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AbstrAct
environmental perception and monitoring play essential roles in maritime automation. besides radar, 
the use of LidAr for maritime surveillance has been increasing in recent years thanks to its high ac-
curacy, high data density and good robustness against varying lighting conditions. this paper presents 
a novel approach for an adaptive shape-fitting technique using LidAr point clouds in maritime ap-
plications, improving the object-tracking performance. the clustered LidAr point clouds are fitted 
into bounding boxes or elliptic cylinders depending on their geometric shapes. A fitting score based on 
mean squared error is used for the shape decision. Afterwards, the extracted objects are associated with 
those in the past frames and tracked using an adaptive extended kalman filter. the proposed algorithm 
is validated in simulation and post-processing using real-world test data. in simulations, the proposed 
adaptive shape-fitting technique shows a high object positioning and heading accuracy and guarantees 
a good object-tracking behaviour with a positioning error of 1.5 m. the proposed algorithm’s efficiency 
and robustness are further validated using test data recorded in the real-world using an unmanned sur-
face vehicle equipped with LidAr and gnss in rostock harbour, germany. test results show that the 
proposed adaptive shape-fitting technique helps the multi-object tracker reach a 2d position error of 
approximately 2 m with an update rate of 10 hz, which is sufficient for object tracking in maritime ap-
plications. the size accuracy is improved by 10%, and heading accuracy is improved by 16% compared 
with multi-object tracking approaches only using L-shape fitting. 
Keywords: maritime surveillance, multi-object tracking, object detection, shape fitting

1 introdUction
multi-object tracking is one of the essential tasks in maritime automation. in cooperative 
manoeuvring or path crossing, an unmanned surface vehicle (Usv) is required to detect 
and track objects in its environment for trajectory planning and collision avoidance. object-
detection and object-tracking frameworks provide an estimate of the object’s pose (e.g., 
position, heading) and dynamic (e.g., linear velocity, angular velocity) over time. there-
fore, object detection and tracking are critical aspects of our project gALiLeonautic 2 [1], 
aiming to elevate the automation level and enable cooperative interaction among maritime 
participants.

the standard devices used for environment perception and surveillance in maritime appli-
cations are radar sensors and the automatic identification system (Ais). radar allows the per-
ception of objects at kilometre distances. but radar measurements are limited with their low 
accuracy and resolution. marine radars have blind areas in the near field (<500m), in which 
the object detection accuracy is low. furthermore, noise due to sea clutter complicates the 
detection of small profile objects [2], [3]. Ais allows vessels to broadcast their position and 
route information to other vessels and be localized and possibly avoided. nowadays, ships 
300 gross tonnages and upwards are required to use Ais equipment. nevertheless, critical 
issues still exist with Ais-only solutions, such as low update rate, unpredictable faulty mes-
sages due to human error and insufficient availability for small vessels.
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due to radar and Ais’s limitations, different authors [3], [4], [5] proposed the environ-
ment perception using LidAr as an extension for near field detection. compared with radar, 
LidAr can perceive the near field environment in a higher resolution and accuracy with 
height information for more accurate object detection and tracking. in these approaches, the 
LidAr point clouds are first divided into clusters belonging to separate objects. in [3] and 
[4], the authors have treated each object as a mass point, approximating the objects’ position 
with the centre of the cluster itself without considering the object’s geometry. neglecting size 
information may lead to a collision when the objects are closed to the ego vehicle. to improve 
the positioning accuracy and avoid potential collisions, we should consider each object’s 
geometry into the positioning, which means the LidAr point clusters should be fitted into 
geometric shapes, so that the size and heading of the objects can also be determined. the 
authors in [5] have used elliptical cylinders to fit only one object, assuming that this object 
has elliptical shapes and no ground truth is available for the positioning accuracy. to improve 
the positioning accuracy and avoid oversized fitting, we should decide if the obstacle has a 
rectangular or elliptical shape since the maritime participants’ shape is various. even for the 
same vessel, different parts, e.g., the elliptical bow and the rectangular stern, are scanned 
while driving. Wrongly fitting an elliptical object into rectangular bounding boxes or the 
other way round may also lead to wrong size or heading determination.

Addressing the limitations mentioned above, we propose a novel shape-fitting technique 
for multi-object detection and tracking in maritime applications. depending on its geometry, 
each LidAr point cluster is fitted either into a bounding box using L-shape fitting or an 
elliptical cylinder using ellipse fitting. to find the best L-shape-fitting method for maritime 
application, we also summarize and compare three different L-shape-fitting methods, [6], [7] 
and [8], which are commonly used in the automotive sector. the shape-fitting results are then 
forwarded into adaptive extended kalman filter (Aekf) respectively for multi-object track-
ing (mot). the framework considers the unique requirements for maritime use – including 
various object shapes, dimensions, and motion profiles – and is flexible for an extension 
with radar or Ais to extend the perception scope. the proposed algorithm is tested both in 
simulation and using test data recorded in the real-world. With the new adaptive shape-fitting 
technique, the subsequent mean object-tracking accuracy should reach 2m at positioning,  
± °20 at heading. At the same time, the computational efficiency should be kept high with a  
10 hz repetition rate.

2 methodoLogY

2.1 system design

figure 1 presents the algorithm structure for object detection and tracking using LidAr. in 
the pre-processing module, the point clouds are grouped into clusters based on position den-
sity using the modified euclidean clustering method. Afterwards, the shape-fitting module 

figure 1: proposed algorithm structure for LidAr object detection and tracking.

https://www.linguee.com/english-german/translation/the+other+way+round.html
https://www.linguee.com/english-german/translation/the+other+way+round.html
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converts the clusters corresponding to separate objects to an object list containing position, 
orientation and object size. each object description is extracted from the shape that best fits 
the cluster point cloud to generate reliable values for the geometrical properties. the current 
object detections are subsequently associated with previously tracked objects using object 
position and size information. in the mot part, we use a bank of Aekf to track the associ-
ated objects. every Aekf tracks a single object such that the total number of tracked objects 
can be kept flexible. We adapt the noise covariance matrix according to the object’s visibility 
in sensor view so that temporarily erroneous measurements do not impact the estimation 
performance. this paper focuses on the module adaptive shape fitting and mot.

2.2 summary of shape-fitting methods

figure 2 generalizes the problem statement of both L-shape and ellipse fitting: each of these 
algorithms takes as input a list of points inn×2 in x and y axis, where n is the number of 
points in the cluster. the output of these algorithms is the shape’s central point P x y0 0 0, ,( )  
heading θ (along the longest side of the fitted shape) and dimension l and w. since the ves-
sels’ shapes are usually incomplete ellipse, the length of the shape and the central point P

0 

are then adjusted by finding the minimal and maximal point along the major axis, such that 
the incomplete elliptic boundaries can be determined. the box or elliptic cylinder’s height h 
is defined as the vertical distance between the highest and lowest points. We neglect the pitch 
and roll angles due to their low relevance for trajectory planning and collision avoidance.

2.2.1 L-shape fitting
given a set of 2d points S = ( ) = …{ }x y i ni i, | , , , ,1 2  the process of fitting an L-shape can be 
described as an optimization problem:
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figure 2:  general geometry definitions of the shape fittings: Left: L-shape fitting for a con-
tainer. right: ellipse fitting for a small boat.
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the solution of the optimization problem thus parameterizes two straight lines that approxi-
mate the object’s visible edges. the four corner points of the rectangle { , | , , , }P x y ii i i( ) =1 2 3 4  
in fig. 2 can be determined by finding the furthest point associated with each line. While the 
linear regression of edge points with two straights represents a quadratic optimization prob-
lem, the additional problem of set association to the appropriate lines does not. hence, the 
optimization problem does not have a direct analytic solution. in this section, we summarize 
and compare three methods to solve the L-shape-fitting problem:

(1) brute force method: the Authors in [8] formulated the fitting problem by finding the 
optimized vector n and c: n = [cos θopt  sin θopt]

T,  c = [c
1, opt  c2, opt]

T so that the sum of the euclid-
ean distance of all the points to their related l

1
 or l

2
 can be kept as minimal. According to our 

problem statement, we adapt and summarize the algorithm in [8], as shown in Algorithm 1. 
the splitting of S to P and Q is conducted using a brute force method: first, the cluster points 
are sorted according to their position, and then all the possible point combinations are tried. 
finally, the optimized P and Q that produce the lowest sum of euclidean distance, projected 
with eigenvalue, are chosen. this method guarantees a robust way of choosing optimal set 
combinations but requires the point cloud to be sorted and is computationally expensive for 
a large point cloud set

Algorithm 1 L-shape fitting using Least square method (adapted from [8])

Input: sorted 2d point cloud S = ( ) = …{ }x y i ni i, | , , ,1 2
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(2) rotation method: to avoid the large for-loop of going through each cluster point, [7] 
proposed a method that searches for the best fitting rectangle among a list of incremen-
tally rotated rectangles. As shown in Algorithm 2, by defining a searching resolution δ,  this 
method iteratively tries every possible heading θ from , and finds the best fitting heading θ 
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by comparing a fitting score β. this score β considers the distance of the points to the related 
line l

1
 or l

2
. compared with the least squares method, the rotation method could avoid the 

high computational load but need to go through a for-loop with all the possible heading. the 
computational load is proportional to the desired heading resolution δ. 

Algorithm 2 L-shape fitting using rotation method (Adapted from [7])

Input: 2d point cloud S = ( ) = …{ }x y i ni i, | , , ,1 2

for k = →0 90 / ,δ  step 1, do
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(3) corner point determination: to further reduce the computational load, the authors in [6] 
proposed an L-shape-fitting method based on corner point searching. As shown in Algorithm 
3, the two diagonal corner points of the L-shaped cluster P x y P x y1 1 1 2 2 2, , ,( ) ( )  are firstly 
determined as the ones located at the minimum and maximum x or y values. Afterwards, the 
third corner point is determined by finding the furthest point to the diagonal line drawn by  
P

1
and P

2
, thus a rectangle is constructed with them. this method executes much faster than 

the other methods; nevertheless, this method’s accuracy should be proven, especially by deal-
ing with complex cluster points projected from 3d to 2d.

Algorithm 3 corner point determination

Input: 2d point cloud S = ( ) = …{ }x y i ni i, | , , ,1 2

P x y P x y1 1 1 2 2 2, , ,( ) ( )( )= ( )most distant S // find diagonal points in S
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2.2.2 ellipse fitting
due to diverse vessels’ shapes, ellipses can better fit those vessels with elliptical hulls. the 
ellipse-fitting problem can be formulated as finding the optimal 2d ellipse to fit the cluster 
points. if an ellipse is described as

         
E x y ax bxy cy dx ey f

with the constraint b ac

,

,

( ) = + + + + + =

− <

2 2

2

0

4 0
               (4)

where the coefficients a to f describe the ellipse. the optimization problem can be defined as 
finding the optimal coefficient with the minimal sum of squared error (sse).

            SSE ax bx y cy dx ey fellipse
a b c d e f

i

i i i i i i= + + + + +( )
∈
∑min

, , , , ,
S

2 2 2
              (5)

the optimization is solved using the method proposed in [9]. Unlike the ellipse-fitting method 
proposed in [5], which assumes all the objects have a complete elliptical shape, we cut the ellipse 
based on the maximal distance of the point clouds projected onto the major axis, as shown in 
fig. 2 (b). this method avoids the problem of fitting oversized shapes in the point cloud as in [5].

2.3 selection of fitting geometry

As shown in fig. 1, the shape-fitting step generates the best fitting shapes (box or elliptic 
cylinder) using the clusters as input. tests have shown that these two shapes can be fitted reli-
ably to all relevant surface objects. rectangular vessels and floating containers can be fitted 
in a box using L-shape fitting, whereas boats or ferries can better be represented using elliptic 
cylinders. therefore, we fit the point clouds using both L-shape and ellipse fitting and choose 
the better-fitted shape based on the mean squared error (mse). 

We propose a method based on the mse to choose the geometry best fitting the point cloud 
shape for a clustered point set. As shown in Algorithm 4, the cluster points  are fitted using both 
L-shape fitting and ellipse fitting, in which the mse of both methods are compared. the fitted 
shape with less mse is chosen. the mse of the chosen shape is then used in the Aekf in mot.

Algorithm 4 shape decision

Input: 2d point cloud S = ( ) = …{ }x y i ni i, | , , ,1 2

MSE
n

x y c xBox

i

n

i Box i Box Box i Boxcos sin , sin= + − − +
=
∑1

1

1min θ θ θ yy ci Box Boxcosθ −



2

MSE SSEEllipse ellipse=
n

1  

if MSE MSEEllipse Rectangle<
shape = ellipse
else
shape = rectangle
end if
Output: P x y l w MSE0 0 0, , , , , ,( ) θ  shape
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2.4 multi-object tracker

We proposed a similarity comparison method based on bhattacharyya distance in our early 
work for the object association [10]. After the object association, each object is registered 
with a unique id and subsequently tracked using its associated Aekf. We use one Aekf 
for each object so that the number of tracked objects is flexible. this also allows for a more 
straightforward implementation as compared to one size-adaptive filter that tracks all objects. 
Like a standard kalman filter, each Aekf consists of prediction and correction parts. the 
state vector is first predicted based on a generally rigid body model and then corrected by the 
most recent measurement. the measurement covariance matrix is adapted based on the cur-
rent measurement quality, affected by the object’s pose towards the central sensor point. the 
state vector x consists of 9 elements:

          x =

 .p p v v l w hx y x y

T
θ θ                               (6)

where P
x
 and P

y
 denote the object’s 2d centre position, corresponding to P

0
 in shape fitting; 

v
x
 and v

y
 denote the 2d velocity;θ  and θ denote the heading and the rate of turn; l, w and h 

denote the length, width and height of the objects.
the LidAr measurements y can be defined as

    y=

 .p p l w hx y

T
θ                  (7)

the model used in this paper is a general nonlinear rigid body model:

   x F x G w w Qk k k k k k k+ = + ∈ ( )1 0, , ,                 (8)

      y h x v v Rk k k k k k= ( )+ ∈ ( ), , , 0                (9)

where k is the time index, x
k
 denotes the state vector defined in (6). F

k
 and G

k
 are the linear 

matrices for state transitions and noise according to a point mass model. y
k
 is the measure-

ment vector and h
k
 is the nonlinear measurement equation of x

k
. w

k
 and v

k
 are additive gauss-

ian noise, where Q
k
 and R

k
 denote the process and measurement noise covariance matrices, 

respectively. 
As discussed in shape fitting, the quality of the object’s measurement should be considered. 

here, we define a 5 1× visibility vector of the object v to denote the trust in the measurement 
y

k
, where the elements in p

vis
 are within [0, 1]. Aside from the MSE determined by shape fit-

ting, the visibility vector of the object p
vis

 also depends on the object’s relative pose:

       pvis , , ,= − − −( )f p p p p MSEx x y y sensorsensor sensor
θ θ               (10)

where pxsensor
,  pysensor  and θsensor  describe the ego sensor pose. the parameters p px xsensor

− , 
p py ysensor
−  and MSE have negative correlations with p

vis
: the visibility would decrease if the 

object is far away from the ego sensor, or the MSE is high. for specific relative heading, e.g., 
θ θ− = ° °sensor or0 90 , the visibility is also low.

       R R p pvis visk k
T

r= + −( ) −( )0 1 1                (11)
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where R
k0  

is the noise coefficient matrix at full visibility, and r ≥ 0  denotes a positive pre-
defined constant factor. in the case of poor object visibility, R

k
 is increased, and the Aekf 

puts more weight on the state prediction, and the measurement’s impact on the estimation 
is consequently reduced. According to the measured noise covariance, the R

k0
 is defined as 

follows.

     Rk diag0
2

0 1 0 1 0 05 0 5 0 5=  ( ). . . . .               (12)

3 resULts

3.1 simulation results

to validate the proposed algorithm, we have first constructed simulation scenarios using the 
ros gAZebo toolbox. figure 3 (a) demonstrates a simulation scenario where the local 
Usv carries a simulated velodyne puck vLp-16 LidAr – the same type as in the real-world 
test – that can perceive the environment at . As Usv model, we have used the virtual robotX 
model [11] and evaluated the performance of the presented shape-fitting methods (refer to 
section 2.2) with both a container and a crew boat as target objects (see fig. 3 (a)). figure 3 
(b) shows a real-time visualization of the shape-fitting results. the point clouds are first clus-
tered and then fitted into rectangular cubes or elliptical cylinder after conducting the selection 
algorithm presented in section 2.3. L-shape fitting is selected for container and ellipse fitting 
for the crew boat and the fisher boat. the ellipse fitting of those vessels shows a qualitative 
improvement than only using L-shape fitting for all the objects. in the following, we analyse 
the performance of the adaptive shape fitting in detail. it is expected that the positioning, size 
and heading accuracy should be improved using the proposed algorithms.

We have conducted the same test drive with each shape-fitting method separately to com-
pare the performance. for evaluating the three L-shape-fitting methods, we use the container 
with a base area of 8.6 m × 3.6 m as the target object since it has a rectangular shape. based 
on the mse, the automatic geometry selection (section 2.3) selects L-shape fitting as the 
proper method, as shown in table 1, which presents the resulting performance. here, we first 
use the intersection over union (ioU) – which is the overlapped area divided by the unioned 
area – to evaluate the fitted shape’s alignment with the reference. to further evaluate the 

figure 3:  A simulation scenario in ros gAZebo. (a): the constructed scenario in gAZebo. 
(b): the sampled point clouds and the corresponding fitted shapes visualized in ros 
rviz.
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critical metrics, we compare the 2d positioning error, the absolute heading error, the relative 

size error (
l l

l

measured ref

ref

−
 and 

w w

w

measured ref

ref

−
) and the runtime for one execution.

the brute force method shows the lowest ioU among L-shape methods since it requires 
sorted point clouds as input and is sensitive to noise. by projecting the 3d point clouds to 
2d, more noises are introduced, leading to worse sorting performance and lousy brute force 
method performance. the rotation method has the highest ioU and best size estimation but 
suffers from a large heading error and a high execution. the high heading error is due to 
3d projection, which can generate more than 2 lines instead of an L-shape, breaking this 
method’s assumption. the corner point method has the shortest execution time and shows 
good positioning and heading accuracy close to the rotation method’s results. the projection 
from 3d to 2d will not affect this method since the corner points can be kept the same in 
this projected input. considering all these metrics, we chose to implement the corner point 
method for L-shape fitting in our algorithm because it shows good overall accuracy with a 
comparably low computational load.

in addition to the container, we evaluate the L-shape and ellipse fitting (section 2.2.2), and 
the geometry selection (section 2.3) methods on the crew boat. As opposed to the container, 
the 43 m × 10.4 m crew boat exhibits an elliptical shape again confirmed by the geometry 
selection method based on mse. in the comparison in table 1, the ellipse fitting overall 
shows the highest accuracy in all metrics combined with a low execution time. choosing 
ellipses as fitting shapes for crew ships or other elliptical vessels helps improve the overall 
shape-fitting performance. 

the shape-fitting results are used as input for the tracking algorithm (see section 2.4). to 
validate its performance, fig. 4 illustrates the fisher boat’s detailed tracking result. in com-
parison, the performance of the Aekf with only L-shape fitting is also presented. it shows 
histograms of the 2d position error, absolute velocity error, heading error and size error. 
the mean 2d position error is around 1,5 m. more than 90 % of the positioning results have 
accuracy within 2 m which is higher than the intermediate result after shape fitting. from 
the estimated 2d velocity v

x
 and v

y
 by the Aekf, the absolute velocity is compared with the 

reference. the mot overall shows a good motion profile with low velocity error. to com-
pare with the Aekf using only L-shape fitting, the proposed solution shows a noticeable 

table 1: performance comparison of L-shape- and ellipse-fitting methods for the container

target 
object

Algorithm ioU position 
error

heading 
error

Length 
error

Width 
error

mse runtime

ellipse fitting 20% 2 m 10 ° 20.4 % 35.4 % 0.05 m 0.465 ms

container brute force 27% 1.6 m 9 ° 16.3 % 52.8 % 0.025 m 0.882 ms

rotation 39% 1.6 m 15 ° 5.8 % 22 % 0.022 m 2.36 ms

corner point 35% 1.5 m 7 ° 7 % 33 % 0.021 m 0.065 ms

crew 
boat

ellipse fitting 61% 2.1 m 1.8° 6% 27% 0.02 m 0.918 ms

brute force 53% 2.4 m 2.1 ° 13.5 % 35.6 % 0.045 m 4.722 ms

rotation 53% 2.4 m 19.1 ° 13 % 60 % 0.053 m 8.612 ms

corner point 54% 2.7 m 7 ° 10.2 % 27.8 % 0.043 m 0.284 ms

https://www.linguee.com/english-german/translation/intermediate+results.html
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figure 4:  detailed simulation results of the fisher boat. the tracking errors, including abso-
lute 2d position, velocity, heading and size error, during a test drive in the simula-
tion are determined with ground truth and plotted in a normalized histogram.

improvement in heading and size estimation. in this case, the ellipse fitting determines a 
stable heading using the vessel’s curve hull information, whereas the heading generated from 
L-shape is switched orthogonally. however, the size (length × width) is underestimated by 30 
% due to the angular-discrete LidAr measurements.

3.2 post-processing using real-world test data

As shown in fig. 5, we have tested the algorithms using an Usv, which is equipped with a 
velodyne puck vLp-16 LidAr sensor at the front, a septentrio Asterx-3 gnss receiver and 
a Litef Lfk-100 inertial navigation system. the non-parallelized mot algorithm is imple-
mented and executed on a laptop with a 2.6 ghz intel® core i5 processor. for reference 
purposes, we have used an elliptical rubber dinghy equipped with the septentrio Asterx-3 
gnss receiver. the real-time kinematic solution of the gnss receiver with an accuracy of 
around 5 cm is only used as a position reference. to generate a qualitative heading refer-
ence, we assume that the rubber boat has not drifted, based on which the course over ground 
(cog) is equal to the heading. the cog can then be determined using the speed in x and y 
directions.

during the real-world test, the Usv moves close to one of the main fairways in rostock 
harbour. the left plot in fig. 5 shows the positioning results of a test drive, where the Usv 
and the reference boat are moved randomly but with high dynamic. during the test, the 
LidAr can detect all the objects in view simultaneously, and the positioning results of the 
adaptive shape fitting are shown in green dots. Afterwards, the currently detected objects are 
associated with those in the past, assigned with unique ids (presented in different colours) 
and tracked using Aekf.

figure 6 presents the tracking result of the rubber dinghy compared with the reference. 
to evaluate the proposed adaptive filtering technique’s performance, we compare it with 
the approach, which only uses the brute force L-shape-fitting method with Aekf. during 
the test, the ellipse is selected to fit the reference boat most of the time. the Aekf with the 
new adaptive fitting method has a good 2d positioning accuracy of around 2 m and have a 
better position and velocity estimation even when the LidAr measurements are missing (at 
65 sec to 75 sec). the less noisy positioning results from the adaptive shape fitting stabilize 
the Aekf estimation. the proposed method also shows a better performance on size and 
heading estimation by producing fewer errors since a better-fitted shape is chosen (mostly 
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figure 5:  experimental setup (right) and test results overview (left). the Usv is equipped 
with LidAr and running the mot; a rubber dinghy is taken as a reference target 
for the mot test. both of the vessels are property of the University of rostock [12].

figure 6:  results using the real-world test data: the Aekf with the adaptive shape fitting 
for the reference boat is shown in blue. the Aekf with L-shape fitting is shown 
in green.
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ellipse) during the test drive. however, a large heading error is shown between 35 sec to 50 
sec, where the reference boat is very close to the Usv, stirring up waves and causing noisy 
LidAr detection due to the spray. in such a scenario, fast boats and their spray cannot be 
discerned from one another by our LidAr system. therefore, the adaptive fitting selection 
frequently switches between ellipse and L-shape since both methods generate similar mse. 
since the positioning, size and velocity estimation can still be kept in high accuracy during 
this period, a dangerous collision can still be avoided using the detection technique. to sum 
up, the proposed algorithm has an overall high accuracy, achieving a positioning accuracy of 
around 2 m, improving the size and heading estimation accuracy by  and  respectively, com-
pared with the mot with only L-shape fitting.

4 concLUsion
this paper proposes a new adaptive shape-fitting method for mot using LidAr for mari-
time applications. After clustering the LidAr point clouds, these clusters are fitted into two 
common geometric shapes. We have compared three L-shape-fitting methods and chose the 
corner point determination method for L-shape fitting due to the high accuracy and compu-
tational efficiency. to extend the shape fitting for maritime use, we have implemented ellipse 
and L-shape fitting and selected, for each object, the method yields the lowest mse for each 
object. Afterwards, the objects are tracked using a bank of Aekf, in which the noise covari-
ance matrix is adapted based on the measurement quality.

the proposed algorithms are validated both in simulation and real-world tests. the simula-
tion in ros gAZebo verifies the algorithm regarding position, size and velocity accuracy. 
to further verify the real-time performance, we conducted a test drive using a Usv in ros-
tock, germany. in post-processing these real-world data, the algorithm can identify multiple 
object shapes within sensor view. the mean positioning accuracy of the tracking is around  
with a  repetition rate. compared with our early work, which uses only L-shape fitting for 
mot, the new approach shows higher accuracy in size (improved by 16%) and heading esti-
mation (improved by 10%). in summary, the proposed LidAr mot with adaptive shape fit-
ting meets the close-field object-tracking requirements, which compensate for the drawbacks 
of Ais and radar solutions. in the future, we integrate the LidAr mot with further sensor 
modules for maritime application to extend the perception scope, compensating for the lim-
ited LidAr detection range.
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