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ABSTRACT
The main purpose of this work is to employ the Adomian modified decomposition method (AMDM) to 
calculate free transverse vibrations of non-uniform cantilever beams carrying a transversely and axially 
eccentric tip mass. The effects of the variable axial force are taken into account here, and Hamilton’s 
principle and Timoshenko beam theory are used to obtain a single governing non-linear partial differen-
tial equation of the system as well as the appropriate boundary conditions. Two product non-linearities 
result from the analysis and the respective Cauchy products are computed using Adomian polynomials. 
The use of AMDM to make calculations for such a cantilever beam/tip mass arrangement has not, to 
the authors’ knowledge, been used before. The obtained analytical results are compared with numerical 
calculations reported in the literature and good agreement is observed. The qualitative and quantitative 
knowledge gained from this research is expected to enable the study of the effects of an eccentric tip 
mass and beam non-uniformity on the vibration of beams for improved dynamic performance.
Keywords: Adomian decomposition method, cantilever beam, mechanical vibrations, tip mass

1  INTRODUCTION
Important components of engineering structures can be idealized as cantilever beams with a 
concentrated mass at its free end. Examples of this are antenna structures, large aspect aircraft 
wings fitted with external tanks or stores, flexible robot arms and atomic force microscopes. 
The presence of the tip mass plays an important role in the dynamic characteristics of the 
beam and exerts an inertial force, which is a function of the system motion [1]. The problem 
of a uniform cantilever beam with an eccentric tip mass has received much attention, for 
example, Prescott [2], Goel [3], and, Rama Bhat and Wagner [4]. Exact solutions have been 
found, for example, To [5] derived an exact expression for natural frequencies and mode 
shapes of a uniform beam with base excitation and an axially eccentric tip mass and Auciello 
[6] has suggested an exact analysis of free vibration of a linearly tapered cantilever beam with 
tip mass with rotary inertia and axial eccentricity. Work has been carried out for non-uniform 
beams which can achieve a better distribution of strength and weight. The non-uniformity, 
which usually arises from a variable beam cross section or inhomogeneous material properties, 
leads to a fourth-order partial differential equation with variable coefficients. In general these 
fourth-order equations cannot be solved analytically. However, for some specific non-uniform 
beams, exact solutions of the eigenvalue problem have been reported in terms of power series 
[7], orthogonal polynomials [8] and Bessel functions [9]. More recent work has been carried 
on beams with tip mass and with uniform [10] and non-uniform [1] cross sections. Matt [10] 
simulated transverse vibrations of a cantilever beam, with an eccentric tip mass, in the axial 
direction using integral transforms which included an implicit filter scheme. Malaeke and 
Moeenfard [1] modelled large amplitude flexural-extensional free vibrations of non-uniform 
beams carrying a transversely and axially eccentric tip mass with the effects of the variable 
axial force taken into account.
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The method of solution here is the Adomian modified decomposition method, which is a 
wide ranging method of solution of problems involving algebraic, differential [11], inte-
gro-differential [12] and partial differential equations [13]. Specific to this work, the Adomain 
decomposition and Adomian modified decomposition method have been used by several 
groups [14, 15] for uniform and non-uniform beams, starting with either the Euler-Bernoulli 
or Timoshenko formulations. Mao [14] applied the AMDM to rotating uniform beams and 
included a centrifugal stiffening term while Adair and Jaeger [15] applied the AMDM to 
rotating non-uniform beams which also included a centrifugal stiffening term. Yaman [16] 
has used the Adomian decomposition method to investigate the influence of the orientation 
effect on the natural frequency of a cantilever beam carrying a tip mass.

In this study we use the computational approach of AMDM to analyze free transverse 
vibrations of non-uniform cantilever beams carrying a transversely and axially eccentric tip 
mass. As the beam is assumed to be under the effect of gravity, the spatial variation of axial 
force is taken into account. The natural frequencies and mode shapes of the beam for three 
test cases were found and compared with results reported in the literature.

2  MATHEMATICAL FORMULATION
The schematic view of a non-uniform beam with an eccentric tip mass is shown in Fig. 1. The 
distances a and b are the transverse ( z) and axial ( x ) eccentric values, respectively, CoG is 
the centre of gravity of the tip mass M  and l is the length of the beam. The polar mass 
moment of inertia of the tip mass around CoG is J  and, in this analysis, the axial stretching 
of the beam due to both gravitational and inertial axial forces is considered.

In order the find the governing equations of motion of the beam, Hamilton’s principle is 
employed. Every system behaves in such a way to satisfy

Figure 1: Schematic view of a non-uniform cantilever beam with an eccentric tip mass.
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where δ  is the variation operator, t1 and t2 are arbitrary times, K  and U are the total kinetic 
and potential energies of the system respectively and We is the work done by external forces.

For this system, the Euler-Bernoulli assumption that the rotation of cross-sections of the 
beam is small in comparison to the bending deformation is made. Also it is assumed that the 
angular distortion due to shear is considered small compared to the bending deformation and 
can be ignored. Therefore, the beam in question is long and slender with the length much 
greater than the thickness. With the assumption that the material of the beam is linear elastic, 
then the overall strain energy can be found from
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where A x( ) and I x( ) are the area and the second moment of area of the beam’s cross-sec-
tion around the neutral axis and E  is Young’s modulus of elasticity of the beam’s material.

The total kinetic energy of the system is given as K K Kcolumn mass= + , where
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Here, ρ  is the material density of the beam, rG  is the radius of gyration of the tip mass, and 
θ  and VCoG  are the rotational and translational velocities of the tip mass and its centre of grav-

ity, respectively. Here VCoG  is obtained using the relative velocity between the tip mass’s 
centre of gravity and the point of attachment to the beam.

The virtual work done on the system with the assumption that no viscous damping is pres-
ent is

	 δ δ δW W We g g= +
1 2

,	 (5)

where δ δW Wg g1 2
and  are the virtual gravitational work done on the tip mass and the beam, 

respectively. The virtual gravitational work done on the system can be written as
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Hamilton’s principle is now applied to obtain the governing equations of vibration of the 
system
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The variable axial force of the beam, N x t,( ) is defined as
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For a long and slender beam, with a small slenderness ratio, the longitudinal inertia is small 
compared to the restoring force and so
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Substitution for the terms N x t,( ) and ∂ ( ) ∂N x t x, / , as defined in eqns (9) and (10) into the 
expanded form of eqn (7) gives
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where the superscript ' mean differentiation w.r.t. x .
According to modal analysis for harmonic free vibration, w x t,( ) and u x t,( ), can be sep-

arable in space and so eqn (11) can be reduced to
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The dimensions of the beam in the y and z  direction may be given as
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where αd d d= 1 0/  , a ′ = ′ ′d d d1 0/ ; d d0 0, ′  are the cross-sectional widths at x = 0 and d d1 1, ′  
are the cross-sectional widths at x l= . The area and moment of inertia of the beam vary 
according to
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where A d d0 0 0= ′  and I d d0 0 0
3 12= ′ /  are the cross-sectional area and moment of inertia at 

x = 0 , respectively, and β αd d= −1 , b a′ ′= −d d1 .
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Equation (12) can now be written in the form
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The governing equation, eqn (17), cannot be solved as a closed-form solution and so some 
approximate approach must be adopted. Here the Adomian modified decomposition method 
(AMDM) is chosen.

3  ADOMIAN MODIFIED DECOMPOSITION METHOD
The Adomian decomposition method (ADM) is an iterative method, which has proved successful 
in treating non-linear equations. It is based on the search for a solution in the form of a series in 
which the non-linear terms are calculated recursively using the Adomian polynomials. The ADM 
gives the solutions φ η( ) of eqn (17) in a series form of the infinite sum
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Substitution of eqn (18) into the linear and nonlinear terms of eqn (17) yields
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Here L  is an invertible operator, which is taken as the highest-order derivative and R  is the 
remainder of the linear operator.

N1 ψ φ,[ ] in eqn (19) is a product nonlinearity and the respective Cauchy product can be 
computed using Adomian polynomials ( An) as
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N 2 φ[ ] in eqn (19) is also a product non-linearity, and accordingly the respective Cauchy 
product can be computed using Adomian polynomials (Bn) as
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According to the Adomian modified decomposition method (AMDM) the terms φ ηj ( ) in eqn 
(18) can be expressed as C j

j
η  so giving the infinite series
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where R  is now
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The Adomian’s polynomials in eqn (25) are found using the standard method [17] for 
B j jφ φ0 , ,…( ) and the generalized method for several variables as reported by Adomian and 
Rach [18] is used for Aj j jψ ψ φ φ0 0, , ; , ,… …( ).

The term Φ η( )  found in eqn (25) is the initial term and defined as
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On substituting eqns (23), (26) and (27) into eqn (25), the following is obtained
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can be calculated from eqn (28). The series solution is φ η η( ) =
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coefficients C j  cannot yet be determined, and thus, the solutions must be approximated by 

the truncated series 
j

n

j
jC

=

−

∑
0

1

η , with the successive approximations being φ η η
n

j

n

j
jC[ ]

=

−

( ) = ∑
0

1

 as n  

increases and the boundary conditions are met.

Thus φ η φ η φ η η φ φ η η
1

0
2 1

1
3 2

2
2[ ] [ ] [ ] [ ] [ ]

( ) = ( ) = ( ) + = ( ) +C C C, ,  serve as approximate 
solutions with increasing accuracy as n →∞. The three coefficients C jj =( )0 1 2 3, , ,  depend 
on the boundary equations. In this case, the two coefficients C0 and C1 can be chosen as arbitrary 
constants, and the other two coefficients C2 and C3 are stated in terms of the problem parameters 
or as the functions of the other coefficients.

The initial term Φ η( )  in eqn (25) is a function of C0  and C1 and from the recurrence rela-
tion obtained from eqn (28) the coefficients C jj ≥( )4  are functions of C0  and C1 and λ4 . By 
substituting φ η

n[ ]
( ) into the boundary conditions we then have
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	 f C f C rr
n

r
n

0 4 0 1 4 1 0 1 2[ ] [ ]
( ) + ( ) = =λ λ , , .	 (29)

For non-trivial solutions, C0  and C1, the frequency equation is given a

	
f f

f f

n n

n n

10 4 11 4

20 4 21 4

0
[ ] [ ]

[ ] [ ]

( ) ( )

( ) ( )

=

λ λ

λ λ

	 (30)

The ith estimated eigenvalue λ2 i

n

( )

[ ]  corresponding to n  is obtained from eqn (30), i.e. the ith 

estimated dimensionless natural frequency Ωn i

n

i

n

( )

[ ]

( )

[ ]
= λ2  is also obtained and n  is deter-

mined by the following equation

	 Ω Ωn i

n

n i

n

( )

[ ]

( )

−[ ]
− ≤

1
ε 	 (31)

where Ωn i

n

( )

−[ ]1  is the ith estimated dimensionless natural frequency corresponding to n − 1, and 

ε  is a preset sufficiently small value. If eqn (31) is satisfied, then Ωn i

n

( )

[ ]  is the ith dimension-

less natural frequency Ωn i( )
. By substituting Ωn i

n

( )

[ ]  into eqn (29)

	 C
f

f
C r or

r
n

n i

n

r
n

n i

n1

0

1

0 1 2= −

( )

( )
=

[ ]

( )

[ ]

[ ]

( )

[ ]

Ω

Ω

, . 	 (32)

and all of the other coefficients C j  can be obtained from recurrence relations. Furthermore, 
the ith mode shape φi

n[ ] corresponding to the ith eigenvalue Ωn i

n

( )

[ ]  is obtained by

	 φ η ηi
n

j

n

j
i jC[ ]

=

−

[ ]
( ) = ∑

0

1

	 (33)

where C j
i[ ]
( )η  is C j η( ) in which λ4  is substituted by λ4 i( )

 and φi
n[ ] is the ith eigenfunction 

corresponding to the ith eigenvalue λ4 i( )
. By normalizing eqn (33) the ith normalized eigen-

function is defined as

	 φ η
φ η

φ η η

i
n i

n

i
n d

[ ]

[ ]

[ ]

( ) =
( )

( )



∫ 0

1 2
	 (34)

where φ ηi
n[ ]
( ) is the ith mode shape function of the beam corresponding to the ith natural 

frequency ω λ ρ ρi
n

i
n

n i

nEI Al EI Al[ ] [ ]

( )

[ ]
= =0

4
0

4/ / .'

4  RESULTS
Results are given for the calculations of natural frequencies and mode shapes for a non-uniform 
beam, a uniform beam with constant axial load, i.e. the non-linear terms of eqn (17) were 
made constant, and an eccentric mass, and finally, a non-uniform beam with an eccentric 
mass. The calculated results are compared with results found in the literature.
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4.1  Case 1: non-uniform beam

The test case present here is a clamped-free constant width tapered beam (wedge) and the 
boundary conditions used were

	 φ
φ

η

φ

η η

0 0
0

0
1

0
1

0
2

2

3

3( ) =
( )

=
( )

=
( )

=, , , .
d

d

d

d

d

d
	 (35)

For the wedge beam α α α β β βd d d d’ , ; ,= = = =
′

1 0  the area and moment of the section can 
now be written as

	 A A A I I Iη α η βη η α η βη( ) = + −( )




= −( ) ( ) = + −( )




= −(0 0 0

3

01 1 1 1 1 1, ))
3

,

where β  is known as the taper ratio.
In this case the coefficients C0  and C1 were set to zero and the coefficients C2 and C3 are 

arbitrary constant. By substituting φ η η
n

j

n

j
jC[ ]

=

−

( ) = ∑
0

1

 into the last two boundary conditions of 

eqn (35) the following algebraic equations involving C2 and C3 are obtained

j

n

j
n nj j C f C f

=

−

+

[ ] [ ]

∑ +( ) +( ) = ( ) + ( ) =
0

3

2 12 4 2 13 41 2 0λ λ ,	

(36)

	
j

n

j
n nj j j C f C f C

=

−

+

[ ] [ ]

∑ +( ) +( ) +( ) = ( ) + ( ) =

0

4

3 22 4 2 23 4 31 2 3 0λ λ . 	

and for non-trivial solutions of C2 and C3 the frequency equation can be written as

	 f f f fn n n n
12 4 23 4 22 4 13 4 0[ ] [ ] [ ] [ ]
( ) ( ) − ( ) ( ) =λ λ λ λ 	 (37)

By solving eqn (37) for n  and taking the real root for λ4
2

= Ωn, it was found that for n = 30

	 Ω Ωn n1

30

1

29 0 00001
( )

[ ]

( )

[ ]
− ≤ =ε . . 	 (38)

with Ω Ωn n1 1

30 3 517
( ) ( )

[ ]
≈ = . .

The results for the wedge beam for different taper ratios are compared with those reported by 
Banerjee et al. [19], as shown in Table 1. The calculated results are in reasonable agreement 
with those reported by Banerjee et al. [19]. Values for β = 0 are not reported by Banerjee  
et al. [19] as their method suffered numerical overflow when β = 0.

Reasonable agreement was found between the two methods, although the current calcula-
tions generally gave slightly larger values. The maximum difference between the two methods 
was of the order of 1% and occurred for Ωn 3( )

.

4.2  Case 2: Uniform beam with eccentric tip mass experiencing constant axial force

Following [1] calculations were made for a uniform beam experiencing a constant axial loading 
with an eccentric tip mass. The material and geometric properties are listed in Table 2. The 
boundary conditions used for these calculations and those for Case 3 are
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d
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2

1
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( )
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An exact solution for this eigenvalue problem can be found [1] and is used here for comparison.
It can be seen form Table 2 that generally the current calculations give a closer result to the 

exact solution.

4.3  Case 3: Non-uniform beam with eccentric tip mass and rotary inertia

Here a linearly varying cross section cantilever beam with a both transversely and axially 
eccentric tip mass with rotary inertia is considered. The beam here is tubular and the physical 
properties are given in Table 4.
Using the present method, the normalized natural frequencies and mode shapes of the beam 
are obtained as on Fig. 2.

Table 1: Normalized natural frequencies of a wedge beam.

β Ωn 1( )
Ωn 2( )

Ωn 3( )

Current Ref.[21] Current Ref.[21] Current Ref.[21]

0
0.1
0.2
0.3
0.5
0.7
0.9

3.517
3.562
3.612
3.671
3.830
4.090
4.641

–
3.559
3.608
3.667
3.824
4.082
4.631

22.100
21.346
20.639
19.905
18.355
16.667
14.987

–
21.338
20.621
19.881
18.317
16.625
14.931

61.003
59.001
56.293
53.592
47.482
41.005
33.231

–
58.980
56.192
53.322
47.265
40.588
32.833

Table 2: Properties of the uniform beam with tip mass.

Parameter E ρ M l a b rG D

Value 210
GPa

7680
kg/m3

5000
kg

30
m

1
m

1
m

0.5
m

3
m

Table 3: Normalized natural frequencies of uniform beam.

N Ωn 1( )
Ωn 2( )

Ωn 3( )

0 Exact
Present
FEA Ref. [1]

0.7670
0.7678
0.7675

4.7763
4.7764
4.7707

13.2822
13.2955
13.2460

105 Exact
Present
FEA Ref. [1]

0.7657
0.7663
0.7662

4.7749
4.7763
4.7693

13.2811
13.2965
13.2451
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5  CONCLUSIONS
A method has been developed for calculating characteristics of a vibrating non-uniform cantilever 
beam with an eccentric tip mass. The developed approach is nontrivial and complicated due to the 
nature of the problem. No exact solution of this general problem is available. Several test cases 
were performed with quite reasonable agreement between the results of the current approach and 
those reported in the literature found.
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