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ABSTRACT
In this paper, we introduce a new node positioning algorithm (NPA) for determining suitable locations 
of the computational nodes that are a typical feature of mesh reduction numerical methods for partial 
differential equations – specifically, the Complex Variable Boundary Element Method (CVBEM). The 
novelty of the introduced NPA is a ‘position refinement’ procedure, which facilitates the relocation 
of nodes that are already being used in the current CVBEM model when such relocation reduces the 
maximum error of the associated CVBEM model. The results of the new NPA (referred to as NPA2) 
are compared to the results obtained using the recent NPA described in [1] (referred to as NPA1). We 
compare NPA1 and NPA2 by modeling two example Dirichlet boundary value problems that have 
been selected due to having regions of extreme curvature in the analytic flow regime that are difficult to 
model computationally. Consequently, these problems serve as good benchmark problems for testing 
the efficacy of the current and future NPAs. Our empirical findings suggest that the use of NPA2 can 
reduce the maximum error of the associated CVBEM model by several orders of magnitude compared 
to the corresponding result obtained using NPA1.
Keywords: applied complex variables, Complex Variable Boundary Element Method (CVBEM), mesh 
reduction methods, node positioning algorithms (NPAs), potential flow.

1 INTRODUCTION
Mesh generation is often the most time-consuming step when modeling a partial differential 
equation (PDE) using popular domain discretization techniques such as the finite element 
method or the finite volume method [2]. For this reason, some recent research has been 
directed toward increasing the viability of mesh reduction numerical methods [3–7]. Many 
mesh reduction methods require the user to select locations for computational nodes (also 
referred to as source points) during the modeling process. For these particular numerical 
methods, the accuracy of the resulting boundary value problem (BVP) model depends on the 
locations of the computational nodes. Since these locations are determined by the modeler, it 
is useful to develop procedures for selecting suitable locations for the computational nodes, 
such that the resulting BVP model is accurate and can be calculated in a timely manner.

Several node-positioning algorithms (NPAs) have been proposed to address the problem of 
efficiently determining suitable locations for computational nodes. However, ‘a practical and 
efficient way of achieving (an optimal location of the computational nodes has) yet to be 
found’ [8]. Instead, the relevant research has primarily been focused on devising NPAs that 
result in BVP models with at least satisfactory – even if not necessarily optimal – accuracy. 
Likewise, this work does not attempt to provide an NPA that determines the optimal locations 
for computational nodes with respect to error minimization of the resulting BVP model. 
Rather, we propose an improvement to the NPA described in [1], which is referred to as 
NPA1 in this work. Our proposed NPA, referred to as NPA2, improves upon NPA1 by incor-
porating a new node position refinement procedure. The refinement procedure allows for the 
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possible replacement of already selected nodes when it is discovered that there exists a dif-
ferent candidate node whose use when replacing a node already in use would result in a BVP 
model with less error in the chosen norm.

The refinement procedure is implemented by temporarily exchanging an existing node of 
the BVP model with an unused node, one node at a time. If the considered exchange reduces 
the maximum error of the BVP model, then the exchange is made permanent. Otherwise, the 
original node is reincorporated in the BVP model and a new possible exchange is examined. 
Consequently, each time the refinement procedure is applied to an existing node, one of two 
possibilities will happen to the current BVP model:

1. The current BVP model is kept and there is no change in the approximation error of the 
model. This is the situation when no possible exchange would reduce the error of the 
BVP model.

2. An existing node is exchanged for a new node in a different location, resulting in a BVP 
model that more closely satisfies the given boundary conditions and, thereby, reduces the 
error of the BVP model.

Importantly, the second possibility is only implemented if the considered exchange of 
nodes reduces the approximation error of the BVP model. Hence, the refinement procedure 
has a monotonic, non-increasing effect on the approximation error of the BVP model.

In this work, NPAs 1 and 2 are coupled with the Complex Variable Boundary Element 
Method (CVBEM), which is a numerical solver for the Laplace equation and related PDEs 
[9–11]. The coupled CVBEM and NPA programs will be used to solve two Dirichlet BVPs 
of the Laplace equation, which have been selected due to the computational difficulty of 
modeling potential flow in areas where there is extreme curvature in the flow regime.

2 THE NODE POSITIONING ALGORITHM
Let Ω ⊆ � be a simply connected domain. The set Ω denotes the problem domain and mod-
eling area of interest. The first step of the NPA is to define a region, denoted Ɲ ⊆ �, where 
candidate computational nodes will be located. 

It is usual to impose restrictions on where the candidate computational nodes can be 
located. For example, in the CVBEM, computational nodes must be located in the exterior of 
the problem domain. Furthermore, while original implementations of the CVBEM used com-
putational nodes located exclusively on the boundary of the problem domain, such as in [12], 
newer implementations have focused on locating the computational nodes in the exterior of 
the set Ω ∪ Ω∂ , as demonstrated in [13].

For real numbers a, b, c, and d, a common definition of Ɲ is as follows:

 Ɲ = + ∈ ≤ ≤ ≤ ≤ + ∉ ∪ ∂{ : , , }x iy a x b c y d x iy� Ω Ω . (1)

The next step is to discretize the region defined by Ɲ into a finite set of candidate compu-
tational nodes. The number of candidate computational nodes that are used to discretize Ɲ is 
a parameter that can be determined by the modeler, but we note that we have had success 
discretizing Ɲ with between 250 and 1,000 candidate computational nodes. The number of 
candidate computational nodes is denoted nc, and Ɲnc

 is used to denote a discretization of Ɲ 
with nc candidate nodes.

Let n ≤ nc denote the number of computational nodes that the user has specified for use in 
the formulation of the approximation function. The NPA is designed to select a subset of n 
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nodes from the set Ɲnc
 of candidate nodes. The nodes selected by the NPA become the nodes 

used in the implementation of the mesh reduction PDE method. For both NPAs 1 and 2, the 
required n nodes are selected one at a time, as opposed to selecting multiple nodes, or all n 
nodes, at once. Consequently, when the NPA is determining the location of the ith node (with 
2 ≤ i ≤ n), the locations of the (i – 1) already selected nodes and the locations of the 2i already 
selected collocation points are considered fixed. Therefore, determining the location of the 
ith node is reduced to a single variable optimization problem where the only independent 

Figure 1:  Example discretization Ɲ500. Candidate computational nodes are shown as black 
dots. Candidate collocation points are shown as green dots. For visualization 
purposes, only 50 collocation points are shown, but we typically use 1,000 such 
points. The modeling area of interest is shown in red.

Figure 2:  Example discretization Ɲ1,000. Candidate computational nodes are shown as black 
dots. Candidate collocation points are shown as green dots. For visualization 
purposes, only 50 collocation points are shown, but we typically use 1,000 such 
points. The modeling area of interest is shown in red.
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variable is the location of the ith node, and the objective function is the error of the corre-
sponding BVP model.

After testing all of the currently available candidate computational nodes (i.e. the candi-
date computational nodes that are not presently being used in the CVBEM model) against the 
objective function, the ith node is selected as the candidate computational node that results in 
the BVP model of i total nodes with the least maximum error in the BVP model.

After determining the location of the ith node, the refinement procedure allows for the first 
i – 1 nodes to be exchanged for different candidate nodes if the proposed swap would result 
in a BVP model with less error in the chosen norm. The value of each proposed swap is meas-
ured using the objective function described above.

The steps for implementing the new NPA are described below. These steps are presented 
specifically for use with the CVBEM, which requires two collocation points to be selected for 
each node that is selected. However, this algorithm can be adapted for use with other numer-
ical PDE methods that only require selecting one collocation point for each computational 
node used in the model.

1. Input: n ≤ nc, which is the number of nodes that need to be selected. For the CVBEM, n 
is also the number of terms used in the linear combination of the approximation function.

2. Create: a set of candidate computational nodes, Ɲnc
, and a set of candidate collocation 

points. The set of candidate collocation points must include at least 2n points when ap-
plied to a CVBEM model.

3. Initialize: select two collocation points to be used in the model.
4. Repeat (a)–(d) for k = 1, ..., n: construct the BVP model one node at a time by 

repeating the following steps.
a. Test all of the currently available candidate computational nodes to see which node 

Figure 3:  This is a representative illustration of the objective function for NPAs 1 and 2. In 
NPAs 1 and 2, we evaluate each candidate node to see what the maximum error of 
the CVBEM model would be if we were to use the corresponding basis function in 
the approximation function. This figure depicts the logarithm (base 10) of the 
maximum error of each potential CVBEM model corresponding to one of the 
currently available candidate node locations. The location of the ith node is 
determined by searching exhaustively for the candidate location that minimizes this 
objective function.
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will result in the approximation function of least error when added to the BVP model. 
Add the new computational node to the model. The model now has k computational 
nodes and 2k collocation points.

b.   Repeat (i)–(iii) for j = 1, ..., M1: where M1∈�  is the number of iterations of refinement 
to be performed after the selection of each new node.

i. Let p = mod(j, k) denote the index of the computational node whose location is be-
ing refined. If p = 0, then set p = k.

ii.  Remove the pth-selected node from the CVBEM model. The model now has k – 1 
nodes and 2k collocation points.

iii.  Test all of the candidate computational nodes to see which node will result in the 
CVBEM model of least maximum error. Add the new computational node to the model 
replacing the pth-selected node that was removed in step 4(b)ii. The model now has k 
computational nodes and 2k collocation points.

c. Use the k-term approximation function to measure the error of the BVP model with  
      respect to fitting the known boundary conditions.

d. If k ≠ n: Identify the two local maxima of the error function that have the greatest mag 
      nitude and add one collocation point to the BVP model corresponding to each of the two     
       maxima. The model now has k computational nodes and 2(k + 1) collocation points.
5. Repeat (a)–(c) for j = 1, ..., M2: where M2 ∈�  is the number of iterations of refinement 

to be performed after selecting all n nodes.
a. Let p = mod(j, k) denote the index of the computational node whose location is be-

ing refined. If p = 0, then set p = k.
b. Remove the pth-selected node from the CVBEM model. The model now has k – 1 

nodes and 2k collocation points.
c. Test all of the candidate computational nodes to see which node will result in the 

CVBEM model of the least maximum error. Add the new computational node to the 
model replacing the pth-selected node that was removed in step 5(b). The model now has 
k computational nodes and 2k collocation points.

In the algorithm above, the refinement procedure is implemented twice: once at step 4(b) 
and for the second time at step 5. The implementation that occurs at step 4(b) refines the loca-
tions of the computational nodes as each new node is added to the model. The implementation 
that occurs at step 5 only refines the locations of the computational nodes after all n nodes have 
been selected. If a faster implementation of the NPA is desired, step 4(b) can be omitted.

2.1 Illustration of the refinement procedure

The critical difference between NPAs 1 and 2 is the refinement procedure. As previously 
mentioned, the refinement procedure allows for the possible replacement of already selected 
nodes when it is discovered that there exists a different candidate node whose use when 
replacing a node already in use would result in a BVP model with less error in the chosen 
norm. To illustrate this idea, we will walk through the refinement procedure being applied to 
a hypothetical BVP model of three computational nodes and six collocation points. The 
refinement procedure can be thought of as occurring in the following phases:
Phase 1 –  Initial orientation: Figure 6 depicts the initial orientation of the algorithm-se-

lected collocation points and algorithm-selected computational nodes of a 
hypothetical BVP model.
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Phase 2 –  Location updates: The steps presented in Figs 7–10 show the locations of the 
algorithm-selected nodes changing during the refinement process as new BVP 
models are found that further reduce the approximation error.

Phase 3 –  No further location updates: Figures 11 and 12 show that no new BVP models 
have been found that would further reduce the approximation error, so the 

Figure 4:  Flow chart depicting the steps of NPAs 1 and 2. The steps that are unique to NPA2 
are colored red. The steps that are shared by both NPA1 and NPA2 are colored blue. 
M1 denotes the user-specified number of iterations of refinement to be performed 
upon the selection of each new node. M2 denotes the user-specified number of 
iterations of refinement to be performed after all n nodes have been identified.
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locations of nodes 2 and 3 are not changed. Once no more changes to the locations 
of the algorithm-selected nodes are made, the final positions of the algorithm-se-
lected nodes are used.

Phase 4 –  Final orientation: Figure 13 depicts the final orientation of the algorithm-selected 
nodes after the refinement procedure has been executed.

In both NPAs 1 and 2, nodes are selected one at a time until a BVP model of n nodes has 
been assembled. In NPA1, once a node is selected, it is permanently selected. However, in 
NPA2, we re-evaluate already selected nodes to see if a different node might further reduce 
the maximum error based on the selection of new nodes and collocation points that have 
occurred since the node in question was originally selected.

If a different node does, in fact, further reduce the error of the BVP model, then we 
exchange the old node for the new one that has been determined to reduce the error. While 
this search for a new node is being conducted, all of the other nodes and collocation points 

Figure 5: Legend of symbols used in the refinement illustration in Figs. 6–13.

Figure 6: The starting situation after three nodes and six collocation points have been selected.
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Figure 7:  The position of Node 1 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, a better position 
is found, so Node 1 is moved.

Figure 8:  The position of Node 2 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, a better position 
is found, so Node 2 is moved.
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Figure 9:  The position of Node 3 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, a better position 
is found, so Node 3 is moved.

Figure 10:  The position of Node 1 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, a better position 
is found, so Node 1 is moved.
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Figure 11:  The position of Node 2 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, NO better 
position is found, so Node 2 does not move.

Figure 12:  The position of Node 3 is being re-evaluated to see if a different position would 
further reduce the maximum error of the BVP model. In this case, NO better 
position is found, so Node 3 does not move.
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that are currently in the BVP model are considered to be fixed, so that the search amounts to 
a single variable optimization problem, which can be solved by exhaustively checking all 
candidate nodes.

3 APPLYING THE NPA TO A CVBEM MODEL
In this work, we demonstrate the NPA by coupling it with the CVBEM to determine the loca-
tions for the computational nodes for two potential flow problems. When applying the NPA 
to any PDE numerical approximation method, it is necessary to have a familiarity with the 
underlying method. Consequently, this section includes a brief review of the CVBEM meth-
odology for the purpose of highlighting some of the considerations that are useful to make 
when integrating the NPA with a PDE numerical approximation method. Only a general 
overview of the CVBEM is given, and the reader is referred to [14–18] for more detailed 
descriptions of the CVBEM.

The CVBEM is a generalized boundary integral equation method based on the Cauchy 
integral theorem for analytic complex variable functions [12]. The CVBEM is related to other 
numerical techniques such as the real variable boundary element method, see [19, 20], and 
the method of fundamental solutions, which involve placing computational nodes along or 
near the boundary geometry and defining basis functions of particular types that typically 
solve the governing PDE under study. While the CVBEM was originally conceived to approx-
imate the solution to two-dimensional Laplace BVPs, the method has since evolved to be 
capable of approximation of Laplace BVPs in three and higher spatial dimensions [21]. Fur-
thermore, the CVBEM has also been expanded over the years to include capabilities of 
modeling both Dirichlet and mixed BVPs [13, 22].

Figure 13:  The final situation after the refinement procedure is complete. The next step is to 
determine the locations of two new collocation points and then to determine the 
location of Node 4. After these positions have been determined, the refinement 
procedure will be implemented again.
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Due to the CVBEM’s ability to model a variety of problems of interest in science and 
engineering, as well as the CVBEM’s compatibility with the use of computational nodes, it 
is a useful PDE numerical method for demonstrating the proposed NPA. The remainder of 
this section illuminates the relationship between the CVBEM basis functions and the compu-
tational nodes that are the focus of the NPA.

3.1 The CVBEM approximation function and basis functions

Let Ω ⊆ � denote a simply connected domain and ω : Ω → � be an analytic function of the 
complex variable z = x + iy, where i = −1 and x y, ∈�. The complex variable function ω 
consists of two real variable functions, denoted ϕ : � �→ 2 and ψ : � �2 → , respectively, 
such that ω(z) = ϕ(x, y) + iψ(x, y). Since ω is analytic in Ω, ϕ and ψ are related by the Cauchy–
Riemann equations:
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∂
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A consequence of eqn (2) is that both ϕ and ψ are harmonic functions within Ω. The key 
insight of the CVBEM approach is to create an approximation function, denoted ω̂, consist-
ing of a linear combination of complex variable functions that are each analytic within Ω, so 
that both the real and imaginary parts of ω̂ satisfy Laplace’s equation within Ω:

 

w( ) ( ), .z c g z zj j
j

n

= ∈
=
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Equation (3) is known as the CVBEM approximation function. The gj(z) : Ω → � are ana-
lytic within Ω and are selected by the modeler (note: for brevity, we may refer to the set gj(z), 
j = 1, . . . , n, as ‘analytic functions’ without the additional specification that the functions only 
need to be analytic within Ω). The coefficients c j → � are complex numbers, each composed 
of two real constants, αj = ℜ(cj) and βj = ℭ(cj). Since each cj corresponds to two degrees of 
freedom (d.o.f), there are a total of 2n d.o.f to be determined in a CVBEM model. The par-
ticular values of these d.o.f are dependent on the geometry of the problem, the boundary 
conditions, the selected gj(z), and the locations of the computational nodes as determined by 
the NPA. Of note, in this paper, d.o.f is used exclusively to refer to the 2n unknown values of 
the coefficients in eqn (3) and not to the locations of the candidate nodes or candidate collo-
cation points for the NPA, or other potential d.o.f, such as the particular discretization of Ɲ, 
among others.

Since the real and imaginary parts of ω̂ are harmonic functions within Ω, the CVBEM 
approximation function satisfies Laplace’s equation within the problem domain. Hence, the 
only error in eqn (3) is due to error in continuously satisfying the boundary conditions. There-
fore, the 2n d.o.f are chosen so that the CVBEM approximation function satisfies the given 
boundary conditions as closely as possible within a given norm.

While various families of basis functions have been examined for use with the CVBEM 
approximation function, as in [23], only certain types of basis functions require the use of 
computational nodes. In order to demonstrate the NPA, we will use analytic functions 
obtained by direct numerical integration of the Cauchy integral equation, since these basis 
functions incorporate the use of computational nodes. The well-known Cauchy integral equa-
tion is

ˆ
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and as demonstrated in [12], when straight line segments are used to discretize the boundary 
of the problem domain, the numerical integration of eqn (4) results in the following sum:
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The functions (z – zj) ln(z – zj) are referred to as the basis functions of the CVBEM approx-
imation function, and the points zj are the branch points of these basis functions. The branch 
points are interpreted as the computational nodes whose locations will be determined by the 
NPA. These nodes are referred to as ‘computational nodes’ because they do not have a phys-
ical meaning within the problem context, and they only exist due to the use of these particular 
basis functions.

Lastly, we note that the locations of the computational nodes can be selected arbitrarily 
within Ɲ by the NPA, provided that each node is in a distinct location, which is necessary for 
the basis functions to be linearly independent. The specific locations of the computational 
nodes that are determined by the NPA do not change the physical interpretation of the approx-
imation function. Rather, the locations of the selected nodes primarily affect the degree to 
which the CVBEM approximation function can satisfy the given boundary conditions by 
collocation, least squares, or another boundary condition fitting technique.

3.2 Treatment of the basis function branch cuts

Each basis function used in this work is of the form (z – zj) ln(z – zj), where zj ∈ Ɲ. These 

functions have a branch cut emanating from zj, along which the CVBEM approximation 
function is discontinuous. Therefore, in order to obtain a CVBEM approximation function 
that is continuous within the problem domain, it is necessary to rotate the branch cut associ-
ated with each basis function, such that it does not intersect the problem domain, as illustrated 
in Fig. 14.

Figure 14:  Illustration of the rotation of a typical branch cut. Some angle ∆θj is added to θj, 
so that the branch cut corresponding to (z – zj) ln(z – zj) does not intersect the 
problem domain or other branch cuts. The rotation angle, ∆θj, is related to α by  
∆θj = π − α.

ˆ Ɲ
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Rotating the branch cuts is most conveniently accomplished in polar coordinates. Using 
the usual conversion to polar coordinates, we have z − zj = Rje

iθj , with θj = arg(z −zj) often 
defined in the interval (–π, π] and Rj = z z j− . Thus, the basis functions are represented in 
polar coordinates as follows:
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Rotating the branch cut is accomplished by redefining the interval of the angle to be θj,α ∈ 
(α, α+2π], where α is the desired angle of the branch cut. Thus, we are interested in mapping 
the interval (−π, π] to (α, α + 2π]. This is accomplished by the following:

 
q q pj j, mod( )a a, a= − +2  (7)

The branch cuts are rotated counter-clockwise by the amount ∆θj, where ∆θj satisfies α = π 
∆θj. The rotation angle ∆θj can be selected by the modeler as long as the rotated branch cut 
does not intersect the problem domain. Let θj,α be defined as in eqn (7). Then, the basis func-
tions with rotated branch cuts are given by:
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3.3 Numerical implementation of the CVBEM

The ability to directly integrate eqn (4), which results in an approximation of the Cauchy 
integral equation as a finite sum, means that there is no need to do numerical quadrature in 
the computer implementation of the CVBEM procedure. Instead, after the NPA has been 
used to determine the locations of the collocation points and computational nodes that will be 
used in the CVBEM model, the only computational task is to compute the coefficients of the 
CVBEM approximation function. Determining these coefficients is done by solving a system 
of linear equations as will be detailed in this section.

These coefficients are complex, and hence have both a real and an imaginary part: cj = αj 
+ iβj. Likewise, the basis functions in eqn (3) are complex variable functions, and hence also 
have both a real and an imaginary part: gj(z) = λj(x, y) + iµj(x, y). Thus, from eqn (3), it 
follows:
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The real and imaginary parts of eqn (9) are, respectively,
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z x y

j j
j

n

j j

j j

[ ] = = −

[ ] = =

=
∑

1

xx y x y
j

n

j j, ) ( , ).
=

∑ +
1

b l
 (10)

In many applications, ϕ̂  and ψ̂ are interpreted physically as the approximate potential and 
stream functions, respectively. Since ω̂ is analytic within Ω, we have

 
∆ = ∆ = + ∈f y( , ) ( , ) , ( ) .x y x y x iy0 0and Ω  (11)

Notice in Eqn (10) that ϕ̂  and ψ̂ are defined using the same coefficients and basis functions. 
Thus, as soon as one of either the approximate stream or potential functions is known, it is 
immediately possible to determine the other function. This important observation is a conse-
quence of the Cauchy–Riemann equations, which can be used to determine the conjugate 
harmonic function up to an additive constant of any harmonic function. Thus, for example, the 
CVBEM can be used to obtain the approximate stream function using boundary data exclusively 
from the conjugate potential function, which is one of the useful properties of the CVBEM.

Collocation leads to a system of 2n equations in 2n unknowns. For Dirichlet BVPs, the 
unknown coefficients are determined by collocation of either the real or imaginary part of the 
CVBEM approximation function (depending on the nature of the given boundary conditions) 
with the given boundary data. In the example Dirichlet BVP that follows in Section 4.1, we 
assume boundary conditions are specified from the stream function, ψ. Consequently, we 
perform collocation with the imaginary part of the CVBEM approximation function. The set 
of 2n equations is given as follows:

 

y a m b l y( , ) ( , ) ( , ) ( , ), , . . . ,

(

x y x y x y x y i ni i j j i i
j

n

j j i i i i= + = =
=

∑
1

1 2

xx yi i+ ∈∂) .Ω
 (12)

In eqn (12), ψ(xi, yi) denotes the boundary condition specified at (xi, yi). By using colloca-
tion to determine the coefficients of the CVBEM approximation function, we have set ψ̂(xi, 
yi) = ψ(xi, yi) at each of the 2n collocation points. This guarantees that the CVBEM approxi-
mation function will be exact at the locations of the 2n collocation points in the absence of 
truncation and round-off errors.

Lastly, it should be noted that the system of equations defined by eqn (12) results in a 
dense, non-symmetric matrix equation, which is more computationally difficult to solve than 
the sparse, symmetric matrix equations that are a usual feature of FEM models.

3.4 Error estimation

A convenience of modeling with the CVBEM is that complex variable theory provides a 
simple technique for determining the maximum error of the CVBEM approximation function 
in the l∞ norm. Let ϕ ∈�2 denote a harmonic function that is the analytic solution of the BVP 
of interest, and let ϕ̂  = ℜ w( )z[ ] ∈�2 denote the CVBEM approximation of ϕ . Error estima-
tion is based on the following two key observations:

1. The analytic solution, ϕ , satisfies Laplace’s equation and is, therefore, harmonic in Ω.

ˆ

ˆ

ˆ

ˆ

ℜ

ℭ

ˆ ˆ

ˆ
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2. The CVBEM approximation function, denoted ω̂, is an analytic complex variable func-

tion. Consequently, ϕ̂  =  ℜ[ω̂ ], which is the CVBEM approximation of the target function  

ϕ , is also harmonic in Ω.

Now, we define the error function, ε(x, y), as follows:

 e( , ) ( , ) ( , )x y x y x y= −f f  (13)

Since the error function given in eqn (13) is the difference between two harmonic func-
tions, ε(x, y) is itself harmonic in Ω. Consequently, by the maximum modulus principle for 
harmonic functions, e( , )x y  attains its maximum on ∂Ω. Hence, the maximum error of the 
CVBEM approximation function occurs on ∂Ω:

 
max ( , ) max ( , ) .

( , ) ( , )x y x y
x y x y

∂ ∂
≤

Ω Ω
e e  (14)

A reasonable approximation of max ( , )
( , )x y

x y
∂Ω

e  can be obtained by computing the value of 
e( , )x y  at many locations along the problem boundary. As e( , )x y  is computed at more loca-
tions along the boundary, the estimation of max ( , )

∂Ω
e x y  will improve, provided that the ∂Ω 

error evaluation points are reasonably spaced.

3.5 Obtaining the flow nets

Since ω̂ is a linear combination of analytic complex variable functions, both the real and 

imaginary parts of ω̂, which are ϕ̂  and ψ̂, respectively, can be evaluated continuously within 
Ω. Consequently, continuous computational estimates of both the approximate potential 
function and the approximate stream function are provided within Ω without the need for any 

interpolation or other post-processing of either ϕ̂  or ψ̂, which is a key benefit of the CVBEM 
that is not a typical feature of FEM models.

An important property of the CVBEM is that once ϕ̂  has been computed, the correspond-
ing conjugate function ψ̂ can be determined uniquely up to an additive constant as a 

consequence of the Cauchy–Riemann equations. Since ϕ̂  and ψ̂ are related in this way, they 
are referred to as conjugate harmonic functions. As conjugate harmonic functions, their con-
tour lines (level curves), which are the potential lines and streamlines, respectively, are 
orthogonal at their points of intersection throughout the domain. When these sets of contour 
lines are superimposed, the resulting plot is the standard flow net graphical display, which is 
a commonly used tool for visualizing potential flow in engineering as well as the applied 
sciences and mathematics [22, 24].

The flow nets produced in Section 4 were developed using the computer program MAT-
LAB. The flow nets were created using the internal contour plot function of MATLAB. 
Specifically, we created a two-dimensional grid of points in the area where we wanted to 
produce a flow net. Then, we evaluated the real and imaginary parts of the CVBEM approxi-
mation function at each of the points in the grid. Then, using the x and y coordinates of the grid 
points as well as the values of the real and imaginary parts of the CVBEM approximation 
function at these points, we used the contour plot function to create the corresponding flow net.

We conclude this section with a remark about developing flow nets for BVPs of the Lap-
lace equation in three or higher spatial dimensions. As previously mentioned, the flow nets 
that are developed with the CVBEM for two-dimensional problems are possible as a result of 
the Cauchy–Riemann equations, which state that the real and imaginary parts of an analytic 

ˆ
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complex variable function are harmonic conjugates. However, the Cauchy–Riemann equa-
tions only apply to analytic complex variable functions in two spatial dimensions, and there 
is not a natural analog for analytic functions in higher spatial dimensions. Therefore, for 
problems in three or higher spatial dimensions, it is necessary to develop the conjugate har-
monic function using the usual vector gradient techniques as a post-processing step, such as 
would be done when using a FEM model.

4 DEMONSTRATION OF THE NEW NPA
In this section, we demonstrate the coupled CVBEM/NPA1 and CVBEM/NPA2 methodolo-
gies by modeling two Dirichlet BVPs. The first problem concerns potential flow over a 
half-cylinder, and the second problem concerns potential flow in a corner and over a half- 
cylinder. These problems are fundamental and are often used as components in the develop-
ment of very sophisticated potential flow models. Moreover, these problems were selected 
because of the extreme curvature observed in areas of their analytic solutions, such as near 
the stagnation points. The curvature makes modeling these areas computationally difficult. 
Consequently, high-precision computational modeling is required in order to achieve satis-
factory approximations of these potential flow problems.

In the following problems, we make the standard assumptions of an ideal and incompress-
ible fluid with no vorticity. Under these conditions, the velocity potential describing the flow 
situation is a scalar function satisfying Laplace’s equation. Thus, the problems are well suited 
for modeling with the CVBEM. The example problems demonstrate the ability of NPA2 to 
reduce the CVBEM model error beyond the level achieved by the NPA1 result of equivalent 
model size.

Moreover, the availability of the analytic solutions for these example flow situations, as 
given in eqns (15) and (16), allows for a precise description of the computational error of the 
CVBEM model by direct comparison with the analytic solution. Thus, we can quantitatively 
assess the ability of both NPAs to determine suitable locations for the computational nodes 
of the CVBEM model by measuring the maximum errors of each outcome based on the given 
analytic solution.

4.1 Example problem 1 – potential flow over a half-cylinder

The analytic representation of the velocity potential for this problem is given in [24] as

 
w( ) , , .z z z z z= + [ ] ≥ ≠1 0 0  (15)

A formal description of the test problem follows in Table 1. Since the exact solution is 
analytic everywhere except at z = 0, the real and imaginary parts of ω are harmonic functions 
in � \ { }0  and thus harmonic throughout Ω ⊂ � \ { }0 .

Figures 17–21 depict various views of the CVBEM flow net approximation. In these fig-
ures, we have given emphasis to the north pole of the half-cylinder, as well as to the stagnation 
points because these are the regions of the flow situation in which the curvature of the ana-
lytic solution is most extreme.

As reported in Table 2, for n ≥ 10, the new NPA improved the accuracy of the CVBEM 
models by at least an order of magnitude – and up to six orders of magnitude in one instance. 
The key ingredient to this better performance is the refinement procedure, which allows the 
locations of previously located nodes to change as the model develops. Thus, we conclude 
that the NPA2 consistently produces a more accurate CVBEM model than is produced using 
NPA1 when modeling this benchmark problem of potential flow over a half-cylinder.

ℭ
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Table 1: Example problem 1 – problem description.

Problem domain Ω = f{{(x, y) : −3 ≤ x ≤ 3, 0 ≤ y ≤ 3,
and x2 + y2 ≥ 1} 

Governing PDE ∇ =2 0y

Boundary conditions
ψ(x, y) =    [z + 

1

z  ], (x, y) ∈ ∂Ω

Number of candidate 
computational nodes

1,000

Number of candidate 
collocation points

500

Table 2: Example problem 1 – maximum error and time elapsed for various CVBEM models.

Number 
of basis 
functions

Number 
of d.o.f.

Unrefined method (NPA1) Refined method (NPA2)

Maximum 
error

Time elapsed 
(s)

Maximum 
error

Time elapsed 
(s)

10 20 2.376217e-02 2.600493 6.731285e-03 26.847856

20 40 1.324917e-03 5.413931 1.639780e-05 101.625993

30 60 2.123033e-05 10.021206 3.783824e-09 199.087752

40 80 3.277548e-07 11.846832 1.816325e-13 408.392388

50 100 6.777379e-11 16.865822 1.163514e-13 672.789040

Figure 15:  Maximum absolute error of CVBEM models resulting from the use of NPAs 1 and 
2 for approximations using n = 1, . . . , 50 terms in the approximation function. The 
horizontal axis denotes the number of terms used in each CVBEM model. The 
vertical axis measures the logarithm (base 10) of the maximum error for each 
CVBEM model.

ℭ
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Figure 16:  Comparison of approximation error measured on the boundary for CVBEM 
models resulting from the use of NPAs 1 and 2. The error on the boundary is 
mapped to the line segment [0, 1] on the horizontal axis. The vertical axis measures 
the logarithm (base 10) of the error for each CVBEM model.

Figure 17:  Magnified view of the CVBEM flow net approximation for the flow regime 
depicted near the half-cylinder obstacle. The curvature of the solution increases 
near the north pole of the half-cylinder and the stagnation points. Potential lines 
are shown in orange and streamlines are shown in blue.

Figure 18:  Comparison of the streamlines resulting from the use of NPAs 1 and 2 to determine 
the nodes and collocation points of a CVBEM model with n = 20. These are the 
streamlines near the north pole of the obstacle at (0, 1).
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4.2 Example problem 2 – potential flow in a corner and over a half-cylinder

We consider another potential flow problem with Dirichlet boundary conditions. This prob-
lem models potential flow that turns in a corner and subsequently goes over a half-cylinder 
obstacle. The analytic representation of the velocity potential for this problem is given by

 
w( ) , , .z z z

z
z z= + +

−
≠ ∈2 10

5
5 Ω  (16)

Figure 19:  Comparison of the potential lines resulting from the use of NPAs 1 and 2 to 
determine the nodes and collocation points of a CVBEM model with n = 20. 
These are the potential lines near the north pole of the obstacle at (0, 1).

Figure 20:  Comparison of the streamlines resulting from the use of NPAs 1 and 2 to determine 
the nodes and collocation points of a CVBEM model with n = 20. Notice that as 
the curvature of the solution becomes more extreme, NPA2 results in a CVBEM 
model that more accurately tracks the curvature of the analytic solution than 
NPA1. These are the streamlines near the stagnation point at (1, 0). The flow near 
the stagnation points approaches potential flow in a 90° bend, which is a 
challenging flow situation to model accurately.
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Figures 24–28 depict various views of the CVBEM flow net approximation. In these fig-
ures, we have given emphasis to the north pole of the half-cylinder, as well as to the corner in 
the bottom left of the problem domain because the curvature of the flow situation is most 
extreme in these areas.

As reported in Table 4, for n ≥ 10, the new NPA improved the accuracy of the CVBEM 
models by at least an order of magnitude – and up to three orders of magnitude in two 
instances. The key ingredient to this better performance is the refinement procedure, which 
allows the locations of previously located nodes to change as the model develops. Thus, we 
conclude that the NPA2 consistently produces a more accurate CVBEM model than is pro-
duced using NPA1 when modeling this benchmark problem of potential flow in a corner and 
over a half-cylinder.

Table 3: Example problem 2 – problem description.

Figure 21:  Comparison of the potential lines resulting from the use of NPAs 1 and 2 to 
determine the nodes and collocation points of a CVBEM model with n = 20. 
These are the potential lines near the stagnation point at (1, 0). The flow near the 
stagnation points approaches potential flow in a 90° bend, which is a challenging 
flow situation to model accurately.

Problem domain Ω = {(x, y) : −0.325 ≤ x ≤ 8, 0 ≤ y ≤ 5  
             and (x − 4.9125)2 + y2 ≥ 0.9752}

Governing PDE ∇ =2 0f

Boundary conditions
ϕ (x, y) =    

 
z z

z
2 10

5
+ +

−






Number of candidate 
computational nodes

250

Number of candidate 
collocation points

1,000

ℜ
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Table 4: Example problem 2 – maximum error and time elapsed for various CVBEM models.

Number 
of basis 
functions

Number 
of d.o.f.

Unrefined method (NPA1) Refined method (NPA2)

Maximum 
error

Time elapsed 
(s)

Maximum 
error

Time elapsed 
(s)

10 20 1.757095e+00 1.178742 1.015156e-01 18.173322

20 40 2.165579e-02 2.326950 4.914030e-04 69.857409

30 60 2.325910e-04 3.681986 2.317752e-07 156.962888

40 80 2.979909e-06 5.477926 1.598643e-09 346.051462

50 100 1.362534e-08 6.828074 1.928342e-10 546.901546

Figure 22:  Maximum absolute error of CVBEM models resulting from the use of NPAs 1 and 
2 for approximations using n = 1, . . . , 50 terms in the approximation function. 
The horizontal axis denotes the number of terms used in each CVBEM model. 
The vertical axis measures the logarithm (base 10) of the maximum error for each 
CVBEM model.

Figure 23:  Comparison of approximation error measured on the boundary for CVBEM 
models resulting from the use of NPAs 1 and 2. The error on the boundary is 
mapped to the line segment [0, 1] on the horizontal axis. The vertical axis measures 
the logarithm (base 10) of the error for each CVBEM model.
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Figure 24:  CVBEM approximation of the flow regime in the area of interest for example 
problem 2. The curvature of the flow situation is greatest near the origin and near the 
half-cylinder obstacle, which makes these areas difficult to model computationally. 
Potential lines are shown in orange and streamlines are shown in blue.

Figure 25:  Comparison of the streamlines resulting from the use of NPAs 1 and 2 to determine 
the nodes and collocation points of a CVBEM model with n = 20. These are the 
streamlines near the north pole of the obstacle.

Figure 26:  Comparison of the potential lines resulting from the use of NPAs 1 and 2 to 
determine the nodes and collocation points of a CVBEM model with n = 20. 
These are the potential lines near the north pole of the obstacle.
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5 DISCUSSION AND CONCLUSION
This paper proposes a new NPA, which we refer to as NPA2, for determining suitable loca-
tions of the computational nodes that are a common feature of mesh reduction methods for 
solving PDEs. The novelty of NPA2 is due to the refinement procedure that is described in 
Section 2. The key contribution of the refinement procedure is that it facilitates the exchange 

Figure 27:  Comparison of the streamlines resulting from the use of NPAs 1 and 2 to determine 
the nodes and collocation points of a CVBEM model with n = 20. These are the 
streamlines near the lower left-hand corner of the problem domain. Notice that in 
this case, the streamlines resulting from the use of NPA2 much more accurately 
track the curvature of the analytic solution compared to the results from NPA1.

Figure 28:  Comparison of the potential lines resulting from the use of NPAs 1 and 2 to 
determine the nodes and collocation points of a CVBEM model with n = 20. 
These are the potential lines near the lower left-hand corner of the problem 
domain. Notice that in this case, the potential lines resulting from the use of NPA2 
much more accurately track the curvature of the analytic solution compared to the 
results from NPA1.
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of previously selected computational nodes when making such a change would result in a 
BVP model with less error. As a result, the refinement procedure has a monotonic non-in-
creasing effect on the maximum error of the BVP model to which it is applied. The new NPA 
is compared to the algorithm presented in [1], which we refer to as NPA1.

In [1], the authors showed that the use of NPA1 could improve the accuracy of a coupled 
CVBEM/NPA1 model compared to a CVBEM model using an arbitrary node allocation 
scheme. The benefit of NPA1 was that nodes could now be used more efficiently to reduce the 
error of a CVBEM model, thereby rendering it unnecessary to use as many nodes or terms in 
a CVBEM approximation function to achieve a desired level of maximum error. With NPA2, 
we have continued this effort and shown that it is possible to obtain even more efficient uses 
of the computational nodes. Consequently, using NPA2, it is possible to obtain a desired level 
of maximum error using even fewer nodes than would be required when using NPA1.

In this work we coupled NPAs 1 and 2 with the CVBEM in order to model two Dirichlet 
BVPs of the Laplace type. The first example problem considers potential flow over a half- 
cylinder, and the second example problem considers potential flow in a corner followed by a 
half-cylinder. These demonstration problems involve the computational difficulty of mode-
ling flow regimes with regions of extreme curvature near the stagnation points. The 
computational difficulty associated with these problems may qualify them as good bench-
mark problems for future evaluations of NPAs.

The maximum errors obtained using both NPAs 1 and 2 are reported for CVBEM models 
of various sizes. In general, we conclude that the use of NPA2 results in a CVBEM model that 
is more accurate than the model produced using NPA1.

Moreover, from the figures, it is observed that the streamline outcomes from NPA2 are a 
significantly closer plotting approximation to the streamline outcomes from the analytic solu-
tion. This result can be of immense importance when dealing with problems such as, for 
example, tracking the movement of groundwater contamination. The ability or inability to 
track such contamination can trigger environmental, health, and legal repercussions, which, 
therefore, makes the introduction of this improved NPA an important advancement in the 
modeling capabilities of such problems.

Finally, we emphasize that the new NPA is applicable to the large class of PDE numerical 
methods in which the accuracy of the BVP model depends on the locations of computational 
nodes or source points. For demonstration purposes, we chose to couple the NPA with the 
CVBEM, but the possible uses of the NPA are more general and include coupling with other 
mesh reduction numerical methods. Therefore, the successful coupling of NPA2 with the CVBEM 
that was demonstrated in this paper is only the first of potentially many more successful applica-
tions of the NPA that can be developed with other mesh reduction methods for PDEs and suggests 
the possibility for increased high-precision computational modeling with these methods.
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