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ABSTRACT
This paper presents a numerical method for topology optimisation for two-dimensional elastodynamics 
based on the level set method and the boundary element method (BEM) accelerated by the H-matrix 
method and its application to identifications of defects in an infinite elastic medium. Gradient-based 
topology optimisation methods require design sensitivity, which is obtained by solving some boundary 
value problems. The BEM is employed for this sensitivity analysis because the BEM can deal with 
infinite domains rigorously without any approximation. However, the computational cost in the BEM 
is expensive, and this is a serious drawback since we need to repeat sensitivity analysis even for a single 
optimisation process. In this study, the H-matrix method is used as an acceleration method of the BEM 
for the reduction of the computational cost of the sensitivity analysis. Also proposed is a method to 
improve the efficiency of the H-matrix method by exploiting a property of the kernel function of the 
elastodynamic fundamental solution. Some numerical examples are demonstrated, and the effective-
ness of the proposed method is confirmed.
Keywords: boundary element method, defect identification, elastic wave, level set method, topological 
derivative, topology optimisation, H-matrix method

1 INTRODUCTION
Recently, non-destructive testing has attracted attention in engineering, and a number of 
works have been made to develop an effective method to image defects in an elastic medium 
from some measured data [1]. To obtain such data, elastic waves are often used. For example, 
an elastic wave propagates in an elastic medium and is scattered by a defect. The scattered 
wave can then be measured as the displacement on some part of the boundary of the elastic 
medium. This is a so-called inverse scattering problem and can be treated as a topology opti-
misation problem with an elastic wave propagation phenomenon detecting the unknown 
defect shape and location. The objective functional of the corresponding optimisation prob-
lem is often defined to minimise a discrepancy between the measured data and solutions of 
the wave problem in the elastic domain with estimated defects. Topological derivative, which 
is defined as a rate of change of the objective functional (in this case, the discrepancy) when 
an infinitesimal defect is allocated in the medium, is useful for this approach. Some topolog-
ical derivatives in three-dimensional elastodynamics are derived in [2, 3]. The adjoint variable 
method is often used for the computation of topological derivatives, where we have to solve 
two kinds of boundary value problems: the direct and adjoint problems. For the analyses of 
these problems, the boundary element method (BEM) is preferred to the finite element 
method for a certain class of the problems because the BEM can deal with the infinite domain 
rigorously.

The computational cost of the BEM is highly expensive, therefore, the BEM is usually 
implemented with an acceleration method such as the fast multipole method (FMM) [4, 5] 
and H-matrix method [6]. In the present optimisation scheme, a direct solver based on 
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LU-decomposition is more effective than iterative solvers such as GMRES because both the 
coefficient matrices corresponding to the direct and adjoint problems are the same, thus 
LU-decomposition is more efficient than iterative solvers. In fact, we employed the H-matrix 
method for a topology optimisation problem for two-dimensional electromagnetic field, and 
we demonstrated its effectiveness in [7].

In this study, we employ the H-matrix method as an acceleration method of the BEM and 
apply it to the defect identification based on the topology optimisation with the level set 
method.

2 TOPOLOGY OPTIMISATION WITH THE LEVEL SET METHOD 

2.1 Inverse scattering problem and corresponding topology optimisation problem 

In the present study, we assume that all defects are assumed to be cavities having traction-free 
surfaces. Let Ω ⊂ R2 be an infinite domain of a linear isotropic elastic medium under plane 
strain condition. As shown in Fig. 1, let us assume that an incident elastic wave uin propagates 
in Ω and is scattered by the defects R \2

Ω. Assuming time harmonic oscillations with the time 
dependence of e i− wt, where w is the angular frequency, the displacement u and stress s in Ω 
are governed by the following boundary value problem:

 σ ρωji j ix u x x, ( ) ( )+ = ∈
2 0 Ω, (1)

 t x x n x xi ji j( ) ( ) ( )= = ∈σ 0 Γ , (2)

 Radiation condition for usc as | |x →∞, (3)

where r is the mass density, Γ = ∂Ω is the boundary of Ω, usc = u – uin is the scattered field,  
t is the traction, and n is the unit outward normal vector to Ω.

Suppose that we measure the displacements on some observation points x m Mm
obs ( , , )= 1  

and identify the distribution of the defects from the measured displacements û xm
obs( ). This 

inverse scattering problem can be treated as a topology optimisation problem minimising the 
objective functional:

 J u xm
m

M

= ( ) −
=

∑1

2 1

obs û xm
obs( ) 2

. (4)

Figure 1: Problem statement.
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2.2 Level set method

For simplicity, we assume R \ \2
Ω Ω= D , i.e., there exists no defect outside of a certain 

bounded fixed design domain D. To express the distribution of the domains Ω and D\Ω, we 
employ the level set method in which the defects D\Ω, elastic medium Ω, and its boundary 
Γ are expressed by a level set function f, as follows:

 Ω = < ≤{ | ( ) }x x0 1f , (5)

 Γ = ={ | ( ) }x xf 0 , (6)

 D x x\Ω = − ≤ <{ | ( ) }1 0f , (7)

The level set method converts the topology optimisation problem into a problem in which we 
find f that minimises the objective functional J. We assume that f is the solution of the fol-
lowing initial-boundary value problem [8, 9]:

 
∂

∂

= − + ∇ ∈
φ

τ φ
( , )

( , ) ( , )
x t

t
KT x t x t x D2 , (8)

 φ φ( , )x x D0 0= ∈ , (9)

 φ( , )x t c x D= ∈∂ , (10)

where K is a positive constant, t is a fictitious time, t is a positive constant that works as a 
regularisation parameter for the distribution of f, and f0 is the initial distribution of f corre-
sponding to the initial geometry at t = 0. The Dirichlet condition (10) with a constant c∈ ( , ]0 1  
restricts that the defects can only exist inside D. T denotes the topological derivative, 
defined by

 d n e n eJ x T x o( ) ( ) ( ) ( ( ))= + , (11)

where dJ(x) is the variation of J when an cylindrical defect of radius e centred at x appears 
and n is a scalar function which vanishes as e→0. For the objective function J defined by (4), 
T is obtained as

 T x x x x x u xij ij ii jj i( ) Re
( )

{ ( ) ( ) ( ) ( )} ( )=
+

+

− −
λ µ

µ λ µ

σ σ σ σ ρω
2

4
4 2

  uu xi ( )








 , (12)

where u  and s  are the displacement and stress, respectively, of the adjoint field problem 
governed by

  (13)

 

t x x n x xi ji j( ) ( ) ( )= = ∈σ 0 Γ, (14)

 Radiation condition for u xi ( ) as | |x →∞. (15)

 s rw dji j i i m i m
m

M

mx u x u x u x x x, ( ) ( )+ + ( ) − ( )( ) −( ) =
=

∑2

1

0obs obs obs xx ∈Ω ,ˆ
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2.3 Algorithm of the level set-based topology optimisation

As described in the previous section, we solve the initial-boundary value problem (8)–(10) to 
obtain the optimal configuration. In this study, we perform the topology optimisation by the 
following procedure:

1. Determine an initial configuration and initialise a level set function f. The values of both 
f and the topological derivative T are computed and stored at all the lattice points ar-
ranged in the fixed design domain D.

2. Interpolate f linearly between each adjacent lattice point and calculate the point of in-
tersection between the segment of two neighboring lattice points and the zero-valued 
isoline of f. Then, connect these intersection points of f and interpolate them with the 
Hermite spline curve. Finally, divide the generated isoline curve into linear boundary 
elements of approximately equal lengths [10].

3. Solve the direct problem (1)–(3) by the BEM.
4. Compute the value of the objective function J and the gradient of J. If the absolute value 

of the gradient is less than a preset parameter, terminate the procedure; otherwise, go 
to 5.

5. Solve the adjoint problem by the BEM and compute the topological derivative T from the 
numerical solutions of the direct and adjoint problems.

6. Update f according to (8)–(10) and go to 2.

The entire step consisting of the steps 2 to 6 is called as an optimisation step in this paper.

3 SENSITIVITY ANALYSIS WITH THE BEM AND H-MATRIX METHOD 

3.1 Formulation of the BEM in two-dimensional elastodynamics 

In order to compute the topological derivative T, we need to obtain both the displacement and 
stress in the direct and adjoint fields governed by (1)–(3) and (13)–(15), respectively.

We obtain the boundary integral equations equivalent to the direct problem (1)–(3) by the 
Burton-Miller formulation [11] as follows:
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,  (16)

where α ∈C is a coupling parameter, I is the identity operator, Dij and Nij are the integral 
operators defined for an arbitrary scalar function w as

 ( )( ) ( , ) ( ) ( ),D w x C G x y n y w y dij kljm ki l m y= − ∫v.p. Γ
Γ

, (17)

 ( )( ) ( , ) ( ) ( ) ( ),N w x C C G x y n x n y w y dij impq kljn kp lq m n y= − ∫p.f.
Γ

Γ , (18)

where v.p. and p.f. indicate Cauchy’s principal value and the finite part of divergent integral, 
respectively. C is the elasticity tensor and is written using Kronecker’s delta dij and Lamé’s 
constants l and μ as
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 Cijkl ij kl ik jl il jk= + +ld d m d d d d( ), (19)

and Gij is the fundamental solution of two-dimensional elastodynamic problems given by

 G x y
i

H k x y
k y y

H k x y Hij ij
i j

( , ) ( | |) ( | |)( ) ( )= − +
∂

∂ ∂
− −

4

1
0
1

2

2

0
1

m
dT

T
T 00

1( ) ( | |)k x yL −( )










, (20)

where H0
1( ) is the Hankel function of first kind with order 0 and kL and kT are the wavenum-

bers of the longitudinal and transverse wave, respectively.

3.2  H-matrix method

As described in Section 2.3, iterative sensitivity analyses are required for our optimisation 
method, causing significantly large computation time. In this study, we employ the H-matrix 
method to the BEM and accelerate the sensitivity analyses.

The algorithm of the H-matrix method is composed of two processes: hierarchical block-
ing of a coefficient matrix into submatrices and low rank approximation of the submatrices.

3.2.1 Hierarchical blocking of a coefficient matrix
Let us consider a system of linear algebraic equations which is obtained by discretising the 
BIEs (16) by the collocation method with constant elements. In the H-matrix method, a set 
of boundary elements is called a cluster. Let I be the set of all the boundary elements and 
obtain a binary tree T whose root cluster is I by the following recursive procedure:

1. Set C = I.
2. If the number of elements which are included in C is larger than a preset parameter nmin, 

then go to 3; otherwise set C to be a leaf cluster, which has no son cluster.
3. Make a rectangle which encloses all elements in C.
4. Divide the longer side of the rectangle into two parts of equal size. Correspondingly, C 

is also divided into two subsets C1 and C2 so that each subset consists of elements whose 
collocation point is included in one of the two rectangles.

5. Renumber the elements so that the elements in the same cluster have the element num-
bers close to each other.

6. Set C1 and C2 to be son clusters of C.
7. For i = 1; 2, set C = Ci and go to 2.

Next, we consider the blocking procedure of the coefficient matrix in (16). For illustrative 
purpose, we pick one of the four submatrices in (16). We divide the matrix into some subma-
trices according to the cluster and classify them into admissible and inadmissible blocks, 
which will be low lank-approximated or not, respectively, by the following procedure:

1. Set Cr = I and Cc = I.
2. If Cr and Cc satisfy the admissible condition defined as

 min{ , }diam  diam dist( , )C C C Cr c r c≤η , (21)

 where η ∈R is a preset parameter and ‘diam’ and ‘dist’ denote a diameter and distance 
of a cluster, respectively, then set the submatrices whose row indices and column indices 
correspond to Cr and Cc to be admissible blocks, respectively; otherwise, go to 3
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3. If both Cr and Cc have sons Cr1, Cr2 and Cc1, Cc2 in T, respectively, then  for all ( , ) C Cr c   
in combinations (Cr1, Cr2) × (Cc1, Cc2), set C Cr r=   and C Cc c=   and go to 2; otherwise 
set the submatrices whose row indices and column indices correspond to Cr and Cc to be 
inadmissible blocks, respectively.

By the above two procedures, we obtain a coefficient matrix which is hierarchically divided 
into some submatrices and each submatrix is classified into an admissible or inadmissible 
block.

3.2.2 Low rank approximation with the ACA
An arbitrary matrix A Cm n

∈
×  can be approximated by two matrices U Cm k

∈
×  and 

V C k An k
∈ <

× ( )rank  as

 A UV H
 , (22)

and this is called a low rank approximation of a matrix. In this study, the adaptive cross 
approximation (ACA) is employed for the low rank approximation. In the ACA, we can 
obtain U, V and their rank k such that they satisfy the following condition with a given toler-
ance eACA:

 || || || ||UV A AH
F F− ≤ eACA , (23)

where || ||⋅ F denotes the Frobenius norm. The details of the algorithm of the ACA and its 
application to the H-matrix method can be found in [6].

3.2.3 Efficiency improvement of the H-matrix method
In the process of the BEM, it is time-consuming not only to solve a system of linear algebraic 
equations but also to compute entries of its coefficient matrix. Each of the entries is calcu-
lated as an integral of the second-order tensors (17) and (18). The most time-consuming part 
of the calculation is the computation of the Hankel function Hn

(1) which depends on positions 
of a collocation point and integration points of a numerical integration but is independent of 
indices of the tensors. Hence we can reduce the computational time by storing the values of 
Hn

(1) and reuse them for all indices when we compute the four entries which indicate influ-
ence from the same boundary element to the same collocation point.

In the H-matrix method, however, we do not need all of the four entries to construct a 
coefficient matrix, because not all the entries are required for low rank approximation in the 
ACA. In this study, we employ this store-and-reuse strategy only for inadmissible blocks and 
reduce the computational time to construct the matrix.

4 NUMERICAL EXAMPLES
In this section, we demonstrate two numerical examples and confirm the effectiveness of the 
proposed method. The elastic medium is assumed to be steel (mass density r = 7.8 × 103 [kg], 
Young’s modulus E = 205 [GPa], Poisson’s ratio u = 0.3). The parameters of the H-matrix 
method are set as eACA = 10-5, nmin = 32, h = 0.7, and the LU decomposition is used as a direct 
solver in the boundary element analysis. All of the linear algebraic operations in the LU 
decomposition are accelerated by the H-matrix method. The incident wave uin is set as a 
plane P-wave propagating in x1 direction with the frequency 3 [kHz]. We set the number of 
the observation points M = 400 and distribute them around the fixed design domain D at 
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regular intervals as shown in Fig. 2. The initial level set function f0 is uniformly set to 
be 1 in D. We first assume that an elliptical defect is allocated in D and use a numerical solu-
tion of the BEM, in which each defect is divided into 5,000 boundary elements, as the 
measured displacement û. The example numerical calculations are performed on a computer 
with Intel Xeon CPU E5-1660 with 8 cores, and the code is parallelised using Open MP.

Figures 3 and 4 show results of the optimisations and histories of the objective function J 
in each case whether the H-matrix method is utilised or not, respectively. ZGETRF routine 
by LAPACK is used for the LU decomposition in the case that the H-matrix method is not 
used. Note that J is normalised by the amplitude of the plane incident wave. We see that the 
results are almost the same and give us a good estimation of the position and shape of the 
defect. Also, Fig. 5 shows computational time for one optimisation step versus the number of 
boundary elements in the step. From this comparison, we confirm that the H-matrix method 
can reduce the computational time for the sensitivity analysis without losing its accuracy.

Next, we add a cylindrical defect to the previous configuration and perform the optimisa-
tion as shown in Fig. 6. The result of the optimisation is shown in Fig. 7 and indicates that we 

Figure 2: Identification of an elliptical defect.

Figure 3: Optimal configurations in the case of one elliptical defect.
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Figure 4: Histories of the objective function J in the case of one elliptical defect.

Figure 5: Computational time for one optimisation step.

Figure 6: Identification of elliptical and cylindrical defects.
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can identify not only one but two defects though it seems to be less accurate than the case of 
one defect.

5 CONCLUSION
We have developed a numerical method for defect identification in an elastic medium based 
on the level set method and the BEM. We have employed the H-matrix method to the BEM 
and reduce the computational cost. Finally, we have demonstrated numerical examples and 
confirmed that the proposed method is effective for the inverse scattering problem.
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