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ABSTRACT

The paper presents a fluid-structure interaction analysis of fuel tanks with cylindrical and spherical
compartments partially filled with a liquid. The compound shell of revolution is considered as a con-
tainer model. The shell is supposed to be thin, so the Kirchhoff-Love linear theory hypotheses are
applied. The liquid is an ideal and incompressible one. Its properties and filling levels may be different
within each compartment. The shell vibrations coupled with liquid sloshing under the force of grav-
ity have been considered. The tank structure is modelled by a finite element method, whereas liquid
sloshing in the compartments is described by a boundary element method. A system of singular integral
equations is obtained for evaluating the fluid pressure. At the first stage, both spherical and cylindrical
fluid-filled unconnected rigid shells are considered. Different filling levels as well as small radii of free
surfaces are taken into account in problems of liquid sloshing in spherical shells. The sloshing frequen-
cies in the presence of complete or partially covered free surfaces are determined for cylindrical shells.
The boundary element method has proven to be effective and accurate in all the problems considered.
At the second stage, the natural frequencies and modes of the dual compartment tank are obtained
including sloshing, elasticity, and gravity effects.

Keywords: baffles, boundary and finite element methods, fluid-structure interaction, free vibrations,
fuel tanks, sloshing

1 INTRODUCTION
The low frequency oscillations of free surfaces in partially filled containers significantly
increase dynamic responses of structures containing liquids. This phenomenon is known as
sloshing. It can result in severe structural damage, loss of stability, and failure.

In order to suppress sloshing, a variety of methods have been proposed, simulated, and
tested. The boundary element method (BEM) has been successfully used in solution of both
linear and non-linear sloshing problems. In order to solve the large-scale problems, research-
ers developed the multi-domain boundary element method (MBEM). The multi-domain
collocation strategy was briefly introduced by Brebbia et al. [1] and then developed by Wang
and Gao [2]. The MBEM is especially effective if the computational domain has a compli-
cated structure. It is successfully applied for numerical simulation of sloshing in
multi-compartment fuel tanks with different types of baffles.

The effect of baffles on sloshing frequencies was studied by Biswal et al. [3]. The numer-
ical method using a finite element formulation was developed by Kumar and Sinhamahapatra
[4] to analyze dynamic effects of perforated vertical baffles. Sloshing in spherical tanks for
liquefied natural gas carriers was studied by Faltinsen and Timokha [5] and for water supply
towers by Curadelli et al. [6]. Ravnik et al. [7] presented a fluid-structure interaction analysis
of the cylindrical fuel tank with two compartments partially filled with a liquid. But flu-
id-structure interaction problems for fuel tanks of more complicated shapes are still not fully
described in the literature.
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2 PROBLEM STATEMENT
In this paper, we describe applications of multi-domain and single-domain boundary element
methods to the fluid-structure interaction analysis of compound fuel tanks.

Consider a fuel tank with cylindrical and spherical compartments. The internal baffles can
be installed in both compartments for slosh suppression. The structure and its sketch are
shown in Fig. 1.

Assume that both compartments are partly filled with an incompressible ideal liquid. Fluid
motion is considered to be irrotational.

Suppose o is a wetted part of the structure surfaces, S, and S, are free surfaces of the
liquid in spherical and cylindrical compartments, respectively. Let S, be S, =S, US,. The
wetted surface o consists of four parts, namely, o =S, US, , VS, S, . Here S  and
S, are the wetted surfaces of cylindrical and spherical parts, S,  is a bottom surface of the
tank and S,  is a baffle surface. The domains occupied with the liquid are denoted by 2,
and X, for cylindrical and spherical compartments, respectively. Let ,,=0%, (10X, be the
common part of wetted surface areas. The liquid densities are p, and p,, and filling levels
are hjand h, in 2’ and X, respectively. Let R, be the inner radius of the ring free surface
(Fig. 1).

Consider at first free vibrations of the empty elastic shell structure. Assume that a time
dependent vector of the shell displacements Uis given by

U= uexp(iQt); u= (u,,uz,u3 ),
where € is a vibration frequency. The time factor exp(i€2) will be omitted further on. After

separation of the time factor, the shell vibrations are described by the system of three partial
differential equations

3
DL, =Qu, j=123,
i=1

where L are linear differential operators of the Kirchhoff-Love shell theory described by
Wan et al. [8]. To obtain the natural frequencies Q, and modes u, |k =1,N ) of the shell
structure, the finite element method is applied [7].

Figure 1: Shell structure with an internal baffle, its sketch and fluid subdomains.
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Let U= (U LU U 3) be displacements of the fluid-filled elastic shell structure. After form-
ing the global stiffness and mass matrices L. and M, the following equation of motion for the
tank filled with the liquid has been obtained [7]:

LU +MU =P. (1)

Here P gives the fluid dynamical pressure onto the shell structure normal to its surface.
Assuming the flow to be inviscid and irrotational, the incompressible fluid motion in the
3D tank is described by the Laplace equation

Vi =0, ()

where @ is a velocity potential.

To determine this potential a mixed boundary value problem for the Laplace equation is
formulated in the double domain 2, U X,. The non-penetration condition on the wetted tank
surfaces o is following:

X
on

_ow

= 3
o Ot )

Here n is an external unit normal to the tank wetted surfaces, w denotes a normal component
of the displacement vector U, namely, w = (U,n). Let functions ¢, (t,x,y ) and g, (t,x,y ) be
free surface elevations in the first and second compartments (Fig. 1). By p; denote the pres-
sure on the free surfaces S,(i=1,2). Let p, be an atmospheric pressure. Then the kinematic
and dynamic boundary conditions on S, and S, can be expressed as follows:

9¢;
Soi ) at ’ pi po

o
on

=0; i=12, 4)

Soi

On the free surfaces, the following formulae for p, (i=1,2) are valid:

—_ [ 624_ é’
P =Py P o 86,

, o0
5 PPy =P, E+g§2

So1 S0,
Here g is the gravity acceleration.

Denote by @ values of the velocity potential ® at points P € 3%, (i =1,2).

Equations (1) and (2) are solved simultaneously using the shell fixation conditions rela-
tive to U, boundary conditions (3) and (4), and the following expressions for dynamical
components of the liquid pressure on elastic walls:

o0
_pIF; PESWI USbot;
o0
p,=Pn)=3 -p, P PeS  \Z,;
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To define modes of shell vibrations coupled with liquid sloshing, we will represent displace-
ments of the fluid-filled tank as U=uXexp(icw?). Here w and u; are natural frequencies and
vibration modes of the fluid-filled shell structure.

3 THE MODE SUPERPOSITION METHOD FOR COUPLED DYNAMIC PROBLEMS
Consider the vibration modes of the fluid-filled tank in a form

N
U=>cu,, &)
k=1

where ¢, =c, (t) are unknown coefficients, and u, are eigenmodes of the empty tank. In
other words, the mode of vibration of the fluid-filled tank is determined as a linear combina-
tion of eigenmodes of the empty shell structure. Note that the following relationships are
fulfilled [7]

L(uk):QiM(uk), (M(u, ),u_].):ékj . (6)
Hence

(L(u,)u)=Q5, ()

where Q, is the k-th frequency of the empty tank vibrations. Equations (6) and (7) show that
the abovementioned vibration modes have to be orthonormalized with respect to the mass
matrix.

Let also introduce u; as follows:

u, =

u; PeX,
u; Pel,.

ko

Consider @ as a sum of two potentials ® = ®, +®,as it was done by Degtyarev et al. [9].
Represent potential @, as the following series:

o, :Zék (t)¢lk' ®)

Here the time-dependant coefficients ¢, (t) are defined in eqn (5). To determine functions ¢,
k =1,N ), we have the following boundary value problems:

ap,,
on

o
_Wt. ¢1k

V' =0; PeX: .
’ ’ s, 7 on

Sbot :Wk; ¢1k |Si0 :O' (9)

Here, w, ,w; are normal components of the mode u, in the first and second compartments,
wp = (uj{ ,n). So functions ¢, and ¢, are solutions of problems (9) for i = 1 and i = 2, accord-

ingly, as in Ref. [10].

To determine potential ®@,, we must solve the boundary value problems of fluid vibrations
in two disconnected compartments with rigid walls. These problems are solved separately for
spherical and cylindrical parts. To obtain the sloshing modes, the following sequence of
boundary value problems for auxiliary functions y, (i = 1,2) is formulated:
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, oy’ oy
Al//l :O; l//ZL :0; ll/Zk :0;
* an Swi 6“ Sbot
a i a a i o
Wl 2% M perl 0. k=1N; i=12.
on i ot ot R

Suppose hereinafter y,, (t,x, y,z) =e"'¢,, (x, y,Z). Then we obtain the following eigen-
value problems [9, 10] for each ¢ka (i = 1,2) in the liquid domains Zi(i = 1,2):

. op' op' o¢' 1 .
A" =0| ;—*| =0, == =0, —==2L9"| ;| 4,,dS =0. 10
¢, =0| > s~ onls,.  on ¢ S{ P (10)
So for potentials @, and ®, we obtain the next representations:
M, L .
ZM}II\" Pezl’ de¢21k’ Pezl’
CDI = ;&;21 ’(DZ = I\L:l (11)
ZM}Zk’ PEZZ’ de¢22k’ PGZZ'
k=1 =

Here c, (t) d, (t) are unknown time-dependant coefficients.

The effective numerical procedure for solution of eigenvalue problems (10) using the sin-
gle and multi-domain boundary element methods has been introduced in Refs. [7, 10].

Thus, the problem under consideration involves the following steps. First, it is necessary to
obtain the sloshing frequencies and modes ¢,, using rigid wall assumption. Second, we
obtain the natural frequencies €2, and modes u, of the empty elastic tank. Then we define the
free vibration frequencies and modes ¢/, of the elastic tank without considering effects of
sloshing. When functions ¢/, and ¢;, are defined, we substitute them in eqns (11) and (1) and
obtain the system of ordinary differential equations as it was done in Ref. [10]. Finally, the
flow-induced vibrations of elastic structures are studied.

To define functions ¢/, and ¢;, we use the boundary element method in its direct formula-
tion [1]. Dropping indices i, 1k and 2k one can obtain the main integral equation in the
following form:

0
276 (P ﬂq|P ok jj¢ |P s (12)

Here, § =0 US,, points P and P, belong to the surface S. The value |P - P0| represents Car-
tesian distance between the points P and P,,. In doing so, the function ¢ defined on the wetted
tank surface o presents the pressure, and the function ¢ defined on the free surface S,,, is the
flux, ¢ = 0¢ / on. To apply the MBEM, we introduce the artificial interface surface S, [11]-
[12]. In MBEM, the computational domain is divided into a number of subdomains, and the
BEM algebraic equations are established for each subdomain. Then the global system of
algebraic equations is formed by assembling results of all subdomains in terms of the equi-
librium and matching conditions over common interface nodes. This system has a blocked
and sparse character.
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The basic procedure is to start with the standard boundary integral equation for potential
(12), replace Cartesian coordinates (x, y, z) with cylindrical ones (1, 6, z), and integrate with
respect to z and 6. We use furthermore the cylindrical coordinate system, and represent
unknown functions as Fourier series by the circumferential coordinate 6

wi (r,z,@):wi (r,z)cosa@; ¢fk (r,z,9)=¢fk (r,z)cosa@; i=1,2j=12k=12,..,(13)

where a is a given integer (the number of nodal diameters). In this case, the solution is inde-
pendent of the angular coordinate 6, and the three-dimensional problem is reduced to a
two-dimensional one in the radial coordinate r and the axial coordinate z.

Let I" be a generator of the surface . Using (12), (13) we have obtained the following
system of singular integral equations for unknown functions ¢ and g in problem (9):

R

27z j¢ (Z)dF_Jq(p)\P(P’PO)PdP=_[W(Z)‘{’(P,P0)r(z)dFl;P0ea;

0

R

j(ﬁ(Z)Q(Z,ZO)r(z)dF—Iq(p)‘{’(P,Po)pdp :Iw (z)¥(P.R,)r(z)dl; P, €S,.

T 0
Here
0(z.20) =] L] LT (2 -2) (k)=F, (k) |n, +22==E_ (k)n
’ a+b | 2r a-b * “ " a-b “ ’

/2

¥ (P,R,)= F (k);E, (k)=(-1) (1—4a2)J.COSZal//\ll—kzsinzl//dl//;
0

F cos2ay dy 2

Y a=pt+piH(z-2,) ;s b=2ppk’ = .
\/m p pO ( 0) ppo a+b

The system of singular integral equations for mixed boundary value problem (10) has been
obtained in Ref. [10]. Numerical procedures to solve these problems based on the boundary
element method are described in details in the papers [7, 9, 11].

4 SOME NUMERICAL RESULTS
4.1 Low frequency sloshing modes for partially filled spherical shells

4.1.1 Spherical shells without baffles
Now we turn to the problem of sloshing in the spherical container without baffles. Radius of
the sphere is R =1m; the filling level is .

The numerical simulation has been provided for different values of £, (0.2 <h /R, < 1.99)
and different modes a (o =0,3). Both SBEM and MBEM are applied here. The boundary
elements with constant approximation of unknowns inside elements are used. In SBEM there
are 200 elements along the spherical surface and 150 elements along the free surface. In
MBEM we divide the computational domain into two parts by an artificial interface surface
at h, = 0.5k, using 100 boundary elements in each subdomain along the spherical surface

nt

and 150 elements along the free surface.
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We use practically the same mesh to find a numerical approximation of low eigenvalues for
the so-called ‘ice-fishing problem’. In this problem, formally, we should consider an infinitely
wide and deep ocean covered with ice, with a small round fishing hole. Sloshing in such
‘containers’ was studied by Mclver [12]. We approximate this infinite case using the spheri-
cal tank with the small round hole on its top. It allows us to compare our numerical results
with those obtained in the papers [12—14].

Proposed boundary element approach gives nearly the same values as the other authors. In
Tables 1 and 2 we compare our results obtained by using SBEM and MBEM with those
obtained in Refs. [12-14] for axisymmetric (a = 0) and non-axisymmetric (a = 1) modes.
Four first frequencies (m =1,4) are evaluated for each a. Here we consider different filling
levels h,. The value /R, = 1.99 corresponds to the ice-fishing problem. The results of Falt-
insen and Timokha [13], and Kulczycki ef al. [14] are very close. Both Refs. [13—14] and [12]
results analytically approximate the sloshing eigenvalues of the spherical tank.

It should be noted that results obtained by SBEM are more precise than MBEM ones, but
the matrix size in SBEM is twice larger compared with MBEM. If un-baffled tanks are at low
filling levels, it is preferable to use SBEM. The numerical analysis demonstrates that the
lowest liquid sloshing frequency occurs for mode a = 1.

Considering our approximate natural sloshing modes one can observe how free surface
profiles change with the liquid depth. These results are illustrated in Fig. 2 for the three low-
est eigenvalues of the mode a = 1. Here numbers 1, 2, 3, 4 correspond to the different
non-dimensional filling levels: 2, /R, = 1.0; 0.2; 1.8; 1.9, respectively.

In the spherical tank with 0 < /2,/R < 0.5 the lowest mode presents a spatial wave pattern
that look like inclination of an almost flat free surface. Increasing the liquid depth yields more

Table 1: Axisymmetric slosh frequencies of the fluid-filled spherical shell, Hz.

Filling level hl, m

m  Method =02 h,=0.6 h,=1.0 h=18 h,=1.99
1 [13,14], 3.8261 3.6501 3.7451 6.7641 29.0500
[12] 3.8261 3.6501 3.7451 6.7641 29.2151
MBEM 3.4034 3.5455 3.7294 6.6098  30.7081
SBEM 3.8314 3.6510 3.7456 6.7665  29.1811
2 [13,14], 9.2561 7.2659 6.9763 121139 51.8122
[12] 9.2561 7.2659 6.9763 121139 52.0467
MBEM 9.2636 7.2893 6.9796 120008  52.9393
SBEM 9.2686 7.2684 6.9780 121205 52.0255
30 [13,14], 14.7556 10.7443 10.1474 173960 74.2909
[12] 14.7556 10.7443 10.1474 173960 74.5537
MBEM 14.9214 10.7483 10.1496 173136 75.3139
SBEM 14.7763 10.7502 10.1512 17.4086  74.5547
4 [13,14],  20.1187 14.1964 13.3041 226579  96.6207
[12] 20.1187 14.1964 13.3041 226570 96.9560
MBEM 20.2066 14.2023 13.3083 225962 977771

SBEM 20.1498 14.2056 13.3110 22.6777 96.9021
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Table 2: Non-axisymmetric slosh frequencies of the fluid-filled spherical shell, Hz.

Filling level hl, m

m  Method /=02 h,=0.6 h,=1.0 h=18 h,=1.99
1 [13,14],  1.0723 12625 1.5601 3.9593 18.9838
[12] 1.0723 1.2625 1.5601 3.9593 19.1582
MBEM  1.1034 12777 1.5638 3.9606 19.1603
SBEM 1.0723 1.2626 1.5603 3.9508 19.1130
2 13,14, 62008 5.3860 5.2755 9.4534 41.3491
[12] 6.2008 5.3860 5.2755 9.4534 41.7683
MBEM  6.1227 5.3534 5.2749 9.4582 41.5327
SBEM 62090 5.3697 5.2764 9.4538 41.5333
3 [13,14],  11.8821 8.9418 8.5044 14.7548 63.5354
[12] 11.8821 8.9418 8.5044 14.7548 64.0323
MBEM  11.9650 8.9529 8.5062 14.7648 63.9483
SBEM  11.8981 8.9429 8.5069 14.7574 63.8783
4 [13,14], 173581 12.4234 11.6835 20.0224 85.9166
[12] 17.3584 12.4234 11.6835 20.0224 86.3001
MBEM  17.4540 12.4276 11.6863 20.0394 86.2972
SBEM  17.3842 12.4291 11.6884 20.0278 86.2034

complicated free surface profiles. Figure 3 demonstrates the spatial wave patterns for a = 1,
m=1,2,3ath/R =138.

4.1.2 Spherical shells with baffles
Consider the rigid spherical tank of radius R, = 1 m filled to the depth &, = 1.4 m. The inner
periphery of the tank contains a thin rigid-ring baffle. The baffle position is 4, = 1 m. The
different annular orifices in the baffle are considered. Radii of these orifices are radii R, of the
interface surfaces. The first four frequencies for mode a = 1 are evaluated for radii R, = 1.0 m,
R, = 0.7 m, and R, = 0.2 m. Note that R, = 1.0 m correspond to the un-baffled tank. The
frequencies are presented in Table 3.

The results show that frequencies decrease as radius of the baffle orifice is decreased. Only
the lowest eigenvalue is essentially influenced by installing the baffles.

Figure 4 demonstrates the first non-axisymmetric modes of liquid vibrations in spherical
tanks with and without baffles. When the baffle is installed, the mode shape becomes almost
flat.

4.2 Sloshing frequencies for partially filled cylindrical tanks with covered free surfaces

Consider eigenvalue problem (10) for the second fluid domain 2, bounded by cylindrical and
spherical surfaces (Fig. 1). By H denote a height of the cylinder, by R, R, radii of the spher-
ical and cylindrical parts, and by £, the filling level in 2. Let (0, z,) be centre coordinates of
the sphere. The shell structure has following dimensions: R, =1 m; R, = 1.2 m; Z,= 1.5m;H
= 2.m. The modes and frequencies are evaluated for different &, in the range of
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Figure 2: The radial wave profiles m = 1, 2, 3 for different non-dimensional liquid depths
h/R,.
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Figure 3: Spatial wave patterns fora=1;m=1, 2, 3.

Table 3: Sloshing frequencies of the fluid-filled spherical shell with baffles, Hz.

/g
m R, =1.0m R, =0.7m R, =02m
1 2.1232 2.0435 1.4234
2 5.9800 5.9723 5.8405
3 9.4789 9.4785 9.4567
4 12.9431 12.9430 12.9358

Figure 4: Spatial mode shapes for a = 1; m = 1 of un-baffled a) and baffled tanks b).

0.5<h, /R, <2.39. The inner radius R, of the ring free surface is defined by the dive level

of the spherical shell z, and the filling level &, as follows: R, =/R} — (h2 -z, )2 .

The results are illustrated in Fig. 5 for two lowest eigenvalues of the mode a = 1. Here
numbers 1, 2 correspond to frequencies of cylindrical tanks with ring and circular free sur-
faces, respectively. If 4, = 0.5 m, then both tanks have the complete circular free surfaces.

Figure 5a) and b) demonstrates changes in the first and second frequencies of the mode a
=1 via the filling level &,. The values of frequencies increase significantly with increasing the
inner radius of the ring free surface. The maximum values of frequencies correspond to
h, =z R, =R, Here we get the analogy with the “ice-fishing problem” for the spherical
shell with /R, = 1.99 (see Tables 1 and 2). Sloshing frequencies of cylindrical shell with
circular free surface are stabilized when &, > z_; one can observe here the typical monotonic
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Figure 5: Frequencies of cylindrical shell with ring and circular free surfaces.

dependences. The benefit of a partly covered free surface is that it increases the natural
frequencies.

4.3 Modes and frequencies of the empty cylindrical-spherical tank

Consider the elastic spherical-cylindrical tank without baffles (Fig. 1). The shell structure
is clamped at the bottom edge. Natural frequencies Q, and modes u,, k =1, N of the shell
structure without the liquid are calculated using FEM as it is proposed in Ref. [7]. The shell
structure has the following dimensions: R, =1 m, R,=1.2 m, Z,= 1.5m, H=2.0 m, wall
thickness /2 = 0.025 m; and material properties: Young’s modulus E = 2-103 MPa, Poisson’s
ratio v = 0.3, density p = 2700 kg/m3. Four modes of vibration are shown in Fig. 6.

The modes 6a) and 6b) correspond to the duplicate frequency Q, = Q,=4.6359 Hz. This
frequency is the lowest one of the mode a = 1. The axisymmetric mode 6¢) corresponds to
the frequency €2, = 5.9312 Hz, that is the lowest one of the mode a = 0. The axisymmetric
mode 6d) corresponds to the frequency €, = 50.9721 Hz.

a) b) <) d)

Figure 6: Modes of the empty cylindrical-spherical tank.
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Table 4: Frequencies of the fluid-filled double tank, Hz.

m w Dominant vibration a
1 0.6223 Sphere sloshing 1
2,3 0.6359 Sphere wall 1
4 0.8294 Cylinder sloshing 1
5 0.9635 Sphere sloshing 0
22 5.0785 Cylinder wall 0

4.4 Modes and frequencies of the fluid-filled cylindrical-spherical tank

To define coupled modes of harmonic vibrations of the elastic tank, we represent the time-
dependant unknown coefficients in series for potentials ®,,®,, eqn (11), and for vibration
modes u of the fluid-filled shell, eqn (5), in the form

c, (t) =C.e"; d, (t) =D, (14)

where ® is an own frequency, C, and D, are unknown constants. Using (14) we obtain
the eigenvalue problem for evaluating natural frequencies and modes of the fluid-filled
cylindrical-spherical tank [9].

The filling levels are ;=1 m and &, = 1.5 m. The lowest frequencies of the double tank are
presented in Table 4.

The first frequencies are very close in value. For example, modes 1-5 have frequencies
with difference within 1 Hz, and these modes are associated with different vibration types.
The first twenty modes are predominantly sloshing ones.

5 CONCLUSIONS

The numerical procedure based on the coupling finite and boundary element methods is
developed for the fluid-structure interaction analysis of the dual compartment tank. The con-
sidered problem has been solved using the multi-domain and single-domain boundary
element approaches. The analysis demonstrates that sloshing and shell vibrations can not be
considered separately. The lower frequencies of the fluid-filled tanks decrease to 0.2-0.4 and
0.1-0.6 of those of empty tanks for spherical and cylindrical compartments, respectively. The
fluid-stricture interaction effects are more significant for the outer cylindrical part.
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