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ABSTRACT
Crack propagation in a single-edge notched beam is analyzed with the three-point bending test. Two 
constitutive laws that describe the material softening in the cohesive zone were tested, and their results 
were compared. The dual boundary element method (DBEM) is employed with the traction boundary 
integral equation using the tangential differential operator. A constitutive law was introduced in the 
system of equations, and the cohesive forces were directly computed at each loading step. The results 
are compared with the experimental and numerical results available in the literature.
Keywords: cohesive model, crack analysis, dual boundary element model, Plane problems, tangential 
differential operator

1 INTRODUCTION
A notched specimen of linear elastic material will concentrate stress in the region in front of 
the notch tip. The development of the damage zone in front of the notch tip is a consequence 
of these high stresses. The stress distributions in front of a notch, according to Ref. [1], are 
shown in Fig. 1a for a linear elastic material (curve a) and for a non-yielding material with 
a micro-cracked zone in front of the notch tip (curve b). Micro-cracks appear in the damage 
zone of concrete and other non-yielding materials. The material in the fracture or the micro-
cracked zone is partly destroyed but still able to transfer stress. The crack surfaces just 
behind the fictitious crack tip are not completely separated, and tractions can be transferred 
across the relatively long extended crack trace, which is called the cohesive zone and is 
shown in Fig. 1b. The main assumption is that material softening occurs beyond the peak 
load in a narrow layer with a negligible volume behind the fictitious crack tip in which cohe-
sive forces can stop crack opening. The crack in the cohesive zone can be represented with 
a two-parameter model named the fictitious crack model. The constitutive laws for the mate-
rial in the cohesive zone can be defined in terms of stresses and strains accompanied by a 
layer thickening law or employing a traction-displacement relationship, as adopted in this 
study. Barenblatt [2] presented a cohesive model using the fictitious crack theory. Hillerborg 
et al. [3] proposed a function for the softening model related to mode I crack opening (Fig. 1c), 
which allowed for a finite element model (FEM) analysis of the problem, such as those  
presented by Petersson [1], Carpinteri [4] and Rots [5].

Several numerical methods besides the FEM have been used to perform crack analyses. 
The dual boundary element method (DBEM) is one of the most widely used due to its accu-
racy in computation of the stress intensity factors and the simplicity of adding more elements 
for crack propagation [6]. The crack analyses for cohesive materials were studied with the 
DBEM by Saleh and Aliabadi [7, 8], with the Galerkin multizone BEM by Chen et al. [9] and 
with the displacement discontinuity BEM by Gospodinov [10]. Karlis et al. employed the 
two dimensional gradient elasticity for crack analyses with the BEM in Ref. [11] and Leonel 
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and Venturini used the tangent operator in the non-linear analyses with a BEM for crack 
propagation in quasi-brittle materials in Ref. [12]. Tavara et al. performed a BEM analysis of 
crack propagation along the fiber–matrix interface of laminates using a linear elastic–brittle 
interface model in Ref. [13]. Trinh et al. employed the fast multipole symmetric Galerkin 
BEM to solve multizone and multicrack problems in Ref. [14], and Benedetti and Aliabadi 
employed the BEM in multiscale modeling for polycrystalline materials to analyze material 
degradation and fracture in Ref. [15].

The DBEM in this study used the tangential differential operator (TDO) in the traction 
boundary integral equation (BIE). The TDO, in conjunction with integration by parts, is one 
way to reduce the order of the singularity in kernels of Kelvin-type fundamental solutions 
and is applied to the hypersingular kernel of the traction BIE here. Kupradze [16] first pre-
sented an application with the TDO, and Sladek [17] employed the TDO in a curved crack 
solution. Bonnet [18] presented regularized formulations of gradients in potential problems 
by employing the TDO in the BIE, and in stress BIEs for elasticity problems including frac-
ture mechanics formulations. The use of non-conformal interpolations with the TDO requires 
additional care as explained to the traction BIEs of elasticity for two-dimensional problems 
[19] and three-dimensional problems [20] and to the stress equations for plate bending 
including the effect of shear deformation, as in Ref. [21].

Figure 1: Crack in the cohesive zone.
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2 DUAL BOUNDARY INTEGRAL EQUATIONS FOR COHESIVE MATERIALS
The coincidence of two crack surfaces requires two different boundary integral equations 
(BIEs) for the solution and the dual boundary element method (DBEM) is the technique 
employed. The dual equations of the method are the displacement and the traction boundary 
integral equations:
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where Uij(x`, x) and Tij(x`, x) are the displacement and traction, respectively, in the direction 
j at boundary point x due to a singular load in the direction i at the collocation point x` based 
on the Kelvin solution for two-dimensional problems ui(x) and ti(x) are the displacement and 
traction at boundary point x, respectively, na(x’) is the direction cosine of the outward normal 
at collocation point x`, Cakim is the Hooke tensor for an isotropic material, sibj is the stress sbj 
at boundary point x due to a singular load in the direction i at collocation point x`, Dbm( ) is 
the tangential operator, m is the shear modulus, n is the Poisson ratio, and dij is the Kronecker 
delta.

The displacement BIE (eqn (1)) is applied to one of the crack surfaces, and the traction BIE 
(eqn (2)) is applied to the other surface to solve general mixed-mode crack problems with a 
single domain formulation. Although the integration path is still the same for coincident 
points on crack surfaces, the respective boundary integral equations are now distinct. The 
collocation point needed to perform the traction BIE and the strategy used to treat improper 
integrals are the key features of this formulation. The positions of the collocation points 
adopted in this study were inside the boundary elements to satisfy the continuity require-
ments for both BIEs. The left member in eqn (1) has a 1/r singularity, whereas the right 
member has a logarithmic singularity when the field point approaches the collocation point. 
Both integrals in the right member of eqn (2) have 1/r singularities because the TDO was 
used in the first integral.

The cohesive zone is the extension of the crack in which material softening beyond the 
peak load occurs in the narrow layer behind the fictitious crack tip (Fig. 1b). The cohesive 
zone is modeled as a crack region connecting coincident surfaces. The points that were orig-
inally coincidental on opposite sides of the crack line can separate into distinct points but 
remain connected by the cohesive zone material. Continued strain increases the separation 
between these two points and eventually leads to cracking. The simplest approximation for 
the s-w curve in the cohesive zone is a single descending straight line, as shown in Fig ure 
2a, where ft is the tensile strength, and wc is the maximum widening of the fracture zone when 
it is still able to transfer stress. A generalization for the s–w curve can be made with straight-
line approximations using an arbitrary number of break points with relations similar to those 
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presented in Fig. 2b. The maximum principal stress criterion is used to determine the crack 
extension increment. When the maximum principal stress at the fictitious crack tip reaches 
the critical value of ft, the tip will extend under further loading using one of the constitutive 
laws shown in Fig. 2. The tip advances in the direction perpendicular to the maximum prin-
cipal stress at that point, and the extension is such that the maximum principal stress at the 
new tip position is equal to the critical ft value during continued loading. The generalized 
plane stress problem was used in this study to model the beam in a three-point bending test. 
The maximum principal stress was obtained according to the following expression:

 σ σ σ σ σ τmax n t n t nt= + + −( ) +

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
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1

2
4

2 2  (3)

Figure 3 shows a crack containing a cohesive zone. The external boundary line of the prob-
lem is Γe, and the tangent direction used to compute the boundary integrals is shown. Γ1 and 
Γ4 are portions of the crack surface without cohesive forces (open crack), while Γ2 and Γ3 are 

Figure 2: Approximation for a s–w curve: a) Straight line, b) Two straight lines.

Figure 3: Crack inserted in a finite domain with boundary Γe.
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portions containing cohesive forces. The cohesive zone has tractions on the crack surfaces of 
opposite sign and equal magnitude. The dual equations for the problem shown in Fig. 3 can 
be simplified when the directions and magnitudes of the cohesive tractions on crack surfaces 
Γ2 and Γ3 and the directions of integration on these surfaces are taken into account, 
yielding:
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In eqns (4) and (5), tcj was introduced as the traction in the direction j on one of the crack 
surfaces within the cohesive zone. The index c was introduced because surface Γ2 or Γ3 with 
tractions t2 or t3, respectively, can be used. Γ = Γ1 +Γ2 +Γ3 +Γ4 +Γe, and Γ2 = Γ3 = Γc.

3 NUMERICAL IMPLEMENTATION
The tractions on one of the crack surfaces in the cohesive zone (tc) are the unknowns in the 
system of equations obtained from eqns (4) and (5), and the cohesive law is the additional 
equation used to find the solution. This strategy allows the direct computation of tractions in 
the cohesive zone at each incremental loading step.
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Equation (6) summarizes the system of equations where the dual eqns (4) and (5) are con-
verted to submatrices Hij and Gij, and the cohesive law is converted to submatrices A, B and 
C. The indices e, o and z are related to the boundary portions and correspond to the external 
boundary, the open crack boundary and the cohesive zone, respectively. Submatrices A and B 
relate the displacements and tractions in the normal and tangent directions, respectively, on 
the crack surfaces in the cohesive zone.

The softening criterion in the cohesive zone is for tractions and opening in the normal 
direction, and the tangential tractions are zero. The numerical algorithm is summarized next, 
considering the boundary portions shown in Fig. 3 and the straight line constitutive law 
shown in Fig. 2a:

a) The normal tractions (tc) are less than or equal to ft, i.e. no opening occurs in the cohesive 
zone, and opposite points along the crack surfaces have equal displacement. Submatrices 
B and C are zero, whereas submatrix A contains direction cosines that relate the displace-
ments in the directions xi, i.e. the openings in the normal and tangent directions are zero:
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b) With subsequent loads after the normal traction has reached ft, opening occurs in the co-
hesive zone according to the cohesive law as shown in Fig. 2a. The submatrices B and C 
are then modified to introduce the cohesive law in the line containing the opening in the 
normal direction. The tractions in the tangent direction become zero, and this condition 
is introduced in the line describing opening in the tangent direction. Equations (7) and 
(8) in corresponding lines of matrices A and B are replaced by:
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c) If the opening reaches wc in subsequent loads, the tractions (tc) must be zero at that 
point in the cohesive zone. The absence of tractions in the normal and tangent directions 
causes the tractions in the direction xi to be zero. The tractions (tci) at this point on the 
crack surfaces are eliminated from the system of equations. Equations (9) and (10) in the 
corresponding lines of matrices A and B are replaced by:

 t c
1 0=  (11)

 t c
2 0=  (12)

The break point value (w’) is introduced in the numerical algorithm when the constitutive 
law employs two straight lines, as shown in Fig. 2b. The constitutive law in eqn (9) uses 
the relation for either the first or second line in Fig. 2b, according to values of the normal 
opening (w) and the break point (w’). The first line is used in the subsequent loading after 
the normal traction has reached ft and opening occurs in the cohesive zone. The second line 
for the constitutive law replaces the first line when the normal opening value (w) is greater 
than the break point value (w’). The tractions (tc) must be zero when the normal opening 
(w) reaches wc in the loading process and eqns (11) and (12) must be used instead of eqns 
(9) and (10).

The boundary element code was derived from that used in Refs. [22, 23]. Linear mapping 
functions were used to represent the displacements and tractions in the boundary elements. 
The same mapping function was used for conformal and non-conformal interpolations, with 
nodal parameters positioned at the ends of the elements. The collocation points were always 
positioned on the boundary line at the position (x’) in the range (-1, 1): i) x’= -0.67 for con-
tinuous elements, and ii) x’= -0.67 and x’= +0.67 for discontinuous elements. Analytical 
expressions were used to evaluate the singular integrals in the Cauchy principal value, and the 
Gauss-Legendre scheme was used for regular integrals.

4 NUMERICAL EXAMPLE
Experimental and numerical analyses were performed in Ref. [1] for the notched beam under 
the three-point bending test shown in Fig. 4. The depth of the beam (d) is 0.2 m, the width is 
0.05 m and the length (l) is 2.0 m. The adopted ratio between notched depth and beam depth 
(a/d) was 0.5. The Young’s modulus (E) was 30 GPa, the Poisson’s ratio (v) was 0.2 and the 
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tensile strength ft was 3.33 MPa. Table 1 presents the properties used in the analysis of the 
crack propagation in Ref. [1] for each of the constitutive laws shown in Fig. 2.

Petersson presented results for crack propagation [1], which were obtained experimentally 
for two values of fracture energy (Gf): 115 Nm1 and 137 Nm1. Experimental results were 
compared with those obtained from a numerical analysis [1] with the FEM using 124 Nm1 for 
Gf, which was the median value of the fracture energy values of the experiments. Two consti-
tutive laws were considered in the numerical analyses of Ref. [1]: a) Straight line and b) Two 
straight lines. Petersson used the letter C to represent results from the constitutive law using 
two straight lines because he considered this law better for representing the concrete behav-
ior. The breaking point value (w’) used in Ref. [1] for the constitutive law with two straight 
lines was related to the following value of the normal traction:

 ′ = → =w w fC

yields

t

2

9

1

3
σ  

Saleh and Aliabadi presented results in Ref. [7] for this problem using a DBEM with quad-
ratic boundary elements; the constitutive law in the cohesive zone was the straight line and 
the mechanical properties were the same employed in Ref. [1]. The results obtained with the 
DBEM formulation presented here, using TDO and linear boundary elements, are shown in 
Fig. 5 and compared with those in Ref. [7]. Two types of constitutive laws were used with the 
present formulation: a single straight line (SL) and two straight lines (C). The same boundary 
element mesh was used in analyses with both constitutive laws. This analysis employed 196 
boundary elements with two boundary nodes placed at each corner and at the fictitious crack 
tip.

According to Fig. 5, the peak load obtained with a straight line (blue curve) was greater 
than that obtained with two straight lines (green curve), which were both similar to the result 
obtained in Ref. [7] with a straight line constitutive law.

A comparison of the experimental and numerical results presented in Ref. [1] is shown in 
Fig. 6. The results obtained with the present DBEM formulation for both types of constitutive 

Figure 4: The notched beam subjected to three-point bending.

Table 1: Mechanical properties according to the constitutive laws in Ref. [1].

s–w curve Gf (Nm1) ft
’ (MPa) wc (10-5 m) wc

’ (10-5 m) w’ (10-5 m)

Straight line (SL) 124 - 7.45 - -
Two straight lines (C) 124 1.427 13.40 4.468 2.979
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laws are very similar to those in Ref. [1], obtained from an FEM analysis. Furthermore, the 
results obtained with the constitutive law using two straight lines demonstrate that using two 
straight lines is better to represent concrete behavior, as first noted by Petersson in Ref. [1]. 
In Fig. 6, the numerical results from the present BEM formulation and FEM [1], using two 
straight lines for the constitutive law and the median value of fracture energy (pink and green 
curves), were plotted between the curves obtained experimentally for the upper and the lower 
value of the fracture energy (Gf), which were 137 Nm1 (black curve) and 115 Nm1 (orange 
curve). On the other hand, numerical analyses using a straight line for the constitutive law 
with the median value for the fracture energy (124 Nm1) presented a peak load (brown and 
blue curves) greater than that obtained with the experimental analysis (black curve) with the 
upper value for the fracture energy (137 Nm1).

Figure 5:  Comparison between the results obtained in this study and those in Ref. [7].

Figure 6: Comparison between the results obtained in this study and in Ref. [1].
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5 CONCLUSIONS
The results obtained in the crack propagation analyses with the present DBEM formulation 
match those presented in the literature, when either a straight line or two straight lines were 
used for the constitutive law of the cohesive zone models. Furthermore, the comparison with 
earlier results presented by Petersson [1] confirmed his conclusions, which were based on 
experimental tests and numerical analyses using an FEM. The model formulation used in this 
study, which was presented in Ref. [22], was more stable and computationally faster than the 
method presented in Ref. [24], as noted in Ref. [23].
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