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ABSTRACT
The paper reviews the collocation boundary element method (BEM) exactly as it has been originally 
proposed on the basis of a weighted residuals statement that leads to Somigliana’s identity, but with 
two subtle conceptual improvements for a generally curved boundary: (a) the interpolation function for 
normal fluxes or traction forces (for potential or elasticity problems) must be redefined and (b) only 
Gauss-Legendre quadrature turns out to be required if the numerical integration issues are mathemati-
cally adequately stated. A simple, unified code is proposed – as presently shown for 2D problems – to 
arrive at arbitrarily high computational accuracy of the constituent matrices as well as of results at 
internal points independently from how convoluted a problem’s topology may be (but given the repre-
sentation limitations of a discretization mesh). In fact, the higher the effect of a quasi-singularity may 
be, as for an internal point infinitely close to the boundary, the more accurate a result is achievable 
with just a few number of quadrature points. A collateral, but not less relevant, outcome of the pro-
posed developments is that regularization methods, special quadrature schemes and so many methods 
that intend to conceptually deviate from the originally stated BEM as an attempt to offer numerical 
improvements are actually unnecessary (they are in most cases just misleading). Moreover, the inac-
curate, albeit popular constant element is actually not simpler to deal with than high-order elements. 
Owing to space restrictions, most of the detailed developments as well as the hopefully very convinc-
ing numerical results deal with potential problems, although the more general problem of elasticity is 
adequately posed and assessed.
Keywords: Collocation boundary element method, curved elements, high precision computation, quasi 
singularities

1 INTRODUCTION
The proposition of a perfect code, as provocatively stated in the title, presupposes a perfect 
conceptual environment of the BEM to work with. Although Brebbia et al. [1] should always 
be referred to when dealing with the basics of the BEM, a simple, sound formulation has been 
brought forth by Dumont [2], not only exploring some key properties of the single-layer 
potential matrix G [3], but also proposing an improvement in the boundary approximate 
interpolation of traction forces (for elasticity problems) or normal gradients (for potential 
problems) that at the time was qualified as a slight one. In fact, this improvement, as stated in 
the following eqn (4), has turned out to be decisive in the direction of writing a code that 
numerically evaluates G as well as results at internal points as accurately as desired without 
resorting to special schemes other than the Gauss-Legendre quadrature, or unreasonable 
amounts of integration points, interval subdivisions or computational tricks whatsoever that 
unfortunately teem in the technical literature. Also decisive in the present developments are 
some previous studies for the accurate numerical evaluation of quasi singular integrals that 
only deal with the mathematical aspects of the problem in complete abstraction of any 
mechanical interpretation [4, 5].

2 PROBLEM FORMULATION
As applied to an elastostatics problem, the single-layer and double-layer potential matrices 
G  and H  of the BEM are obtained as
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 Hd Gt= , (1)

(body forces not considered) for nodal displacements d and boundary nodal traction attrib-
utes t . This equation turns out to be an application of Somigliana’s identity that converts 
boundary data into domain displacements. Whenever the boundary data are inaccurate, as the 
result of approximated values of d ≡ df  and t ≡ t



 for a given problem as well as of the piece-
wise boundary interpolation, an error term ε should actually be added to this equation [2, 3]. 
The matrices G and H are expressed in terms of the boundary integrals
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where uis s
∗

−( )x x  and σ jis s
∗

−( )x x  are the displacement and stress (Kelvin’s) fundamental 
solutions of the elastic problem – which have global support – and Γ( )x  is the integration 
boundary1. In the above equation and in the following, repeated indices mean summation. 
The vector x ≡ ( , , )x y z  stands for the Cartesian coordinates of a given point, in the case a 
field point, and nj ( ( , ))x ξ η  are the Cartesian components of the unity outward vector 


n( ( , ))x ξ η  to Γ( ( , ))x ξ η , in terms of parametric variables ( , )ξ η , for a general 3D problem. 
The subscript s refers to a given source node (at which the unit point force of the singular 
fundamental solution is applied) and the subscripts f (which stands for field) and  (also a 
field reference) indicate, respectively, to which node or surface point the displacement-inter-
polation function uif ( ( , ))x ξ η  or the traction-interpolation function t i ( ( , ))x ξ η  – both with 
local support – are referred. uif ( ( , ))x ξ η  comes from the piecewise interpolation of displace-
ments ui ( ( , ))x ξ η  along the boundary, u u di if f( ) ( ( , ))x x= ξ η , where df  are the nodal 
displacements. In a practical finite element or boundary element implementation, uif ( ( , ))x ξ η  
is actually represented by polynomial shape functions N f ( , )ξ η :

 u
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In the expression of H , the Jacobian used in the definition of nj ( ( , ))x ξ η  – see eqn (9)– 
cancels out with the Jacobian of d d dΓ( ) ( , )x = J ξ η ξ η .

For the single-layer potential matrix G , it is proposed that the usual (as found in the 
literature) interpolation polynomials t i of traction forces T t ti i( ) ( ( , ))x x=

 

ξ η  in eqn (2) be 
replaced with

 t
J

J

N i
i




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=
( ) ( , )at if  and  refer to the same Cartesian ξ η ddirection

otherwise,0







 (4)

where J
( )at 

 is the value of the Jacobian at the point characterized by the subscript  [2]. 
Nothing changes formally in the development of the BEM for curved boundary segments 
(and, of course, nothing changes numerically for the trivial cases of straight or flat boundary 

1Since both interpolation functions uif ( ( , ))x ξ η  and ti ( ( , ))x ξ η  formally introduced in eqn (2) have local support, 
there is no need of indicating that the boundary integrations are to be carried out segment by segment.



 N. A. Dumont, Int. J. Comp. Meth. and Exp. Meas., Vol. 6, No. 6 (2018) 967

segments), except that the evaluation of G becomes much easier and actually more consistent 
as compared to proposed implementations given in the technical literature [2]. In fact, J  
cancels out in the product t idΓ in eqn (2) for t i defined as suggested, and the integrand of G 
becomes a polynomial that multiplies the assumed kernel uis

∗ .

2.1 The misconception of continuous versus discontinuous elements

In a practical implementation, the same shape functions N i ( )ξ  (they might be different as a 
corollary of the theorem to be enounced next) are used in eqns (3) and (4), although the con-
text differs conceptually, as G, among other features, is in general a rectangular matrix ( in 
general refers to a larger number of parameters than f ). There is in fact a remarkable differ-
ence between the representation of boundary displacements according to u u di if f( ) ( ( , ))x x= ξ η  
and the representation of boundary tractions according to T t ti i( ) ( ( , ))x x=

 

ξ η , namely that 
df  are nodal attributes, whereas t



 are surface attributes: While u u di if f( ) ( ( , ))x x= ξ η  is sin-
gle valued at a node f  independently from the approaching direction (discontinuities due to 
a cracked domain not considered, for simplicity), in the case of  referring to a corner point 
the traction forces T t ti i( ) ( ( , ))x x=

 

ξ η  [or normal gradients q t q( ) ( ( , ))x x=
 

ξ η , for potential 
problems] depend on from which direction the point is approached (that is, to which surface 
segment the point  is meant to belong). As a result, attaching the precise meaning to the 
quantities at geometric locations characterized by the subscripts  and f  in the formulation of 
matrices G and H in eqn (2), so that eqn (1) becomes solvable, may not be trivial in a general 
mixed boundary (Cauchy) formulation. However, the dilemma continuous versus discontin-
uous elements should not be posed in a consistent formulation, as continuous elements in the 
definition of G simply stem from a misconception: while df  and f  are meant to refer to a 
nodal point, t



 and  should refer to just some surface point on a given boundary segment 
regardless the neighboring segments. (Observe for comparison that in a variational displace-
ment formulation there is the concept of equivalent nodal forces pf  in such a way that 
p dT

≡ p df f  means virtual work. This is by far not the case in the BEM.)
The conceptual advantage of using the definition of eqn (4) – and the eventual need of having 

the same functions N i ( )ξ  in both eqns (3) and (4) – becomes clear from the following 
theorem.

2.2 Theorem on the accurate representation of constant stress states

Theorem. For 2D problems with the boundary represented by piecewise, generally curved 
segments, the boundary element eqns (1) - (4) are able to exactly simulate constant stress 
state fields in the frame of an isoparametric formulation. For 3D problems, constant stress 
states are exactly simulated only if the boundary geometry is piecewise represented by up to 
second degree polynomials (linear and quadratic triangular as well as quadrilateral boundary 
elements).

Proof: One should first remark that eqn (1) only applies to a homogeneous medium, be it 
isotropic or not. Moreover, eqn (1) comes directly from Somigliana’s identity, which is true 
only for exact boundary data [2, 3]. Let an exact, in principle arbitrary analytical solution in the 
domain Ω of a problem represented by eqn (1) be given by a displacement field ui

p, where the 
superscript stands for polynomial, expressed as a sum of polynomial functions uim

p  multiplied by 
some constant parameters cm

p .
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Part 1. This displacement field must correspond to boundary data given in terms of the 
polynomial interpolation functions uif  introduced in eqn (2) , of sufficiently high degree to 
represent uim

p  along Γ (to adequately take the curved geometry into account) and multiplied 
by some nodal displacement parameters df , as proposed in the definition of eqn (1), that is,

 u u c u di
p

im
p

m
p

if f= ( ) =x( , ) ( , )ξ η ξ η  on Γ. (5) 

The corresponding exact nodal displacements df  are given by d u cf im
p

f m
p

=
( )at 

. Then,

 u c u u cim
p

m
p

if im
p

f m
px( , ) ( , )

( )
ξ η ξ η( ) =

at 
 on Γ. (6)

Since this must be valid for arbitrary values of cm
p , it follows that eqn (6) only holds if 

uim
p x( , )ξ η( ) on Γ is a linear combination of uif ( , )ξ η . For a generally curved boundary, this 

is only possible if uim
p x( , )ξ η( ) are linear functions of the coordinates x ≡ ( , , )x y z  interpo-

lated from nodal geometric data using a linear combination of uif ( , )ξ η , which constitutes an 
isoparametric representation. [In the case of non-homogeneous materials, only rigid body 
displacements are generally represented by eqn (5), as the field functions uim

p ( )x  of a non- 
trivial analytical solution, if available, are no longer necessarily polynomials. However, eqn 
(1) only applies to a homogeneous medium.] This proves the first part of the theorem, 
namely, that the domain solutions uim

p ( )x  must be linear polynomial functions in order for 
eqn (1) to hold and in an isoparametric formulation.

Part 2. The constant stress state σ σij
p

ijm
p

m
pc= ( )x  corresponding to the analytical, linear 

displacement solution ui
p of the first part of this proof leads to boundary traction forces (from 

now on dropping arguments for simplicity)

 σ σij
p
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p
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p

in n c t t= =
 

 on Γ. (7)
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
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Since this should be valid for arbitrary values of cm
p  as well as for any constant values σ ijm

p , 

and making use of eqn (4), one should investigate the conditions for n N J n Jj j= ( )


( )at 
 

to hold. Recall that
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
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∂ ∂ ∂ ∂ ∂ ∂
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1

ξ ξ ξ

η η η  for 3D problems. (9)

Then, expressing n n Jj j=  , eqn (8) holds only if

 � �� �n N nj =  (10)

also holds ( j  and  referring to the same Cartesian directions). This is generally true for 
two-dimensional problems in an isoparametric representation. For the three-dimensional case, 
as nj  involves the multiplication of two polynomial derivatives, according to eqn (9), eqn (10)
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is attained only if the boundary geometry is piecewise represented by up to complete quadratic 
polynomials (linear and quadratic triangular as well as linear quadrilateral elements).

In spite of the lengthy proof of this theorem, the computational implementation of the 
matrix G in eqn (2) with t i ( , )ξ η  given by eqn (4) is actually simpler than in the develop-
ments hitherto presented in the technical literature for curved elements. As a side remark or, 
more formally, as a corollary from the above theorem, one obtains that the shape functions 
N f ( , )ξ η  of eqn (3), used to interpolate both displacements and geometry in the frame of an 
isoparametric formulation, should be able to represent the shape functions N



( , )ξ η  of eqn 
(4), which justifies using the same functions in both equations.

3 ACCURATE NUMERICAL EVALUATION OF MATRIX G
Although the present developments are seamlessly applicable to two-dimensional elasticity 
problems, owing to space restrictions only the simpler case of a potential problem (solution 
of the Laplace equation) is outlined.

3.1 Evaluation of G for the improper integral

The matrix G is to be evaluated as in eqn (2) along a boundary segment Γseg for an interpo-
lation function given according to eqn (4) by J N J

n n
oe

(
( ) ( )

at )
ξ ξ , where n oe= +1 1  is the 

local numbering  of the boundary segment and oe  is the degree of the interpolation polyno-
mial N n

oe ( )ξ . One uses u r rm m m m m m
∗

− = − − ≡ − − ≡ −( ) ln ( ) ( ) ln ( ) lnx x x xξ ξ π ξ ξ π π2 2 2
, where 0 1≤ ≤ξm  is the parametric coordinate of the source point s , which is locally num-
bered m oe= +1 1 , for oe +1 source points along Γseg. (Implementations using 0 1≤ ≤ξm  
turn out to be simpler than for − ≤ ≤1 1ξm .) Then, a submatrix Gmn  of Gs is evaluated as

 2π
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which is the same as
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In this equation, the symbol GL  is introduced to mean a Gauss-Legendre quadrature using a 
given number ng  of evaluation points, which is applicable to the indicated evaluation in the 
second row up to a desired accuracy, and then split in the third row. Observe that, in this third 
row, one obtains the intended evaluation of the integral of eqn (11) as if carried out in the 
frame of a Gauss-Legendre quadrature plus the correction term given in brackets. This cor-
rection term is an array with oe +1 constants that only depend on the shape function N n

oe  and 
can be previously evaluated for a given number ng  of Gauss-Legendre points and stored. The 
analytical part of this correction term can be already expressed as an array of ( ) ( )o oe e+ × +1 1  
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matrices, whose rows and columns correspond to the shape functions N n
oe  and singularity 

poles ξm, respectively, as illustrated for linear, quadratic and cubic elements:
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3.2 Evaluation of G for complex and real quasi-singularities

When the source point x s is not on the integration segment Γseg but sufficiently close to configure 
a quasi-singularity, one evaluates ξs such that r rs

2 2 0( )ξ ξ− ≡ =  and obtains

 r x x y y w a bs s s s s s
2 2 2 2 2 0= −( ) + −( ) = ≡ − +




=( ) ( ) ( ) ( ) ( ) ( )ξ ξ ρ ξ ξ ρ ξ ξ , (14)

where w w a b( ) ( )ξ ξ≡ = − +
2 2  has roots ξs a bi= ± , with i = −1, and ρ ξ( ) is a polynomial 

whose degree depends on oe  and has only complex roots of large values. Then, ξs a bi= ±  
characterizes the complex quasi-singularity one must deal with. The evaluation of ( , )a b  is not 
trivial and must be carried out iteratively using a Newton-Raphson algorithm, for instance, as 
given by Dumont [4] for quadratic elements, and generalized in the present developments for 
an element of arbitrary order oe . The explicit evaluation of ρ ξ( ) in r w2 ( ) ( ) ( )ξ ρ ξ ξ=  can be 
circumvented by simply expressing ρ = r w2 .

Complex quasi-singularity. In such a case, one may write from eqn (11)
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The definite integral ln( )w N n
oe dξ

0

1

∫ , n oe= +1 1 , for shape functions N n
oe  of order oe , may 

be expressed as
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where L0
w , L1

w , Aw  and Pw  are arrays with oe +1 low order polynomial terms in a and b  that 
fulfill the properties:
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Real quasi-singularity. This occurs as a particular case of the previous section, when b = 0, 
that is, ξs a= . Then, equation becomes
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and one may express the definite integral ln ξ ξ−∫ a N n
oe d

0

1
, n oe= +1 1 , for shape functions 

N i
oe  of order oe , as
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where L0
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a  and Pa are arrays with oe +1 low order polynomial terms in a that fulfill the 
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4 ACCURATE NUMERICAL EVALUATION OF MATRIX H

4.1 Evaluation of H for a 1 r  singularity

The 1 r  singularity related to the double-layer matrix H is already adequately dealt with in 
the technical literature. For r x x y ym m m

2 2 2
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q x x y y y x rm m m m m
∗

− = − −( ) ′ − −( ) ′( )( ) ( ) ( ) ( ) ( ) ( ) ( )x x ξ ξ ξ ξ ξ ξ π2 2 . Then, a submatrix H mn  of Hsf  is evaluated for oe +1 shape functions along  
Γseg as

 H GL q n Nmn jm j n
o m

mn
e

seg

= + −










∗

∫ dΓ
∆

Γ

1
2

θ

π

δ , (21)

where ∆θm  is the angular jump from the left to right tangent to node m .
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4.2 Evaluation of H for complex and real quasi-singularities

Referring to the expression of r w2 ( ) ( ) ( )ξ ρ ξ ξ=  in Section 3.2 and the above definitions for 
the matrix H, one may write for a submatrix H mn  of Hsf

 

H
w

xy yx
uw

r

w
xy yx

uw

r

mn

seg

=
−

′ − ′( )










=
−

′ − ′( )

⌠

⌡


1

2

1

1

2

1

2

2

π

ξ

π

d
Γ











≡ ≡










⌠

⌡


⌠

⌡


⌠

⌡
d d dξ ξ ξ

0

1

0

1

2
0

1
1g

w w

f w

r
.

 (22)

According to eqn (25) in Dumont [4], one obtains for the integral

 
g

w
GL

g

w
R C R C

0

1

0

1

1 1 2 2
⌠

⌡


⌠

⌡
= + +d dξ ξ , (23)

where ξm a bi= ±  are the roots of w w a b≡ = − +( ) ( )ξ ξ
2 2 , with

 R b b R a R a b1 0 2 0 1 0= = − ≠, , for  . (24)

In these expressions, a g0 0= ℜ( )( )ξ  and b g0 0= ℑ( )( )ξ , and

 C
w

h

w
C

w

h

w
i i

ii

n
i

ii

n

1
0

1

1
2

0

1

1

= − = −
⌠

⌡


⌠

⌡


= =

∑ ∑
ξ ξ ξ ξd d

, . (25)

The integrals in the above equations are defined analytically as

 
ξ ξ

ξ

d

( )
ln

( )
arctan arctan

− +

=
− +

+

+
−

+
⌠

⌡


a b

a b

a b

a

b

a

b

a

b2 2
0

1 2 2

2 2

1

2

1 1









≠, for  b 0 (26)

 
d

for  
ξ

ξ( )
arctan arctan ,

− +

=
−

+










≠
⌠

⌡


a b b

a

b

a

b
b

2 2
0

1
1 1

0. (27)

For a real quasi-singularity ξm a= , with b = 0, the integral to be obtained is

 
g

a
GL

g

a
R C

ξ

ξ

ξ

ξ

−

=

−

+
⌠

⌡


⌠

⌡


0

1

0

1

1 1d d , for either a < 0 or a >1, (28)

where R g1 0= ( )ξ  and

 C
a

h

a
a

a

a

h

a
i

ii

n
i

ii

n

1
0

1

1 1

1
1=

−

−

−

=
−

+ −

−

⌠

⌡


= =

∑ ∑
dξ

ξ ξ ξ

ln . (29)
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5 ACCURATE EVALUATION OF RESULTS AT INTERNAL POINTS
Owing to space restriction, the complete algorithm for the evaluation of results at internal 
points cannot be outlined in this paper. Potential and displacement results are evaluated using 
the same procedures applied to matrices G and H. For internal gradients, a procedure to deal 
with g w 2

0

1

∫ dξ  must be developed, whereas stress results also demand the development of an 
algorithm to deal with the more elaborate case g w 3

0

1

∫ dξ . Such general developments have 
already been outlined by Dumont [4] and were especially coded in the frame of the present 
research work. They have resulted into black boxes that are straight forward to implement, as 
shown in the full manuscript that is being prepared.

6 A SIMPLE NUMERICAL ILLUSTRATION
Figure 1 shows a 2D domain discretized externally with 11 quadratic elements and four more 
elements to configure a hole. Node 27 of the hole is almost coincident with the external 
boundary. Moreover, nodes 12 and 29 are very close. Several internal (and some external) 
points are placed along the indicated dash line. Some of the points are just inside the domain, 

Figure 1: Multiply-connected domain discretized with a very coarse mesh of 15 quadratic 
elements and dash line along which internal results are evaluated.
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whereas some others are just outside. The matrices G and H were evaluated using in a first 
application four Gaussian points for all calculations and in a second case ten Gaussian points. 
The orthogonality of H with respect to a constant potential field was checked with global 
Euclidean errors of 10 7−  and 10 15− , respectively. These same errors affected the evaluation of 
eqn (1) for potential fields that vary linearly in the Cartesian directions, which attests the 
validity of the theorem of Section 2.2 within Gauss-Legendre quadrature accuracy. For these 
linear potential fields results at internal points could be obtained with the same previous accu-
racies all along the dash line independently from how close just inside or just outside the 
domain a point was placed. Results for higher order potential fields as well for two logarithmic 
fields going to infinity at the points marked with a cross were obtained with relatively good 
accuracy for the applied coarse mesh.

7 CONCLUDING REMARKS
This paper reviews the collocation boundary element method exactly as it may be obtained 
from Somigliana’s identity, but with a decisive improvement for generally curved bounda-
ries, which leads to a theorem akin to the basic one of the displacement finite element method, 
namely that constant stress states must be exactly represented for an elastic isotropic medium. 
A practical outcome of the proposed improvement is that the logarithmic singularity of the 
single-layer potential matrix, for 2D problems, can always be dealt with analytically, with a 
remaining regular part that only requires a Gauss-Legendre quadrature. Such analytical 
results are actually independent from problem geometry and can be pre-evaluated and stored 
in tables for different element orders and numbers of quadrature points. General quasi- 
singularities – both for matrix assemblages and evaluation of results at internal points – are 
dealt with mathematically to an arbitrarily large accuracy, which completely dispenses with 
regularization techniques (including not always legitimate mechanical justifications) and 
artifacts such as interval subdivision and special quadrature schemes. It is in passing dis-
cussed that the qualifications continuous and discontinuous, as applied to boundary elements, 
are actually the result of misleading concepts and should not even be mentioned in relation to 
a consistent formulation, as presently proposed. A simple – however convincing – numerical 
example is displayed to just illustrate how remarkable the results can be in the present con-
text, for instance with global or local errors never larger than 10 7−  when using just four Gauss- 
Legendre quadrature points along curved quadratic elements independently from how high a 
singularity or quasi-singularity may occur.
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