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ABSTRACT
Numerical methods, and especially the finite-element method (FEM), are usually adopted for the 
analyses of shockwave propagation in nonlinear inelastic media. Noise or spurious oscillations, in the 
calculated stresses and displacements, frequently appear in the FEM solutions. This article introduces 
and describes a numeric filter based on least-square analysis that can smooth out such fictitious noise. 
The sliced least-square method (SLSM) filter is implemented in a finite elements program that solves 
1D time integration of dynamic equilibrium sets of equations that simulate shockwave propagation in 
multi-layered soils supported by a hard stratum. Elastic and elasto-viscoplastic material models with 
dynamic yield surface constitutive relations are invoked to model sand, clay, and concrete materials in 
the analyses. Results of the analyses of shockwave propagation in layers of soil and concrete without 
the filter are compared with identical conditions with the inclusion of the new filter in the finite-element 
program. Oscillations in calculated stresses and displacements were observed in the results when no 
filter was included in the solution program. Solution results showed little or no noise with the applica-
tion of the new filter. The predicted FEM analyses results were compared with physical test results with 
very good to excellent comparisons obtained.
Keywords: elasto-viscoplastic material model, finite elements, implicit time integration, spatial filter, 
spurious oscillations, wave propagation.

1 INTRODUCTION
Analyses of wave propagation in multi-layered soil profiles are required in many geotechnical 
engineering problems. Among these problems is prediction of magnitudes and frequencies of 
shock-generated body and surface waves at the location of nearby structures. Closed-form solu-
tions do exist, and utilize assumptions of simple boundary conditions and elastic or simplified 
elastic-plastic soil behaviour. However, closed-form solutions become intractable if more repre-
sentative constitutive relations for earth materials are utilized, and if large strains and/or cycles 
of loading and unloading are to be accounted for. Hence, numerical methods, and especially the 
finite-element method (FEM), are usually adopted for the analysis of these and similar prob-
lems. The problem is that noise or spurious oscillations in the calculated stresses and 
displacements frequently appear in the FEM solutions. Calculations with such imprecision have 
been recognized, and attempts to circumvent these spurious oscillations and improve upon the 
solutions have been and are being carried out in several ways. Modifications to the time integra-
tion operator adopted in the FEM solution technique were proposed[1]. The incorporation of 
additional sinusoidal terms in the solution method was attempted [2]. A cut-off wave length was 
suggested for any given FEM mesh [3]. The addition of harmonic functions to the conventional 
interpolation function to enrich the FEM formulation was introduced [4]. Calculations of critical 
element size to be avoided in FEM mesh construction were explored [5]. The basic idea in all 
these attempts is the modification of one or more phase(s) of the solution technique, i.e. interpo-
lation function, element size, integration scheme, etc. To summarize, all proposed solutions 
dealt with a pre-result output. A different approach was to improve upon the FEM post-result 
solution by use of digital [6] or spatial filters [7]. A simple, efficient, new numerical spatial filter 
that smoothens out FEM-generated fictitious noise is introduced and detailed herein.
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2 SLICED LEAST-SQUARE METHOD FILTER (SLSM)
Least-square analysis forms the mathematical basis of the introduced filter. The least-square 
method can be expressed mathematically as follows: Let ψ x( ) be defined on the interval 
a x b≤ ≤  and let ϕ x C C Cn, , , ,1 2 …( ) be the function that is to approximate ψ  over the inter-
val, given the selection of values for the parameters C i ni , , , ,= …1 2 . The basic concept is that 
the weighted squared error over the whole interval should be a minimum. The error ε  at a 
given point in the above-defined interval is given by eqn (1):

 ε ψ φ= ( ) − …( )x x C C Cn, , ,,1 2  (1)

and the integral, Γ2 in eqn (2), is to be minimized:

 Γ2 1 2 1 2C C C w x x x C C C dxn

a

b

n, , , , , , ,…( ) = ( ) ( ) − …( ){ }⋅∫ ψ φ  (2)

where w x( ) is a weighting function. The target function, ψ , is available at a given number of 
points, m. Thus, the least-square error procedure is defined as follows:
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Defining the elements of the matrix S and vector T as follows:

 S w x x xi j k i k j kk

m

, = ( ) ⋅ ( ) ⋅ ( )
=

∑ 1
φ φ   (4)

 T w x x xi k i k kk

m
= ( ) ⋅ ( ) ⋅ ( )

=
∑ 1

φ ψ  (5)

one can write n equations, where n is the order of the polynomial fit plus one, in matrix nota-
tion as in eqn (6):

 S C T⋅ =   (6)

where C is a vector containing e coefficients C C Cn1 2, , , .…  Solving eqn (6) yields the values 
of C1 through Cn . And then the approximating function,φ x( ), can be computed, at any point 
in the interval (a,b), using eqn (7):

 φ x C xi
i

i

n
( ) = ⋅

−

=
∑

1

1
 (7)

The weight function, w (xk) is assigned a value of 1.0 in SLSM as no given Gauss integration 
point is believed to be more accurate than other points.

The least-square regression analysis method (LSM) may be applied to smooth FEM-calcu-
lated output (e.g., stresses) of wave propagation throughout the domain of interest of a solid 
body. Noise-free response is then obtained. However, illusory smoothening and flattening 
of sharp peaks in computed stresses, as well as erratic response ahead of the wave front, is 
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produced by application of LSM to the FEM solution output. To circumvent this problem, 
application of LSM is preceded by an additional procedure designed to eliminate the intro-
duction of further erratic results in the FEM output. This procedure is developed herein, and 
together with LSM, defines SLSM.

SLSM is achieved by sorting in linear order, in vector V, the magnitude of generated 
dynamic loading stress components, at element Gauss integration points along the wave 
propagation axis. This is followed by searching, per a pre-set criterion, the FEM output for 
‘jumps’ in the calculated stress’ magnitudes between arranged consecutive Gauss integration 
points. The complete set of Gauss integration points is then divided into subsets delimited by 
consecutive stress ‘jumps’. A slice that is the set of Gauss integration points between two 
‘jumps’ is thus generated. LSM is subsequently operated on each slice individually. Finally, 
displacements, velocities, and acceleration vectors are modified according to the new stress 
value (i.e. after LSM application) at each Gaussian integration point.

2.1 Stress ‘jump’ identification criterion

A stress ‘jump’ is identified at each time step when any of the following conditions is true:

2.1.1 Condition (a)
D R<=  as shown in Fig. 1, other variables shown in the figure are given by eqn (8) through (11).

 A max1 1= σ σ/   (8)

 A
max max

2
2 3 2=











 +


























σ

σ

σ

σ

/   (9)

 R A A A= − +( )2 1 2α  (10)

where α  is a dimensionless factor. D is calculated using eqn (11):

 D A= −2 3( / )σ σmax  (11)

In Fig. 1, d is the distance along the selected search direction, and L is the cumulative length 
of finite elements (FE) along that search direction.

2.1.2 Condition (b)
D R<=  as shown in Fig. 2. The variables shown in Fig. 2 are given by eqn (12) through (15):
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2.1.3 Condition (c)
D R<=  as shown in Fig. 3, where R is given by eqn (16), and the rest of the variables are as 
defined for condition (b).

 R A j

max

= −


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






−

2
3σ

σ

 (16)

If none of the conditions (a) through (c) are applicable, then LSM is applied to the stresses 
calculated at the end of current time step, Fig. 4.

3 EXAMPLES

3.1 Analysis of an elastic rod

Linear-elastic slender column was analysed under a variety of applied loadings as given by 
eqns (17) through (20):
(a) Initial conditions:

 U Uo o= = 0   (17)

where U is the vector of nodal displacements in the z-direction. Vectors and matrices are in 
bold type. Note that ‘u’ is the displacement in the z-direction and ‘v’ is the displacement in 
the radial direction; see Fig. 5.

Figure 1: Condition (a) for stress 
‘jump’ identification.

Figure 2: Condition (b) for stress 
“jump” identification.

Figure 3: Condition (c) for stress 
“jump” identification.

Figure 4: Curve fit where no stress 
“jump” is identified.
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(b) Boundary conditions:

 v = =  
0 0; ,z L  (18)

 u = =0;z L   (19)

(c) Applied load:
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where t is time in seconds, and P(t) is in kPa. The variation of applied pressure with time is 
given in [9].

The pressure P(t) is uniformly distributed on the element surface where z = 0. Axisymmet-
ric 8-node isoparametric elements were used in that analysis. A cubic polynomial fit in the 
SLSM was implemented, eqn (21):

 σσ z A B z( ) = + ⋅ + ⋅ + ⋅C z D z2 3    (21)

where A, B, C, and D are coefficients that were calculated using the standard least-square 
procedure. The exact and filtered solutions are shown on Fig. 6. The filtered solution (i.e. 
calculated axial stress versus distance along the slender rod) closely matches the exact solu-
tion.

Figure 5: Finite element mesh for slender rod. All side nodes are restrained in the X-direction.

Figure 6: Elastic analysis of a slender load under dynamic load.
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The problem of a slender column under axial strep velocity applied at the free end was 
solved, Fig. 7a. The problem was presented in Belytschko et al. [10], where artificial damp-
ing in the FEM solution was employed. The exact solution, FEM solution with artificial 
damping, and the SLSM filtered FEM solution, are shown in Fig. 7b. As can be seen, the 
SLSM solution is close to the exact one.

3.2 Non-linear analysis of a soil column

The problem of a soil column subjected to time-varying, vertical pressure was solved. The 
material model is an elasto-viscoplastic modified Cam clay model [11]. Configuration of FE 
and boundary conditions are the same as for the case of elastic rod (Section 3.1). The soil 
column consists of normally consolidated clay with decreasing void ratio with depth. The 
applied load is as given by eqns (17) through (20). However, in this case, the peak applied 
pressure, Po, is 207 kPa.

Attenuation factor, α, is given by eqn (22):

 α σ= ∆ z oP/    (22)

where ∆σ z is the change in axial stress and is calculated using the output of the FEM pro-
gram. Variation of the attenuation factor with non-dimensional depth (i.e. along the axis of 
the soil column) is shown in Fig. 8. As a check on the validity of the solution, the calculated 
variation of attenuation factor (with depth) is compared to that published in [9]. The solution 
shown in [9] is presented as Fig. 9. As can be seen from Figs 8 and 9, the variation of the 
attenuation factor with depth has the same characteristics.

Change in axial (vertical) stress, using an elasto-viscoplastic material model for the clay 
column with peak overpressure of 2,070 kPa is calculated. Propagation of the stress wave is 
shown in Fig. 10. SLSM is applied to the calculated change in axial stress and one result is 
shown in Fig. 11. The filtered solution shows larger compressive and smaller tensile stresses 
compared with the unfiltered solution.

Figure 7: (a) Model of a slender rod and Variation of applied velocity versus time. 
(b) Comparison of the SLSM filtered solution to artificial damping method cited by 
Belytschko et al. [10]. 
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Figure 8: Variation of the attenuation factor versus non-dimensional depth.

Figure 9:  Variation of attenuation factor versus depth using bilinear 1-D stress–strain 
relationship (after Hendron and Auld [9]).

Figure 10: Stress wave propagation in a clay column using elasto-viscoplastic analysis.
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3.3 Non-linear analysis of sand and concrete strata

A two-strata column with plain concrete on top of sand and with an interface element between 
the two materials was analysed. The thickness of each stratum was 19.97 m, and the interface 
element was 0.06 m thick. Plain concrete was modelled using a non-linear stress–strain rela-
tionship. Sand was modelled using an elasto-viscoplastic version of modified Cam clay. The 
applied load, at the top of the plain concrete stratum, was the same as for the clay column, as 
shown in Figs 10 and 11.

The change in axial stress calculated using a linear, elastic material model was compared 
with that using the elasto-viscoplastic material model, as shown in Fig. 12. A reduction in 
peak axial stress was noticed in the case of the elasto-viscoplastic material model. The reduc-
tion can be attributed to energy dissipation caused by plastic strain in the concrete and sand, 
given the high pressure applied with a peak of 2,070 kPa.

Figure 11:  Effect of stress smoothening on predicated change of stress in clay column (peak 
overpressure = 2,070 kPa).

Figure 12:  Effect of analysis type on predicted change in axial stress for the case of plain 
concrete on sand stratum.
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An example of the output of SLSM filtered and unfiltered change in stress is shown in 
Fig. 13. The filtered solution indicates a smooth variation of the change in axial stress versus 
depth. It also indicates that a peak in stress has been reached near the fixed end of the con-
crete-and-sand column. The unfiltered solution indicates a tensile stress jump near a depth of 
11 m, which is near the middle of the concrete stratum. From the mechanics of stress wave 
propagation, such tensile stress jump cannot be explained, given that one end of the concrete-
and-sand column is free and the other is fixed (in the direction of wave propagation).

4 CONCLUSIONS
The application of the FEM to the problem of shock wave propagation in multi-layer con-
tinua, whose constitutive laws are complex, provides results that cannot be obtained using 
existing closed-formed solutions. Spurious oscillations in FE solutions are inherent because 
of the limited cut-off frequency in FE meshes. Spurious oscillations observed in the case of 
material non-linearity are higher than those in the elastic medium.

A spatial filter, the SLSM, based on the least-squares method, is developed herein. The 
SLSM filter proved effective in linear elastic analyses in reducing the magnitude of the spu-
rious oscillations in the calculated axial stress in a slender column, while preserving the 
shape of the advancing stress wave.

The elasto-viscoplastic solution showed attenuation trend in the axial stress, which matches 
with the published data very well. The SLSM filter provides smoothening of the calculated 
stress in elasto-viscoplastic slender columns composed of one or more materials.
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