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ABSTRACT
In general, internal cells are required to solve large deformation problems using a conventional 
boundary element method (BEM). However, in this case, the merit of BEM, which is the ease of data 
preparation, is lost. Triple-reciprocity BEM enables us to solve elastoplasticity problems with a small 
plastic deformation. In this study, it is shown that two-dimensional large plastic deformation problems 
with a friction coefficient can be solved without the use of internal cells, by the triple-reciprocity BEM. 
Initial stress and strain formulations are adopted and the initial stress or strain distribution is interpo-
lated using boundary integral equations. In this method, only boundary elements are remeshed. A new 
computer program is developed and used to solve several problems.
Key words: BEM; large plastic deformation; initial stress method; numerical analysis; strain harden-
ing; thin plate spline

1 INTRODUCTION
The finite element method (FEM) requires remeshing several times during large-plastic-defor-
mation analysis. Elastoplastic problems can be solved by a conventional boundary element 
method (BEM) using internal cells for domain integrals [1, 2]. In this case, however, the merit 
of BEM, which is ease of data preparation, is lost. On the other hand, several countermeasures 
have been considered. Ochiai has proposed the triple-reciprocity BEM without the use of inter-
nal cells for elastoplastic problems [3]. With this method, a highly accurate solution can be 
obtained using only fundamental solutions of a low order and by reducing the need for data 
preparation. Ochiai and Kobayashi applied triple-reciprocity BEM without internal cells to 
two-dimensional elastoplastic problems using initial stress and strain formulations [3, 4]. 
However, the weak point in our previous studies was that the numerical examples are elasto-
plasticity problems with a small plastic deformation and too simple to substantiate the theory.

In this study, triple-reciprocity BEM is applied to large-plastic-deformation problems. The 
initial stress and strain formulations are adopted and the theory is expressed using a few fun-
damental solutions. In this method, only boundary elements are remeshed. Arbitrary 
distributions of the initial stress or strain for elastoplastic analysis are interpolated using 
boundary integral equations and internal points. This interpolation corresponds to a thin plate 
spline. In this method, strong singularities in the calculation of stresses at internal points 
become weak. A new computer program was developed and applied to several elastoplastic 
problems to clearly demonstrate the theory. A constrained upsetting problem can be easily 
solved without locking and mesh rezoning by the present method.

2 THEORY

2.1 Initial stress formulation

To analyze large-plastic-deformation problems using the initial stress formulation, the 
following boundary integral equation must be solved [1, 2].
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Here, σ Ijk
[ ]1  is the initial stress rate and cij is the free coefficient. uj and pj are the jth component 

of the displacement rate and surface traction rate, respectively. Upper notation [1] is a con-
ventional term. G and W are the boundary and domain, respectively. As shown in eqn (1), 
when there is an arbitrary initial stress rate, a domain integral becomes necessary. Denoting 
the distance between the observation point and the loading point as r, Kelvin’s solution uij

[ ]1  
and pij are given by
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where n is Poisson’s ratio and G is the shear modulus. The ith component of a unit normal 
vector is denoted by ni. Moreover, let us set n’=n/(1+n) for the plane stress and r,i=¶r/¶xi. 
For large deformation Poisson’s ratio ν  approximately 0 5.  is assumed. The function ε ijk

[ ]1  in 
eqn (1) is given by [1]
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2.2 Interpolation of initial stress

Interpolation using boundary integrals is necessary to avoid the domain integral in eqn (1). 
The distribution of the initial stress σ Ijk

[ ]1  in the case of a two-dimensional problem is interpo-
lated using the integral equation to transform the domain integral into a boundary integral. 
The following equations are used for interpolation [5–10]:
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where ∇ = ∂ ∂ + ∂ ∂
2 2 2 2 2/ /x y . From eqns (5) and (6), we obtain
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This equation is the same type of equation as for the displacement ( σ Ijk
[ ]1 ) of a fictitious thin 

plate with point loads ( σ Ijk
P[ ]3 ), as shown in Fig. 1. The σ Ijk

[ ]1  values at several points and on the 
boundary are given, and the unknown point load P is obtained inversely [4, 7]. The term σ Ijk

S[ ]2  
corresponds to the sum of the curvatures of σ Ijk

[ ]1 . This fictitious thin plate is simply supported, 
and the σ Ijk

S[ ]2  values on the boundary are zero. We emphasize that eqns (5) and (6) can be 
used to interpolate the complicated distribution of the initial stress σ Ijk

[ ]1 . These equations are 
the same as those used to generate a free-form surface using an integral equation [6, 7]. In this 
study, the distribution of the initial stress is assumed to be represented by a 2.5-dimensional 
free-form surface. In this method, each component of the initial stress σ Ijk

[ ]1
 (j,k=1,2) is 

interpolated.
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2.3 Representation of initial stress by integral equation

The distribution of the initial stress is represented by an integral equation. The harmonic 
function T [ ]1  and biharmonic function T [ ]2  are generally given by
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where B is an arbitrary constant. Denoting the number of points σ Ijk
P[ ]3  as M, the curvature of 

the initial stress rate σ Ijk
S[ ]2  is given by Green’s second identity and eqn (8) as [4–7, 11–13]
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The initial stress rate σ Ijk
[ ]1  is given by Green’s theorem and eqns (7) and (8) as [4–7]
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where c =0.5 on the smooth boundary and c =1 in the domain. σ Ijk
S[ ]2 (Q) is zero because the 

fictitious thin plate is simply supported. ∂ ∂σ Ijk
S n[ ] /2  is zero for symmetric boundary. From 

eqns (10) and (11),
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Figure 1: Fictitious thin plate with unknown point loads used for interpolation.
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On the other hand, ∂ ∂σ Ijk
S n[ ] /2  can be assumed to be zero on the symmetric boundary. For 

internal points, the following equation is obtained:
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In practice, unknown ∂ ∂σ Ijk
S Q n[ ] ( ) /1 , ∂ ∂σ Ijk

S Q n[ ] ( ) /2  and σ Ijk m
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respectively, we obtain the following equations from eqns (12)-(14) [4].
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The details of this procedure are given in reference [4]. From eqns (15)–(17),
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where A−1 is the inverse matrix. If the boundary is divided into N0 constant elements, and N1 
internal points are used, the simultaneous linear algebraic equations with (2N0+N1) as 
unknowns must be solved.

2.4 Triple-reciprocity BEM

The function ε ijk
f[ ] is defined as
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Using eqns (5), (6), (18), (19) and Green’s second identity, eqn (1) becomes
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Next, the function ε ijk
f[ ] is obtained, and the relationship between the biharmonic function A[ ]1  

and Kelvin’s solution uij
[ ]1  is given by
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The biharmonic function A[ ]1  is given as
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The displacement-strain relationship is given by

 ε ijk ji k ki ju u[ ]
,

[ ]
,

[ ]( )1 1 11

2
= + , (24)

Next, the function A f[ ] that satisfies

 ∇ =
+2 1A Af f[ ] [ ] (25)

is considered. A f[ ] is generally given by

 A
r

f r
C f

e
f

f

q
e

f
[ ]

[( )!!]
[ln( ) sgn( ) ]= + + −

=

∑

2

2
22 2

1
1

1

π

. (26)

Accordingly, from eqns (24), (26), (29) and (30), ε ijk
f[ ] is obtained as [4]
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2.5 Internal stresses

The stress-strain relationship is given by
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where σ Iij
[ ]1

 is the initial stress obtained from the initial strain. The functions Skij and σ ijks
H[ ]1  in 

eqn (32) are given by
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The function σ ijks
H f[ ] is defined as
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Using eqn (35) and Green’s theory, eqn (32) becomes
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Using eqn (35) and the relationship between displacement and strain, ε ijks
f[ ] is obtained as
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2.6 Initial stress

An iterative process is used for elastoplastic analysis. The equivalent plastic strain increment 
is denoted as deP

e. The von Mises yield criterion is considered. The deviatoric stress tensor Sij 
is obtained from the stress rate in eqn (36). The plastic strain increments deP

ij are determined 
using the Prandtl-Reuss equation

 d S dij
P

ijε λ= , (38)
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where dl is a proportionality factor. Using this equation, the provisional plastic strain incre-
ments deP

ij are calculated. Using the initial stress rate on the boundary and at internal points, 
the initial stress rate is interpolated using eqn (18). The displacement and traction rates are 
obtained from eqn (20) as

 HU=GP+D1E
[1](Q)-D2V

[1]+D3V
[2]+D4E

[3]P(q). (39)

The stress rate is obtained from eqn (36) as

 s=GAP-HAU+DA
1E

[1](Q)-DA
2V

[1]+DA
3V

[2]+DA
4E

[3]P(q)-sI. (40)

The details of this procedure are the same as those of the procedure given in Ref. [1], with the 
exception of the interpolation. In this theory, the surface stress rate must be calculated to 
obtain the initial strain on the boundary. This surface stress rate can be obtained by the differ-
entiation of node displacements. The initial stress rate converges using the above iterative 
process. New coordinates of boundary elements and internal points are calculated. If a length 
of the new boundary element is larger than the standard length L0, the boundary element is 
divided into two boundary elements. If the distance between a boundary element and an 
internal point is smaller than the standard length R0, the internal point is deleted to prevent a 
numerical error in the internal stress. Subsequently, the next load increment (displacement 
increment) is added. Coulomb’s friction coefficient is considered on the contact surfaces.

3 NUMERICAL EXAMPLE
The large plastic deformation problem of a plate (length 20 mm) subjected to tension, as 
shown in Fig. 2, is solved using the von Mises yield criterion. The number of discretized 
boundary elements is 400 and the number of internal points used for interpolation is 133, as 
shown in Fig. 2. Young’s modulus Eof 210 GPa, Poisson’s ratio ν  of 0.3 and yield stress σ 0 
of 200 MPa are assumed. For large deformation, Poisson’s ratio ν  of 0.48 is assumed. It is 
assumed that the number of time steps for the tension (10 mm) and the substeps for conver-
gence are 100 and 50, respectively. Displacement load curves are shown in Fig. 3 with 
theoretical values for work hardening values H=0 and 840 MPa.

The elastoplastic problem of a plane strain punch is next solved using the von Mises yield 
criterion. This example consists of a rigid flat punch indented into a solid plane strain 

Figure 2: Tension of plate. Figure 3: History of load.
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specimen, as shown in Fig. 4. First, it is assumed that there is no friction between the specimen 
and the punch. One-quarter of the region is used for calculation. The number of discretized 
boundary elements is 400, and the number of internal points for interpolation is 153, as shown 
in Fig. 5. Young’s modulus E of 210 GPa, Poisson’s ratio ν  of 0.3, and yield stress σ 0 of 
200 MPa are assumed. It is assumed that the number of time steps for compression (5 mm) 
and substeps for convergence are 100 and 50, respectively. Displacement load curves without 
friction are shown in Fig. 6 with theoretical values for work hardening values H of 0 and 420 MPa. 
Second, the distributions of equivalent plastic strain and stress considering the friction coefficient 
(m = 0.1) are shown in Figs 7 and 8, respectively.

Finally, the constrained upsetting problem of a plane strain punch in Fig. 9 is solved using 
the von Mises yield criterion. It is assumed that there is no slip between the specimen and the 
punch. One-quarter of the region is used for calculation. The number of discretized boundary 
elements is 400 and the number of internal points used for interpolation is 153, as shown in 
Fig. 5. Young’s modulus E of 210 GPa, Poisson’s ratio ν  of 0.3, and yield stress σ 0 of 200 MPa 
are assumed. It is assumed that the number of time steps for compression (5 mm) and substeps 
for convergence are 100 and 50, respectively. A work hardening value H of 420 MPa is 
assumed. Distributions of equivalent plastic strain and stress are shown in Figs 10 and 11, 
respectively.

Figure 4: Plane strain punch 
problem.

Figure. 5: Boundary elements and internal points 
in quarter region (Number of boundary 
elements: 100).

Figure 6: History of load (m = 0).
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Figure 7: Distribution of plastic strain (m = 0.1).

Figure 8: Equivalent stress distribution (m = 0.1, MPa).

Figure 9: Constrained upsetting problem.

Figure 10: Distribution of equivalent strain in constrained upsetting problem.
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4 CONCLUSION
It was shown that two-dimensional large plastic deformation analysis can be carried out with-
out the use of internal cells, by the triple-reciprocity BEM. The fundamental solutions for this 
analysis were shown. In this method, the strong singularity that appears in the calculation of 
internal stress by the ordinary BEM becomes weak. With the use of numerical examples, the 
effectiveness and accuracy of this method were demonstrated. In this method, the merit of 
BEM, which is the ease of data preparation, is not lost because internal cells are not neces-
sary. If FEM is used, remeshing (rezoning) is necessary for large-plastic-deformation 
analysis. Only boundary elements are remeshed in this triple-reciprocity BEM.
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