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ABSTRACT
Nowadays, a variety of numerical methods and numerical formulations exits to solve complex or cou-
pled field problems in three dimensions. Most of them are generally applicable to nearly arbitrary 
kind of field problems. On the other hand, some highly optimized methods are available, which are 
predestined for the solution of a specific kind of problem. Especially in the case of weakly coupled 
multiphysics problems, a mixture of several numerical methods is very advantages to benefit from dif-
ferent properties of numerical methods for diverse physical sub-problems. A very promising approach 
for a flexible coordination of the related solution process is the application of software agents. Then, 
the results of one sub-problem are converted into boundary values or volume source distributions 
for another sub-problem and software agents choose solution methods independently for each sub- 
problem. Furthermore, two main aspects have to be considered in applications of numerical methods. 
First, the solution of a boundary value problem should be computed efficiently and second, the solution 
is evaluated for visualization and interpretation of obtained results. In practice, it is difficult to choose 
a single appropriate method, which is well suited both for the solution of a problem and its evaluation, 
since the demands differ in both cases. Here, a concept is presented to apply various numerical methods 
successfully to the solution and evaluation of complex field problems. Attention is mainly turned on the 
integration of boundary element methods into the concept of mixed numerical formulations.
Keywords: boundary element methods, coupled problems, finite element methods, post-processing, 
software agent systems, visualization

1 INTRODUCTION
In the last years, the interest on the numerical solution of complex and coupled field problems 
has grown noticeably. Modern computers are equipped with relatively large main memory 
and modern central processing units (CPU) support the parallel computation of more than 
eight threads even for floating point arithmetic. Hence, large problems can be solved in 
acceptable time. Furthermore, very good implementations of general applicable numerical 
methods like the finite element method (FEM) or boundary element method (BEM) exist. 
Along with the increasing computation capability, the demand on numerical field simulations 
grows, too. Instead of stationary simulations, time-dependent problems including non-linear 
material properties and different physical aspects are examined. Afterwards, advanced 
post-processing techniques enable expressive evaluations and visualizations of computed 
results.

A classical approach for the solution of the aforementioned problems is to treat them mon-
olithically as a single complex problem. All physical aspects are summarized into one 
equation system and one numerical method and one formulation is chosen, which solves the 
total problem. The post-processing is executed using the same model along with the same 
numerical method as for the solution of the equation system. An advantage of such an 
approach is that the numerical model is very precise and clear. On the other hand, the prop-
erties of the chosen numerical method must fit to all steps of the simulation process. Hence, 
the choice of an appropriate numerical method is a compromise between general 
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applicability and efficiency. Furthermore, this choice is a challenging task, especially for 
users of numerical methods.

A decomposition of a single field problem into several sub-problems is a very promising 
approach to tackle complex problems. Numerical methods can be chosen separately for the 
solution of each sub-problem and for its post-processing. That means, properties of numeri-
cal methods fit much better to the demands of partial simulation steps than in the case of only 
one method for the total problem. On the other hand, data must be prepared for an exchange 
between different sub-problems.

Here, a very flexible and powerful concept is presented, which combines advantages of 
different numerical methods and formulations for the solution of complex or coupled field 
problems. The focus is on boundary element methods including various formulations, com-
pression techniques, and post-processing approaches. Next, several mixtures of boundary 
element methods with other numerical methods are discussed. Classical coupling of numerical 
methods is considered as well as modern techniques like software agents.

2 BOUNDARY ELEMENT METHODS
The main idea of the boundary element method (BEM) is to describe a field problem only 
based on values on domain boundaries (Brebbia et al. [1]). Hence, a modelling and discreti-
zation of surfaces suffices to completely define the considered problem. Therefore, BEM is a 
very attractive method for science and engineering applications (Buchau [2]). Especially 
open boundary problems or problems with large distances between objects are solved very 
efficiently and with high accuracy.

2.1 BEM formulations

A concrete BEM formulation depends on the specific physical problem, which is solved. 
Furthermore, several formulations are possible for the same problem. For instance, a static 
electric field E  can be described completely using a scalar electric potential u with

 E = −∇u. (1)

Based on Green’s theorem the potential u in a point r  within a closed domain Ω is obtained 
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Equation (2) is only applicable, if objects with a closed surface and a defined volume are 
considered. In the case of very thin objects, it would be necessary to add artificial boundaries 
to close all surfaces. Then, another BEM formulation
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based on surface charge densities σ  is more suited. The free space permittivity is ∈0 and A  
are the surfaces of closed or thin objects.

An important distinction between eqn (2) and eqn (4) is the scope where the equations can 
be applied. Equation (2) is valid only inside a closed domain. In the case of multiple domains, 
several sets of boundary values are required to describe the field for each domain. In contrast, 
eqn (4) is valid in total space and no distinction between domains is necessary even in the 
case of multiple closed domains.

In practice, both BEM formulations are applied for the solution of static electric field prob-
lems. The direct formulation using eqn (2) is for instance very advantages for problems with 
layered objects, since then the matrix of the corresponding linear system of equations is rel-
atively sparse. The indirect formulation based on eqn (4) is well suited for thin structures. In 
total, there are pros and cons for both BEM formulations and it depends on the concrete 
example in which formulation is more precise and more efficient.

However, the computation of the solution of a problem is an important step but only a 
first step in numerical methods. Evaluation and interpretation of results is mandatory in 
engineering applications.

A common approach is to use the same BEM formulation for both, the computation of the 
solution of problem and the post-processing. Then, computed values on boundaries can be 
used directly for post-processing. Furthermore, it is necessary to store only formerly unknown 
values and to integrate known boundary values.

That means in the example of a static electric field that the potential is given at the elec-
trodes and it is not necessary to store potential values in the element nodes of electrodes. 
Only its normal derivative is computed and stored for each element node. During the post- 
processing, eqn (2) is evaluated using the given boundary values and using the computed 
missing boundary values.

An advantage of such a self-evident approach is that the amount of required main memory 
is minimized and no unnecessary computations are executed. A significant drawback is that 
the approach is very restricted. All details of the formulation, which are necessary for the 
solution of the problem, must be considered and implemented for the post-processing, too.

Nowadays, enough main memory is available for most applications. Hence, a more flexible 
approach, which consumes a little more memory, is recommended. Here, the solution of the 
problem and the post-processing are consequently separated. That means the solution of the 
problem and its post-processing are computed independently of each other.

The solution of the problem is calculated using a BEM formulation, which is predestined 
for a stable and efficient solution of the problem. All computational steps are optimized for 
the solution process. Then, the solution is converted into boundary values for the post- 
processing. These values contain both original boundary values and computed values on the 
boundaries.

The post-processing step is significantly simplified, if all given and computed boundary 
values are treated in the same manner. In case of a direct formulation like eqn (2) is applied, 
potential and its normal derivative are stored for each element node. Then, no distinction is 
necessary for the evaluation of eqn (2) during the post-processing. Furthermore, the BEM 
formulation can be changed for the post-processing. For instance, the solution of the problem 
can be obtained using a direct BEM formulation and the post-processing can be done based 
on an indirect formulation and vice versa.

Another benefit of that separation is that different BEM implementations can be used. The 
solution is computed and stored in a general applicable format independently of the 
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formulation and problem description. Another process imports the boundary element mesh 
along with all nodal values. That enables flexible field computations and impressive visuali-
zation techniques for arbitrary BEM problems (Buchau & Rucker [3]).

2.2 Matrix compression techniques

Since the matrix of the linear system of equations is dense or block-wise dense, a matrix 
compression technique is required to solve complex field problems. In the last decades, sev-
eral matrix compression techniques have been developed. They exploit the dependency of 
Green’s function on the distance between source point and evaluation point and approximate 
Green’s function in the case of far-field interactions.

One class of matrix approximation techniques is based on series expansions of Green’s 
function along with hierarchical grouping schemes for the boundary elements. The most pop-
ular representative of this class is the fast multipole method (FMM) (Greengard & Rokhlin 
[4]). The series expansion depends on the used Green’s function. Hence, each kind of problem 
or basic equation, respectively, requires that series expansion in spherical coordinates for 
three-dimensional problems. Furthermore, transformations of these series expansions must be 
available, which convert the coefficients of the series expansion from one local coordinate 
system into coefficients of the series expansion of another local coordinate system. Unfortu-
nately, the computation of these transformations is relatively expansive. On the other hand, the 
FMM is a very flexible tool both for the solution of the problem and for the post-processing, 
since it depends only on geometrical position of boundary elements and evaluation points 
(Buchau et al. [5]). In both cases, very high compression rates are obtained and very large 
problems can be solved efficiently.

Another class of compression techniques is based on direct matrix operations. This is used 
for instance for the adaptive cross approximation technique (ACA) (Bebendorf [6]). The 
ACA applies a hierarchical matrix clustering based on the distance between source point and 
evaluation point. Thus, an excellent numbering of element nodes is required to achieve high 
compression rates. Each matrix block is then approximated by a few rows and columns. 
Since the computed rows and columns correspond to those of the original dense matrix, the 
computation of matrix elements is the same for the ACA as for the classical BEM. Therefore, 
the ACA is applicable to general BEM formulations. Some modifications of matrix assembly 
are necessary to avoid multiple expensive computations of integrals over the same boundary 
element. The ACA is very advantageous for the solution of the linear system of equations 
with a large number of iterations, for instance, in combination with a time-dependent or 
non-linear solver, because matrix by vector products are evaluated very fast. On the other 
hand, post-processing based on ACA is limited to regular grids of evaluation points but a 
flexible post-processing is not possible.

In total, matrix compression techniques are very attractive for BEM computations, since both 
the computational costs and memory requirements are significantly reduced (Buchau et al. [7]). 
The choice of an appropriate matrix compression technique depends on the concrete problem 
and BEM formulation as well as on the desired post-processing. If the same matrix compression 
technique is applied both to the solution of the problem and the post-processing, an optimal 
method is difficult to find. Here, a mixture of matrix compression techniques is recommended. A 
separated treatment of solution step and post-processing step as discussed in the previous section 
enables an independent choice of matrix compression technique, too. Furthermore, it is possible 
to choose different algorithms or implementations for the same matrix compression method.
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The structure of the matrix of the linear system of equations is predefined by the given 
boundary element mesh. Hence, a matrix compression method can be highly optimized and 
parallelized for that case. An important property of a fixed boundary element mesh is that 
clustering and grouping for ACA or FMM is fixed, too. Both matrix block of ACA and 
octree structure along with transformation coefficients of the FMM can be precomputed 
and reused in each iteration step of an iterative solver of the linear system of equations 
(Axelsson [8]).

If not a fixed grid is used for the post-processing but a flexible meshfree post-processing is 
applied (Buchau & Rucker [3]), adapted versions of matrix compression techniques are more 
efficient (Buchau & Rucker [9]). There, the position of evaluation points is determined dur-
ing the calculation of visualization objects like field lines. Hence, evaluation points are added 
to the hierarchical octree based grouping scheme of FMM during the post-processing. This 
requires a flexible implementation of both the octree and the FMM algorithm. Furthermore, 
a reversed FMM algorithm reduces the number of FMM operations significantly. A drawback 
is that optimization and parallelization is more difficult.

As demonstrated in that example, even the same matrix compression technique should be 
used in very different manners for the solution of the problem and for the post-processing. 
Hence, different implementations are often advisable. Then, all aspects of performance and 
flexibility can be considered appropriately.

2.3 Post-processing

Post-processing BEM operations differ significantly from BEM operations for the solution of 
the problem, not only for the matrix compression technique as shown in the previous section. 
A second important topic is BEM integrals, especially singular or nearly singular integrals.

In many cases, the number of considered boundary element types is limited. Hence, a 
small number of singular or nearly singular integral types have to be implemented. Then, 
these integrals are normally highly optimized to shorten CPU time.

In the case of post-processing, different integral kernels are used. The reason is that not 
only the field value, which is the solution of the problem, but also derivatives of that field 
value are evaluated. Of course, an optimized implementation with low computational 
costs is favoured but flexibility has higher priority in that case. Singular, nearly singular, 
nearly strong singular or nearly hyper-singular integrals can be implemented in a rela-
tively general way. For instance, sub-division of boundary elements for an application of 
local polar coordinates can be generalized. Then, special treatment of these integrals is 
shifted into weights of integration points in the implementation. The overhead for some 
additional multiplications, which can be summarized in an optimized implementation, is 
relatively small but a huge number of element types, formulations, and field values can be 
taken into account.

Another advantage of a separated post-processing is that different techniques can be 
applied. A classical approach is to create a grid or auxiliary volume mesh and to compute 
field values in that mesh nodes. Then, post-processing tools for FEM are applicable. The 
main drawback of such an approach is that field values are computed in points, which are not 
necessary for visualization. On the other hand, implementation is relatively easy and already 
existing code can be reused.

If post-processing is separated from the solution of the problem, only boundary values of 
for instance the potential are transferred to the post-processing tool. The evaluation of these 
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values can be done with an arbitrary BEM formulation, an arbitrary compression technique 
and an arbitrary implementation of BEM integrals. The post-processing computations can be 
integrated into the visualization tool or visualization objects are computed separately and 
then transferred to the visualization tool (Buchau & Rucker [3]).

For instance, basic concepts of FMM and isovalue search are common (Wilhelms & Gelder 
[10], Buchau & Rucker [11]). An integration of BEM with FMM into an algorithm for com-
putation of isosurfaces offers the opportunity to interweave both. The same octree is then 
used to group boundary elements and evaluation points for a reversed FMM algorithm and 
FMM series expansions are applied to interpolate field values for an isovalue search method 
with high accuracy.

Furthermore, an integration of BEM operations directly into the post-processing computa-
tions enable a much better control of accuracy of computed visualization objects. Adaptive 
integration methods like a Runge–Kutta–Fehlberg method adjust step size automatically for 
precise field line computations (Fehlberg [12]). However, a fixed grid of evaluation points 
would limit the total accuracy by rough interpolations between the evaluation points but a 
direct evaluation of BEM integrals improves accuracy significantly although the computa-
tional costs are kept low.

3 COUPLED NUMERICAL METHODS
Boundary element methods are applicable to a wide range of problems. However, non-linear 
or inhomogeneous media cannot be integrated into BEM easily. In that case, the finite ele-
ment method (FEM) is very attractive. A classical approach is to couple BEM and FEM by 
integrating both methods into one monolithic equation system. Another approach is to extend 
a coupling of BEM with other methods within the meaning of the concept presented in the 
previous section.

Although FEM is well suited to consider nearly arbitrary material properties, modelling of 
large surrounding air domains is very expensive. Boundary layers modelled with infinite 
elements represent alternatives, but unfortunately field values must also be computed pre-
cisely in air domains in many engineering applications. A very interesting approach is to 
apply FEM for the solution of the problem and BEM for the post-processing. Then, the FEM 
model is acceptable small and the surrounding domain is discretized as small as possible. Of 
course, field values in the surrounding domain are too inaccurate but field values at the sur-
faces of examined objects are accurate enough. These values are used for a BEM 
post-processing.

A typical situation for that approach is the computation of the radiated electromagnetic 
field of a smartphone antenna. The structure of a modern smartphone is very complex espe-
cially the antenna system. Hence, it is advisable to model the device using FEM. Then, a very 
small air domain along with absorbing boundary conditions suffices to compute the electro-
magnetic field of the device with high accuracy. Unfortunately, the radiated electromagnetic 
field in the air domain is of large interest for the design of a smartphone. However, a small air 
domain avoids visualization of the radiation pattern in the far-field. Here, a BEM post-pro-
cessing is a promising alternative method. The complex structure of the device does not 
matter, since only boundary values on the device surface are needed for BEM. The infinite 
surrounding air domain is very precisely considered by Green’s function. Especially a mesh-
free BEM post-processing results in accurate and expressive visualizations of the radiated 
electromagnetic field.
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A combination of BEM with other methods like FEM for general problems or physical 
optics or universal theory of diffraction for electromagnetic wave problems is very attractive 
for the computation of the solution of the problem. Instead of a classical coupling of these 
methods, an application of software agent systems offers completely new possibilities  
(Jüttner et al. [13]). A complex problem is subdivided into smaller problems similar to 
domain decomposition methods. Each sub-problem is solved by a software agent, whose aim 
is to solve its local sub-problem most efficiently. The advantage of that approach is that arbi-
trary numerical methods along with their implementation can be used without modification 
of the corresponding code. Only an interface for data exchange and its coordinate based 
evaluation is required, which enables the independent selection of an appropriate numerical 
method for each sub-problem. Thus, boundary or domain values are computed and exchanged 
with software agents of all other sub-problems. Software agents not only coordinate the solu-
tion process on their own, but they also have the ability of choosing a numerical method. 
Hence, this approach is very attractive for a combination of several well-developed software 
packages with different numerical methods. Same holds for the visualisation of simulation 
results. Since software agents solve only sub-problems, the post-processing can benefit from 
the separated results by processing data only within the region interest.

The concept of coupling of different numerical methods for the solution of a complex prob-
lem can be extended to the solution of multiphysics field problems (Jüttner et al. [14]). There, 
different physical aspects of a complex problem are assigned to software agents, which are on 
the top layer of the solution process. Each physical sub-problem is handled by a software 
agent, which chooses the numerical method for the solution of the sub-problem. Based on 
performance criteria rated by a user this results in a mixture of different numerical methods 
within a solution sequence. Furthermore, also different numerical libraries and solver config-
urations can compete within a calculation process to provide the result as fast as possible 
(Jüttner et al. [15]). Alternatively, also the calculation of parameter sweeps and optimisation 
tasks benefit from this naturally parallel setup.

A significant advantage of solving a multiphysics field problem with the help of software 
agents is that not only numerical methods are chosen for each physical problem but also dif-
ferent meshes can be used. Examples are overlapping domains within a multiphysics problem 
where the physics suggest different meshes based on the considered different material prop-
erties. The values, which are needed for another physical sub-problem, are computed in the 
same manner as the aforementioned post-processing approach. Furthermore, a software agent 
is able to fetch values from other agents, which compute these values on demand.

For some multiphysics problems the coupling is relatively weak. For instance, if the tempera-
ture distribution inside an electric conductor is approximately homogeneous, electric conductivity 
is homogeneous, too. Then, a BEM can be used for the solution of the sub-problem. If the tem-
perature distribution is inhomogeneous along with inhomogeneous electric conductivity, a FEM 
is preferred. This change of the numerical method easily realized by the software agent system. 
This also includes iterative domain decomposition approaches based on the Schwarz formula-
tion. Sub-problems with a strong coupling benefit from the redundancy and the fault tolerance 
during the calculation when using a segregated and distributed approach.

4 NUMERICAL RESULTS
Two examples are considered to demonstrate that the presented concepts work reliable and 
advantageous in practice.
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4.1 High voltage insulator

The electric field of a high voltage insulator is studied as a first example. Since the insulator 
has linear material properties, an indirect BEM formulation has been chosen to compute the 
electric field strength between the electrodes inside the insulator and in the surrounding air 
domain.

The surfaces of the device have been discretized using second order quadrilateral boundary 
elements. A Galerkin method is applied to obtain a linear system of equations, which is 
solved iteratively using GMRES with a Jacobi preconditioner. The matrix of the equation 
system is compressed with the help of a classical FMM. Singular integrals are computed 
using highly optimized code. All methods for the solution of the problem are implemented in 
C++ and parallelized with OpenMP standard.

The results are extracted for a post-processing based on another BEM implementation. 
There, the focus was on flexibility and not on maximum performance. The post-processing 
software is implemented in C# and has interfaces to the above-mentioned BEM solver and 
to commercial FEM code. Meshes are imported too. Since the post-processing is independ-
ent of the solution, order of elements or type of elements can be changed. Especially linear 
triangles are often used in visualization because of hardware supported rendering capabili-
ties. Singular integrals are implemented in a very flexible manner to enable the treatment of 
all kind of boundary elements. Visualization algorithms are integrated to apply a powerful 
meshfree computation of field lines (Fig. 1) or isosurfaces (Fig. 2).

4.2 Wet casing of an antenna including a lens

Now, the propagated wave of an antenna within its wet casing with an inserted lens is evalu-
ated. Therefore, a FEM model of the electric field as dependent variable is created and 

Figure 1: Field lines of the electric field strength of a high voltage insulator.
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updated in a next engineering step by an additional description of the temperature. This leads 
to a bi-directionally coupling between the dependent variables and enables the regard of 
electric losses within the materials and their temperature dependent behaviour within the 
simulation.

The applied software agent system performs a physics based decomposition of the prob-
lem. Since the initial model only contains a description of the electric field, redundant 
resources are used automatically to evaluate a best performing solver. The proposed solver is 
used after updating the model. The physics based decomposition now generated sub-prob-
lems that use the already calculated results as initial values for the consequently following 
iterative calculation process. This decomposition further allows the separated treatment of 
the mixed complex and real degrees of freedom by using optimised numerical libraries. A 
sub-problem dependent application of the methods BEM and FEM for different domains is 
also possible (Jüttner et al. [15]).

The overall result of the calculation process is shown in Fig. 3. For its calculation, different 
discretisations for the sub-problems were used. Different shape functions were used by the 
software agents due to the considered physics. Distinct discretisation were chosen since the 
material properties within the physics differ.

5 CONCLUSIONS
A concept for an application of different numerical methods for the solution of complex field 
problems has been shown. Especially boundary element methods are predestined for such a 
coupling of numerical methods. A separation of solution of the problem and post-processing 

Figure 2: Isosurface of the electric potential of a high voltage insulator.
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enables rich possibilities for efficient and flexible computations. Different algorithms and 
implementations of the same method or different methods can be combined in nearly arbi-
trary manner. Modern software techniques like software agents support this concept and 
extend it to the solution of complex multiphysics field problems.
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