings of the 
Royal Society A: Mathematical, Physical and Engineering Sciences, A323, pp. 201–210, 
1971. 
https://doi.org/10.1098/rspa.1971.0097

 [7] Luke, C.J. & Martin, P.A., Fluid-solid interaction: acoustic scattering by a smooth 
elastic obstacle. SIAM Journal on Applied Mathematics, 55(4), pp. 904–922, 1995.
https://doi.org/10.1137/s0036139993259027

 [8] Zienkiewicz, O.C., Kelly, D.W. & Bettess, P., The coupling of the finite element method 
and boundary solution procedures. International Journal for Numerical Methods in 
Engineering, 11, pp. 355–375, 1977.
https://doi.org/10.1002/nme.1620110210

 [9] Wilton, D.T., Acoustic radiation and scattering from elastic structures. International 
Journal for Numerical Methods in Engineering, 13, pp. 123–138, 1978.
https://doi.org/10.1002/nme.1620130109

[10] Mathews, I.C., Numerical techniques for three dimensional steady-state fluid-structure 
interaction. The Journal of the Acoustical Society of America, 79, pp. 1317–1325, 1986.
https://doi.org/10.1121/1.393711



1078 Zai-You Yan, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 6 (2018)

[11] Wu, T.W. & Dandapani, A., A boundary element solution for sound transmission 
through thin panels. Journal of Sound and Vibration, 171, pp. 145–157, 1994.
https://doi.org/10.1006/jsvi.1994.1110

[12] Jeans, R.A. & Mathews, I.C., A unique coupled boundary element/finite element 
method for the elastoacoustic analysis of fluid-filled thin shells. The Journal of the 
Acoustical Society of America, 94, pp. 3473–3479, 1993.
https://doi.org/10.1121/1.407201

[13] Cook, R.D., Concepts and Applications of Finite Element Analysis, John Wiley & Sons, 
Inc: New Yorks, pp. 99–118, 191–207, 1974.

[14] Yan, Z.Y., Sound Transmission Through Thin Elastic Shell with Different Fluids on Both 
the Inside and Outside. Ph. D Thesis, Shanghai Jiao Tong University, P.R. China, 2000.

[15] Yan, Z.Y., Hung, K.C. & Zheng, H., Solving the hypersingular boundary integral 
equation in three dimensional acoustics using a regularization relationship. The Journal 
of the Acoustical Society of America, 113, pp. 2674–2683, 2003.
https://doi.org/10.1121/1.1560164


